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ABSTRACT 

 

 With the rapid growth of the wireless networking technology and mobile 

computing devices, there is an increasing demand for processing mobile database 

transactions in mission-critical applications such as disaster rescue and military 

operations that do not require a fixed infrastructure, so that mobile users can access 

and manipulate the database anytime and anywhere.  A Mobile Ad-hoc Network 

(MANET) is a collection of mobile, wireless and battery-powered nodes without a 

fixed infrastructure; therefore it fits well in such applications.  However, when a node 

runs out of energy or has insufficient energy to function, communication may fail, 

disconnections may happen, execution of transactions may be prolonged, and thus 

time-critical transactions may be aborted if they missed their deadlines.  In order to 

guarantee timely and correct results for multiple concurrent transactions, energy-

efficient database concurrency control (CC) techniques become critical.  Due to the 

characteristics of MANET databases, existing CC algorithms cannot work effectively.  

In this dissertation, an energy-efficient CC algorithm, called Sequential Order 

with Dynamic Adjustment (SODA), is developed for mission-critical MANET 

databases in a clustered network architecture where nodes are divided into clusters, 

each of which has a node, called a cluster head, responsible for the processing of all 

nodes in the cluster.  The cluster structure is constructed using a novel weighted 

clustering algorithm, called MEW (Mobility, Energy, and Workload), that uses node 

mobility, remaining energy and workload to group nodes into clusters and select 

cluster heads.  In SODA, in order to conserve energy and balance energy 

consumption among servers so that the lifetime of the network is prolonged, cluster 

heads are elected to work as coordinating servers.  SODA is based on optimistic CC 
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to offer high transaction concurrency and avoid unbounded blocking time.  It utilizes 

the sequential order of committed transactions to simplify the validation process and 

dynamically adjusts the sequential order of committed transactions to reduce 

transaction aborts and improve system throughput.  

 Besides correctness proof and theoretical analysis, comprehensive simulation 

experiments were conducted to study the performance of MEW and SODA.  The 

simulation results confirm that MEW prolongs the lifetime of MANETs and has a 

lower cluster head change rate and re-affiliation rate than the existing algorithm 

MOBIC.  The simulation results also show the superiority of SODA over the existing 

techniques, SESAMO and S2PL, in terms of transaction abort rate, system 

throughput, total energy consumption by all servers, and degree of balancing energy 

consumption among servers. 
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CHAPTER 1 

INTRODUCTION 

 

 In this chapter, we first introduce MANETs and their applications. We then 

discuss concurrency control in transaction processing, why energy efficiency is necessary 

in transaction processing and research challenges due to MANETs. Finally we state our 

objectives and contributions of our research and the outline of this dissertation.  

 

1.1 Mobile Ad-hoc Networks and Their Applications 

 A mobile ad hoc network (MANET) is a collection of battery-powered mobile 

nodes (or hosts) connected by relatively lower bandwidth wireless links. Each node has 

an area of influence called cell, only within which other nodes can receive its 

transmissions [Fife, 2003]. Due to no fixed infrastructures, all nodes can move freely, the 

network topology may change rapidly and unpredictably over time, and nodes have to 

form their own cooperative infrastructures. Thus, each node operates as an autonomous 

end system and a router for other nodes in the network. As no fixed infrastructure is 

required, MANET databases can be deployed in a short time and mobile users can access 

and manipulate data anytime and anywhere, and they become an attractive solution to 

handle mission-critical database applications, such as disaster response and recovery 

systems [Catarci, 2008; Lu, 2007; Alampalayam, 2009], mobile telemedicine systems 

[Viswacheda, 2007] and military operations like battlefields [Alampalayam, 2009]. 
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1.1.1 Disaster responses and disaster discovery using hybrid MANETS 

 When a hurricane, earthquake or tsunami occurs, disaster response and recovery 

are usually hampered by communications failure because the incumbent communications 

infrastructures have most likely been damaged or destroyed during these disasters. A 

mobile ad-hoc communications infrastructure, with support for multimedia traffic such as 

voice over IP and video streaming, must be rapidly developed to support the command, 

control and communication needs of the rescue and recovery operations [Lu, 2007]. 

 

 

Figure 1.1 Disaster rescue application [Lu, 2007] 

 

 Figure 1.1 shows a system architecture that consists of two tiers: satellite layer 

and WiFi layer [Lu, 2007]. In the satellite layer, multiple rescue teams can communicate 

among themselves as well as with their headquarters via satellite links. The team 
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members in each team (group) communicate among themselves using a multi-hop 

MANET, but team members from different teams do not communicate with each other 

directly. 

 

  

Figure 1.2 Workpad for emergency management [Catarci, 2008] 

 

 In order to design successful communication technology architectures for 

emergency management, Workpad employs user-centered techniques from human–

computer interaction paradigms. User-centered design relies on continuous interaction 

with end users, so that designers understand how organizations are arranged during 
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disasters, what information is critical, and how teams exchange information among 

themselves and with their operational centers as shown in Figure 1.2. Workpad designers 

collaborated with the Civil Protection of Calabria, Italy, and involved interviewing 

officers and generic actors from the organizations most critical to emergency 

management in that region. They also studied the emergency management structures of 

different European countries and found that most of them had emergency management 

structures similar to Italy’s [Catarci, 2008]. 

 

1.1.2 Mobile telemedicine system 

 Remote areas lack telecommunication infrastructures, thus, it is difficult to 

provide medical services in time and quality manner. Telemedicine is defined as the 

delivery of medical healthcare and medical expertise using a combination of 

telecommunication technologies. Telemedicine systems can support applications ranging 

from video conference to providing diagnostics, high quality image and still-image, and 

medical database records. Applications in Telemedicine are classified into basic and 

extended services. Basic services applications are digital electrocardiogram, oxy-meter, 

patient database records, and location information based on GPS technologies, while 

extended services applications are complete multimedia services. Both services can be 

used in rural areas based on wireless communication despite the fact that hospitals have 

wired communication. [Viswacheda, 2007]. 

Figure 1.3 shows two MANET based sub networks (MANET1 and MANET2). In 

a sub network, mobile nodes (MN) communicate directly with each other in peer-to-peer 

connections, and each MN acts as a router for other nodes. The health practitioners use 
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MNs to request/transmit patient’s data from/to the healthcare center or mobile 

ambulance. The server in the mobile ambulance functions as a local database if there is 

no connection to the health care center [Viswacheda, 2007]. 

 

  

Figure 1.3 Mobile telemedicine system [Viswacheda, 2007] 

 

1.1.3 Military operations in battlefields 

In a battlefield, soldiers are organized into platoons, stay close to their tanks or 

humvees, and share information through them. In other words, there is a leader or a group 

of leaders who tells everybody where and how to move or in which area to work as 

shown in Figure 1.4 [ATAC, 2005]. In general, their movements are driven by tactical 
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reasons. Due to this, the units normally use the optimal path to a destination. The 

destinations depend on the work area that is based on tactical issues. The tactics as well 

as the scene are usually hierarchically organized. Typically, the site is divided into 

different tactical areas. Each unit belongs to one of these areas. Thus, the area in which a 

unit moves depends on tactical issues but is restricted to one specific area [Aschenbruck, 

2008]. 

 

Figure 1.4 Military operations in a battlefield [ATAC, 2005] 

 

1.1.4 Common characteristics of mission-critical MANET applications  

The MANET applications described above have the following common 

characteristics:   

• These applications are mission-critical as they are related to human lives, thus, 

transactions must be executed not only correctly but also within their deadlines. 

• These applications are semantics-based and users are already organized into logic 
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groups. 

• Groups share information among each other through the help of satellites, but 

satellites are not always available [Viswacheda, 2007]. 

• Users can move randomly within application area.  However, their movement is 

within a finite range and they stay within the groups. In other words, the 

application area is divided into different tactical areas. Each group belongs to one 

of these areas, and is restricted to one specific area. 

 

1.2 Concurrency Control in Transaction Processing and Why Energy Efficiency Is 

Necessary 

 Database management systems ensure convenient and efficient access of 

databases for their users, and transaction Manager (TM) is a vital component in the 

system. TM is responsible for ensuring that a database remains in a correct/consistent 

state even if system fails. Also TM applies concurrency control to ensure that concurrent 

transaction executions proceed without interleaving. CC is the activity of preventing 

transactions from destroying the consistency of the database while allowing them to run 

concurrently, so that the throughput and resource utilization of database systems are 

improved and the waiting time of concurrent transactions is reduced [Silberschatz, 2005].  

A CC technique is pessimistic if it avoids conflicts at the beginning of transactions, or 

optimistic if it detects and resolves conflicts right before the commit time. 

 Because of the mobility and portability, mobile nodes have severe resource 

constraints in terms of capacity of battery, memory size and CPU speed [Fei, 2008].  As 

the battery capacity is limited, it compromises the ability of each mobile node to support 
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services and applications [Chlamtac, 2003]. Also the battery technology is not developed 

as rapidly as the mobile devices and wireless technologies, so that the limited battery 

lifetime is always a bottleneck for the development of improved mobile devices 

[Sklavos, 2007]. Therefore, a suitable CC algorithm for MANET databases should be 

energy-efficient. Here, energy efficiency refers to the amount of service work that a 

system can accomplish in the least amount of energy consumption when its battery 

capacity is limited [Fei, 2008]. 

 

1.3 Research Challenges due to MANETs 

 The flexibility and convenience in a MANET introduces a number of 

constraints/characteristics which impact transaction processing and are listed below. As a 

result of these constraints and of the fact that servers are also mobile, CC techniques for 

cellular mobile databases cannot be directly applied in MANET environments.  In a 

cellular mobile database, servers are generally static nodes running on a wired network, 

while clients are mobile nodes communicating with servers through static mobile support 

stations to have their transactions processed.   

• Mobility: When a node roams, its network and physical location change 

dynamically, and at the same time, the states of transactions and accessed data 

items have to move along with the node. 

• Low bandwidth: Wireless network bandwidth is much lower than its wired 

counterpart. For example, the widely used 802.11b wireless card has a maximum 

data rate of 11 Mbit/s [Hofmann, 2006]; however, currently an affordable Gigabit 
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Ethernet card realizes a maximum data rate of 1000 Mbit/s [StarTech, 2011]. 

Thus, within the cell of a node, inside neighbors, which are defined as nodes 

within 1-hop communication of each other, have to share and compete for the 

same channel. If someone fails, it may keep sending requests until timeout. This 

low bandwidth can result in communication delays, a high risk of disconnections 

and long-lived transactions. 

• Multi-hop communication: In a MANET, nodes can communicate with each other 

either directly or via other nodes that function as routers. When communication 

requires more hops, more energy and bandwidth are consumed, and more 

execution time is needed to complete transactions.  

• Limited energy: Because of the mobility and portability, clients and servers have 

severe resource constraints in terms of capacity of battery. Once a node runs out 

of energy or has insufficient energy to function, communication fails, 

disconnections happen, execution of transactions is prolonged, and some time-

critical transactions may be aborted if they missed their deadlines. 

• Frequent disconnections: A node is disconnected when it roams freely and is out 

of the transmission range of all its neighbors; or it fails to compete for the 

channels of popular neighbors; or its battery runs out; or it runs into some 

failures.  It is normal for a node to become disconnected in a MANET and the 

disconnected nodes may reconnect after some time. When disconnections happen, 

more transactions may be delayed or blocked, and even aborted if they are real-

time and miss their deadlines.  
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• Long-lived transactions: Due to wireless communication delay, less processing 

power, frequent disconnections and unbounded disconnection time, transactions 

in MANET databases tend to be long-lived. When the execution is prolonged, the 

probability of conflicts with other executing transactions becomes higher and, 

consequently, transactions are likely blocked if a pessimistic CC method applies, 

or aborted if an optimistic CC method is in use.  

 

1.4 Objectives and Contributions of this Research 

 CC research in MANET databases is still in an early stage. To the best of our 

knowledge, only one MANET CC algorithm, called Semantic Serializability Applied to 

Mobility (SESAMO) [Brayner, 2005], has been proposed. SESAMO does not take 

energy efficiency into account, and is based on semantic serializability, which requires 

that not only databases on mobile nodes be disjoint but also updates on a database 

depend only on the values of the data in the same database. Therefore, in SESAMO, 

transaction atomicity and global serializability can be relaxed.  Transaction atomicity 

ensures that a transaction either terminates normally to make all of its effects permanent 

or is aborted to have no effect at all [Bernstein, 1987].  Global serializability requires that 

all global transactions be serialized in the same order at all the participating servers at 

which they execute [Dirckze, 2000].  However, in MANET databases for mission-critical 

applications, the assumption for semantic serializability does not hold because each 

database depends on each other due to the organizational structure of the applications. 

For example, in a disaster rescue scenario, before sending firefighters out to pursue some 

actions, the status of their equipment has to be checked to ensure atomic decisions 
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[Obermeier, 2009], where the firefighter database may be stored on one mobile server, 

and the equipment database may be stored on another mobile server.  In a battlefield 

scene, before a tank fires its cannon, the locations of their own soldiers have to be 

checked to ensure their safety, where the tank database may be stored on one mobile 

server, and the soldiers’ information may be located on another mobile server. 

 Except for SESAMO, all other techniques are designed for cellular mobile 

databases, in which powerful servers are static and broadcast is heavily used to 

disseminate data from servers to clients, thus, they are not suitable for MANET databases 

either.  With broadcasting, static servers transmit latest data items to clients periodically 

regardless of their demands, and then the clients read the data items of interest from the 

broadcast channel [Choi, 2006].  In this dissertation, our objective is to design a CC 

algorithm that is energy-efficient and suitable for mission-critical MANET databases that 

require global serializability.  In other words, our new algorithm should minimize energy 

consumption of mobile nodes, clients as well as servers, and balance energy consumption 

among servers, so that servers with low energy do not run out of energy quickly, and 

thus, the number of disconnections and transaction aborts due to low energy or energy 

exhaustion can be reduced and system throughput can be improved as well.   

In this dissertation, an energy-efficient CC algorithm, called Sequential Order 

with Dynamic Adjustment (SODA), is developed for mission-critical MANET databases 

in a clustered network architecture where nodes are divided into clusters, each of which 

has a node, called a cluster head, responsible for the processing of all nodes in the 

cluster.  The cluster structure is constructed using a novel weighted clustering algorithm, 

called MEW (Mobility, Energy, and Workload), that uses node mobility, remaining 
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energy and workload to group nodes into clusters and select cluster heads.  In SODA, in 

order to conserve energy and balance energy consumption among servers so that the 

lifetime of the network is prolonged, cluster heads are elected to work as coordinating 

servers.  SODA is based on optimistic CC to offer high transaction concurrency and 

avoid unbounded amount of blocking time.  It utilizes the sequential order of committed 

transactions to simplify the validation process and dynamically adjusts the sequential 

order of committed transactions to reduce transaction aborts and improve system 

throughput.  

 Besides correctness proof and theoretical analysis, comprehensive simulation 

experiments were conducted to study the performance of MEW and SODA.  The 

simulation results confirm that MEW prolongs the lifetime of MANETs and has a lower 

cluster head change rate and re-affiliation rate than the existing algorithm MOBIC.   The 

simulation results also show the superiority of SODA over the existing techniques in 

terms of transaction abort rate, system throughput, total energy consumption by all 

servers, and degree of balancing energy consumption among servers. 

 

1.5 The Outline of Dissertation 

 The rest of the dissertation is organized as follows. Chapter 2 first reviews 

concurrency control techniques for MANET databases and cellular mobile databases, and 

then reviews clustering algorithms to elect cluster heads and form clusters in MANETs. 

Chapter 3 describes the MANET database architecture used in the proposed algorithm, 

and how to construct this architecture using our clustering algorithm MEW (Mobility, 

Energy, and Workload).  Chapter 4 presents our concurrency control algorithm, SODA. 
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Chapter 5 presents the performance evaluation of MEW compared with MOBIC using 

the NS-2 simulator [Basagni, 2006].  Chapter 6 discusses the performance evaluation of 

SODA compared with SESAMO and S2PL (Strict 2-Phase Locking) [Bernstein, 1987] 

using the AweSim simulation language [Pritsker, 1999].  Finally Chapter 7 concludes the 

dissertation with future research. 
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CHAPTER 2 

LITERATURE REVIEW 

 

 The contributions of this research are a concurrency control (CC) algorithm for 

MANET databases and a clustering algorithm for MANETs, thus in this chapter, we 

review not only CC design issues and CC techniques for mobile databases but also 

clustering algorithms for MANETs. 

 

2.1 Issues in Designing Concurrency Control Algorithms for Mobile Databases 

 

 In this section, we discuss the general issues and application-dependent issues 

that need to be addressed in the design of CC algorithms for mobile databases. 

 

2.1.1 General issues 

 General issues are those that every CC algorithm for mobile databases needs to 

address. 

 

2.1.1.1 Types of concurrency control algorithms 

 To guarantee the correct results and consistency of databases, the conflicts 

between transactions can be either avoided, or detected and then resolved.  Most of the 

existing mobile database CC techniques use the (conflict) serializability as the 

correctness criterion, where serializability requires that the effects of executing a set of 
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transactions concurrently be equivalent to the effects of executing the same set 

transactions in some serial order [Bernstein, 1987].  They are either pessimistic if they 

avoid conflicts at the beginning of transactions, or optimistic if they detect and resolve 

conflicts right before the commit time, or hybrid if they are mixed.  To fulfill this goal, 

locking, timestamp ordering (TO) and serialization graph testing can be used as either a 

pessimistic or optimistic algorithm.  An improper type of CC algorithm may waste 

limited system resources like bandwidth and battery power in MANET databases, and 

cause more transactions aborted. 

 

2.1.1.2 Rules of producing serializability 

 There are three general rules to produce serializability: locking, timestamp 

ordering and serialization graph testing [Bernstein, 1987].  In a locking scheme, each 

data item has a lock associated with it. Before a transaction can access a data item, it 

must obtain the lock of this data item first; otherwise, it has to wait until other 

transactions release the lock. In timestamp ordering, a unique timestamp is assigned to 

each transaction, and transactions are executed based on the order of their timestamps. In 

serialization graph testing, each transaction is added to the graph as a node, and there is 

an edge between two nodes if there is a conflicting operation between these two 

transactions. If there is a cycle in the graph after adding a new node, the newly added 

transaction is aborted to maintain the serializability. However, locking is not suitable for 

MANET databases because it is an unnecessary overhead when transactions are read-

only.  In addition, because of the early prevention, available limited system resources 

cannot be fully utilized.  Due to frequent disconnections in MANETs, timestamp 
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ordering scheme may abort lots of transactions with smaller timestamps if severs 

disconnect, reconnect after a while and cannot execute them based on their timestamps.  

Serialization graph testing is time-consuming because it always requires quadratic time 

to check serializability [Hwang, 2000]. 

 

2.1.1.3 Concurrency control granularity 

 The granularity of a data item is the size of the data contained in the data item 

[Bernstein, 1987].  The CC granularity, which is the size of data items used to 

prevent/detect transaction conflicts, can be a database row, a page, a table or a database.  

If a typical transaction accesses a small number of rows, then it is advantageous to have 

row granularity for higher concurrency and fewer aborts.  If a transaction typically 

accesses many rows of the same table, then it is better to have table granularity so that 

the resources, which are required to prevent conflicts in a pessimistic method or detect 

conflicts in an optimistic method, can be saved.  In other words, higher concurrency and 

fewer aborts but more resources are required for fine granularity.  In contrast, lower 

concurrency and more aborts but fewer resources are required for coarse granularity; 

however, more aborts consequently wastes the limited system resources like wireless 

bandwidth and battery power in MANETs. 

 

2.1.1.4 Mobile system architecture 

 A mobile system architecture can be classified as either a cellular mobile network 

architecture or a MANET architecture.  A cellular mobile network architecture consists 
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of fixed nodes and mobile nodes, where only mobile nodes are mobile and battery-

powered.  Mobile nodes retain their network connections through a wireless interface 

supported by some fixed nodes known as mobile support station (MSS) [Serrano-

Alvarado, 2004].   In a MANET architecture, every node is mobile, wireless and battery-

powered, and can communicate with each other directly either through one hop or 

multiple hops.  Unlike cellular mobile databases where servers are static, servers can 

move freely in MANET databases, so that it is hard to check serializability among 

mobile servers. 

 

2.1.1.5 Location of concurrency control manager(s) 

 A CC manager (or scheduler) is the heart of a CC algorithm because every data 

request or final transaction validation before the commit time in an optimistic algorithm 

must go through it.  Depending on the architecture of a database system (centralized or 

distributed) and the design of a CC algorithm, a CC manager can be either centralized or 

distributed as well.  For instance, in a distributed database system, if there is only one CC 

manager that is located at one node to schedule all transactions, then this CC manager is 

centralized.  However, in MANET databases, besides the bottleneck problem, a 

centralized CC manager may not always be available due to frequent disconnections.  

Also the computation overhead gets worse because of limited battery power, memory 

and disk space.  To resolve these problems and process transactions in a timely manner, 

there should be more than one CC manager located at different sites, where each CC 

manager has autonomous processing capability on local transactions that access or 

update data in only one server, and may coordinate with each other to execute global 
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transactions that access or update data in more than one servers.  However, the tradeoff 

of distributed CC managers is the communication overhead in terms of handshaking 

among them for the cooperation or broadcasting data and invalidation information among 

them. 

 

2.1.1.6 Improving system performance 

 In order to improve transaction throughput and response time and to effectively 

utilize system resources, it is natural to allow multiple concurrent transactions to be 

executed simultaneously.  However, when a transaction does not complete its execution 

successfully because of transaction failure or database inconsistency, it is aborted or 

restarted and, consequently, the transaction execution time and system resources are 

wasted.  It is expensive to abort or restart transactions in MANET databases because this 

would consume the limited bandwidth, battery power and storage and, consequently, 

more transactions are aborted due to the MANET database characteristics discussed in 

Chapter 1.  Therefore, a good CC algorithm for MANET databases should offer high 

transaction concurrency and avoid unnecessary aborts, so that more transactions will 

have chances to complete and commit in a timely manner and nodes will not waste their 

scarce resources, especially power, which may subsequently cause disconnections.   

 

2.1.1.7 Cascading abort 

 When a transaction aborts, the recovery scheme must restore the database to the 

consistent state that existed before the transaction started.  It is necessary to ensure that 
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any transaction that has read data written by the aborted transaction is also aborted.  This 

phenomenon is called cascading rollback [Bernstein, 1987].  Cascading abort usually can 

be avoided by not allowing transactions to read un-committed data items in the CC 

design; otherwise the consistency property is not preserved and it also results in a 

significant amount of transaction undo work, which is expensive in MANET databases 

because once limited battery power is consumed, it cannot be replaced until the battery is 

recharged.  When battery power is low or runs out, communication may fail or 

transactions cannot be processed. 

 

2.1.1.8 Insert and delete operations 

 Besides read and write (update) operations, an insert operation inserts a new data 

item with an initial value into the database; and a delete operation deletes a data item 

from the database.  Read, write, insert and delete can be conflict operations and result in 

the phantom phenomena or logic errors when any two of them execute in different orders  

[Silberschatz, 2005].  For instance, a logic error will occur when a data item is read after 

it is deleted or before it is inserted.  To avoid logic errors, insert and delete operations 

have to be treated like write operations; otherwise, corresponding transactions have to be 

aborted or restarted, and aborts are expensive in MANET because they waste limited 

system resources like bandwidth and battery power, which were discussed in Chapter 1. 

 

2.1.1.9 Level of consistency 

 In some applications (e.g. statistical analysis or traffic information), in order to 
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increase the degree of concurrency and reduce transaction abort rate, it is acceptable to 

relax the transaction consistency requirement by reading stale data; however, this loose 

consistency may compromise the accuracy of the database.  In mission-critical 

applications like disaster rescue and battle field of military operation, consistency cannot 

be relaxed and accurate data are required; consequently, it becomes a challenging task in 

the MANET environment because every node is mobile, wireless and battery-powered. 

 

2.1.1.10 Transaction model 

 Depending on applications, a transaction can be flat or nested [Moss, 1985].  The 

flat model is simpler to implement, but rolling back the entire transaction and starting 

from the very beginning is the only option when some part of the transaction fails.  This 

would definitely waste lot of the limited system resources in MANETs because every 

mobile node has limited bandwidth and battery power.  In other words, when some nodes 

occupy the wireless bandwidth to process those transactions that are aborted later, other 

nodes have to wait for some time period and then try to connect again; once the limited 

battery power is consumed, it cannot be replaced until the battery is recharged.   In a 

nested model, a transaction can be dynamically decomposed into a hierarchy of sub-

transactions (child transactions), and this decomposition grants the opportunity to 

rollback/restart only the failed sub-transaction rather than the entire transaction.  This of 

course reduces the amount of completed work that is wasted by a flat model, but the 

tradeoff is that a nested model complicates the ACID (Atomicity, Consistency, Isolation 

and Durability) properties of transactions [Özsu, 1999] in MANETs.  For instance, some 

sub-transactions committed early to improve concurrency, but their parent transactions 
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cannot complete and cannot rollback those already committed sub-transactions due to 

frequents disconnections.  Then how to guarantee transaction atomicity and consistency 

has to be addressed.  

 

2.1.2 Application-dependent issues 

 Not all mobile applications have the same requirements for CC algorithm design.  

In this section, we discuss the issues that are application-dependent. 

 

2.1.2.1 Global serializability 

 The consistency of a global transaction may not be guaranteed although its sub-

transactions are serializable at each participating server because the serialization orders 

may be different at different participating servers. Thus, in a distributed client-server 

database system, serializability has to be maintained at not only the local level but also 

the global level.  To achieve global serializability, due to MANET characteristics, it is 

crucial to address the following:  

• How to require less communication because every node is wireless and more 

communication consumes more battery power  

• How to utilize battery power efficiently since every node has limited battery 

power 

• How to allow nodes to effectively cooperate with each other because frequent 

disconnections are normal in MANET environments. 



22 
 

 

2.1.2.2 Degree of local autonomy 

 In a heterogeneous database (or multi-database) system that allows local 

autonomy, each local database system has the right to share internal data or not, and 

choose its own mechanisms for data and transaction management.  Local autonomy is 

preserved if the local site does not need to be modified in order to coordinate global 

serializability.  When the local site has more autonomy, it can effectively utilize its local 

system resources.  However, in MANET mission-critical applications like disaster rescue 

and military operations, global serializability is required; so the local autonomy cannot 

be preserved; but each system still needs to share as few data items as possible to achieve 

the global serializability.  This would allow limited wireless bandwidth and battery 

power to be saved because fewer shared data would require less communication.  

 

2.1.2.3 Cached/Replicated data 

 In order to improve data access time and availability, caching/replication is a 

process that creates several duplications of the same data and stores one copy at a 

different site.  Caching slightly differs from replication in that cached data is only 

available to the site where the data is cached.  However, in MANETs, since every node is 

battery-powered, to save and balance the power consumption of primary copy servers, 

which maintain the primary copies of data, must be addressed; otherwise, no service 

would be provided when those servers run out of power.  Servers with frequent 

disconnections (due to mobility or power failure) should not be considered as primary 
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copy servers or caching/replication servers because it is difficult to maintain 

cached/replicated data consistency and guarantee data availability. 

 

2.1.2.4 Real-time applications 

 A real-time transaction is defined as a transaction that must be executed within its 

deadline. In some cases, data items associated with real-time transactions have temporal 

constraints, that is, they remain valid only within a certain time interval.  These data are 

called temporal data.  Due to frequent disconnections, unbounded disconnection time and 

long-lived transactions in MANETs, how to meet transaction deadlines (and how to 

process data within their valid time intervals if temporal data exist) is critical for real-

time applications in addition to guaranteeing database consistency.   

 

2.2 Concurrency Control Techniques for MANET Databases and Cellular Mobile 

Databases 

 

 In this section, most recently published CC algorithms for mobile databases are 

reviewed according to MANET database characteristics. These algorithms are classified 

into three categories based on their types: pessimistic, optimistic and hybrid. 

 

 2.2.1 Pessimistic CC methods 

 In a pessimistic CC method, many transactions are assumed to conflict with each 

other.  Each data access (read or write) by a transaction is checked for conflicts, and 

conflicting transactions are blocked, restarted or aborted.  A lot of recent CC research in 



24 
 

mobile databases use this method and apply a locking scheme to produce transaction 

serializability.  However, this method is not suitable for high volumes of transactions, 

and it is an unnecessary overhead when transactions are read-only. Also because of this 

early prevention, available limited system resources cannot be fully utilized.  As 

transaction execution is prolonged and disconnection time is unbounded in MANET 

databases, the possibility of conflicts among concurrent transactions increases as well. 

When there are more conflicts, more transactions will be blocked, restarted, or directly 

aborted.  

 

2.2.1.1 Semantic Serializability Applied to Mobility 

 Semantic Serializability Applied to Mobility (SESAMO) [Brayner, 2005] is 

proposed for MANET databases. SESAMO is based on the semantic serializability, 

which assumes that databases are disjoint and updates on a database only depend on 

values of data in the same database; therefore, transaction atomicity and global 

serializability can be relaxed. However, in SESAMO, global transactions still need be 

serialized at each site using strict 2PL, while at the same time, each site must maintain 

the consistency of its own local database. The limited bandwidth is saved and transaction 

execution time is reduced because global serializability is automatically guaranteed 

without coordination among servers, and the locks held by the sub-transactions of a 

global transaction can be released once they finish at the local sites. However, SESAMO 

may fail in MANET applications in which global transactions conflict with each other 

because it assumes “Any two given mobile multi-database transaction schedulers do not 

schedule any transaction in common” [Brayner, 2005]. Due to no coordination among 
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servers, database consistency is not preserved when some sub-transactions cannot 

commit along with others due to disconnections.  

 

2.2.1.2 Look-Ahead Protocol 

 To maintain data consistency of broadcast data in mobile environments and 

overcome repeatedly restarting update transactions, Look-Ahead Protocol (LAP) is 

proposed in [Lam, 2005]. In LAP, update transactions are classified into hopeful 

transactions and hopeless ones.  Hopeless transactions are those that can not commit 

before their deadlines, and are aborted as earlier as possible to save system resources and 

reduce data locks, while hopeful transactions can continue to execute their read and write 

operations using the 2PL algorithm. Unfortunately, in MANETs, because of node 

disconnections, locked data may be unavailable for an unbounded amount of time. 

 

2.2.1.3 Multi-Version Transaction 

 A Multi-Version Transaction (MV-T) processing model and a deadlock-free 

concurrency control algorithm based on the multi-version 2-phase locking scheme are 

introduced in [Madria, 2007] for mobile database systems. A successful mobile 

transaction (MT) goes through three states (start, commit that is different from the 

commit in database systems, and terminate). A MT can start and commit at a mobile 

node but it terminates only at one of the database servers. A read operation is never 

blocked because it always gets the last committed or terminated version of data. In 

addition to read-lock and write-lock, a verified-lock is introduced to achieve isolation. A 
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write-lock is converted to a verified-lock after a MT commits locally. When requesting a 

write-lock, a MT with a higher timestamp may be blocked by one with a lower 

timestamp that holds a write-lock or a verified-lock, but just like applying the timestamp 

ordering, the requesting MT is rejected or restarted if it has a lower timestamp, therefore, 

there is no deadlock.  Unfortunately, in MANETs, because of frequent disconnections, 

locked data may be unavailable for an unbounded amount of time. 

 

2.2.1.4 Single Lock Manager Approach 

 Single Lock Manager Approach (SLMA) [Moiz, 2007] is proposed for cellular 

mobile networks, in which a single lock manager resides at a fixed server and handles all 

lock and unlock requests from mobile clients (or nodes). Transactions are initiated and 

executed at mobile clients, but required data items are read from the fixed server and 

final updates are done at the fixed server. To increase the system throughput and save the 

limited uplink bandwidth, SLMA applies a dynamic timer to roll back transactions if 

they lock data items too long, and puts them in a round robin queue for the next 

execution. To recover the failure of the single fixed lock manager, the final updates of 

transactions are also replicated at other fixed hosts. Unfortunately, in MANET, every 

node is mobile; so it will be challenging to elect a stable node as the single lock manager.  

 

2.2.1.5 Absolute Validation Interval 

 A concurrency control approach using Absolute Validation Interval (AVI) is 

proposed in [Moiz, 2008]. The AVI is the life span of a data item in which it is said to be 
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valid. Mobile nodes copy data items from fixed hosts to their private memory and 

execute transactions locally. Fixed nodes maintain the AVIs of all data items, commit 

update transactions requested by mobile nodes, and provide the invalidation reports to 

mobile nodes. During the local execution of a mobile transaction T, if the current time for 

accessing data is greater than the total of read timestamp of data item plus AVI, this 

transaction is restarted.  However, in MANETs, since every node is mobile, wireless and 

battery-powered, it is challenging to elect which nodes to work as the fixed nodes to 

maintain the AVIs of all data items and provide invalidation reports. 

 

2.2.2 Optimistic CC methods 

 In contrast with pessimistic CC techniques, an optimistic CC method assumes 

that not too many transactions conflict with each other and, thus, allows transactions to 

be executed simultaneously, and delays the serializability check of these transactions 

until their commit time. This delay provides CC mangers with more information to 

determine the fate of committing transactions. However, the tradeoff is the overhead of 

late transaction restart and waste of limited resources if a committing transaction must be 

aborted. This tradeoff becomes worse when the probability of conflicts among 

concurrently executing transactions is high due to the prolonged execution of 

transactions and unbounded amount of disconnection time in MANET databases. 

 

2.2.2.1 Optimistic Concurrency Control with Dynamic Timestamp Adjustment 

 Based on the same technique – the timestamp interval with dynamic adjustment 
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[Lee, 1993] like PVTO [Lee, 2002b], Optimistic Concurrency Control with Dynamic 

Timestamp Adjustment (OCC/DTA) [Choi, 2006] is proposed to process transactions in 

a mobile centralized broadcast environment. Since less information is transmitted 

between mobile clients and the centralized server, and the timestamp intervals of 

validating transactions are adjusted only when they read/write data items, OCC/DTA 

works like a lightweight version of the PVTO protocol. Thus, OCC/DTA has the same 

drawbacks as those of PVTO. In addition, one of the validation rules need be justified: 

“if a committed transaction Tc already read some data and a validating/active 

transaction T tries to write the same data, the serialization order between them is T 

precedes Tc” [Choi, 2006]. This is because the authors adopt this rule partially from [Lee, 

2002a], change it slightly but do not provide their own correctness proof. Unfortunately, 

in MANETs, since every node is mobile, wireless and battery-powered, how to elect a 

node to work as the centralized server need be addressed. 

 

2.2.2.2 Multi-Version Optimistic Concurrency Control for Nested Transactions 

 Multi-Version Optimistic Concurrency Control for Nested Transactions 

(MVOCC-NT) [Lei, 2008] is proposed to process mobile real-time nested transactions 

using multi-version of data in mobile broadcast environments. MVOCC-NT also adopts 

the timestamp interval with dynamic adjustment like OCC/DTA [Choi, 2006] to avoid 

unnecessary aborts. At mobile clients, all active transactions perform backward pre-

validation against transactions committed in the last broadcast cycle at the fixed server. 

Read-only transactions can commit locally if they pass the pre-validation, but survived 

update transactions have to be transferred to the fixed server for the final validation. 
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Since data conflicts are detected early, processing and communication resources are 

saved.  However, in MANETs, since every node is mobile, wireless and battery-powered, 

it is challenging to elect which node to work as the fixed server to do final validation and 

periodically broadcast data. 

 

2.2.2.3 2-Phase Optimistic Concurrency Control 

 Choi et al. propose a 2-Phase Optimistic Concurrency Control (2POCC) [Choi, 

2009] to process mobile transactions in wireless broadcast environments. Transaction 

validation is done in two phases: partial backward validation at mobile clients and final 

validation (forward validation first and then backward validation) at the static server. To 

guarantee transaction serializability in both phases, 2POCC validates mobile transactions 

using the following two rules. If a transaction Ti is serialized before transaction Tj: 

1. No overwriting,  that is, the writes of Ti should not overwrite the writes of Tj; 

2. No read dependency, that is, the writes of Ti should not affect the reads of Tj. 

To avoid too many restarts of mobile transactions with the read phase lasting several 

broadcast cycles, the end of a mobile transaction’s read phase and validation phase can 

be shifted to before the beginning of the next broadcast cycle if the unread data objects 

were not updated during the current broadcast cycle.  Unfortunately, in MANETs, since 

every node is mobile and battery-powered, electing which node to work as the static 

server to do final validation will be a challenge. 
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2.2.3 Hybrid CC methods 

 A hybrid method is a combination of optimistic and pessimistic CC methods.  For 

instance, an optimistic method may be used to validate global transactions and 

pessimistic one is applied to verify local transactions in a distributed database system. 

Thus, all the problems existing in both methods have to be addressed. 

 

2.2.3.1 Partial Global Serialization Graph 

 Partial Global Serialization Graph (PGSG) [Dirckze, 2000] is introduced to 

enforce a range of consistency and isolation in the cellular mobile multi-databases 

environment. In PGSG, before committing a global transaction, a partial global 

serialization graph is built to check for cycles. The local sites serialize transactions by 

applying the ticket method proposed in [Georgakopoulos, 1991]. A global data structure 

moves along with a mobile node when it migrates from one cell to another.  When a 

mobile node disconnects, its status is marked as disconnected, and its Mobile Support 

Station (MSS) saves all the responses in a structure called ResponseList, and delivers 

them to this mobile node upon reconnection.  If a catastrophic failure occurs during the 

disconnection, then the status is changed to suspended.  In order to minimize erroneous 

aborts, suspended transactions are not aborted until they obstruct other executing 

transactions.  In order to release resources in a timely manner and tolerate long-lived 

transactions, compensable sub-transactions can commit before the global ones commit. 

Unfortunately, in MANETs, since every node is mobile and battery-powered, during 

disconnections/mobility, electing which neighboring node as the MSS to 

backup/maintain the information will be a challenge. Also, in case of disconnections, 
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some predecessor graphs may not be collected, and then the PGSG algorithm has to stop 

and wait.  Also some of MANET applications may not have the compensable 

transactions or are mission-critical, thus, it is impossible to allow sub-transactions to 

commit early and roll back later.  For instance, to query the location of enemies before 

firing a missile, the accurate data has to be returned.  

 

2.2.3.2 Mobile Transaction Commit using Serialization Graph/Sequential Order 

 In [Hwang, 2000], to speed up transaction processing and to reduce wireless 

communication, mobile clients execute transactions against the local cache and use strict 

2PL to serialize transactions. To ensure that cached data are up-to-date, an invalidation 

report is periodically broadcast by the centralized static database server. Before 

transactions commit, the commit request must be validated at the centralized database 

server by applying one of the three algorithms: Mobile Transaction Commit using 

Serialization Graph (MTC-SG), SeQuential order (MTC-SQ) or MTC-Hybrid. MTC-SG 

maintains only committed transactions, and builds the serialization graph to guarantee no 

cycle is involved. In MTC-SQ, every validating transaction is checked if it can be 

inserted somewhere into the maintained sequential order of committed transactions, and 

the final order must comply with the serialization order. In MTC-Hybrid, MTC-SQ is 

applied first, and if it fails, then MTC-SG is employed. When mobile clients migrate 

from one cell to another, their last invalidation report must be checked to ensure that they 

receive the latest report. Unfortunately, in MANETs, because of limited energy and 

bandwidth, no node can process all commit requests and, at the same time, keep 

broadcasting periodically like the static database server. In MTC-SG/Hybrid, building 
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the serialization graph and checking for cycles require more time and energy to 

accomplish. When the centralized database server disconnects, not only mobile clients 

cannot receive broadcast data and invalidation report, but also commit requests cannot be 

processed at the server. 

 

2.2.4 Summaries of reviewed CC techniques 

 In this section, we summarize each discussed design issue and its possible 

solutions from the existing techniques along with the identified MANET database 

characteristics (the environment issues), which are reviewed above.  For every issue, the 

following specified terms/answers are expected to distinguish the reviewed techniques. 

• Types of CC Algorithms: Which type does the CC technique adopt to guarantee 

the isolation property: pessimistic, optimistic, or hybrid? 

• Rules of Producing Serializability: Which rule does the CC technique utilize to 

produce serializability: locking, timestamp ordering, serialization graph testing or 

serial execution? 

• CC Granularity: What kind of granularity does the CC technique apply: row 

level, page level, table level, database level or unspecified? 

• Mobile System Architecture: Which architecture does the CC technique adopt: 

cellular mobile network, MANET or mobile hybrid network? 

• Location of CC Manager(s): Where are the CC managers located: centralized or 

distributed? 
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• Improving System Performance: How does the CC technique improve the system 

performance: response time or abort rate (or restart rate)? 

• Cascading Rollback: Does the CC technique handle cascading rollback? 

• Insert and Delete Operations: Does the CC technique handle insert and delete 

operations? 

• Level of Consistency: Which level of consistency does the CC technique support: 

relaxed or strict? 

• Transaction Model: Which transaction model is utilized in the CC technique: flat 

or nested? 

• Global Serializability: Does the CC technique guarantee the isolation property of 

global transactions? 

• Degree of Local Autonomy: In order to guarantee the isolation property of global 

transactions, what does the CC technique do to the autonomy of local database 

system: preserved, violated or unspecified? 

• Cached/Replicated Data: Does the CC technique apply any caching/replication 

scheme? 

• Real-Time Applications: Does the CC technique support real-time transactions? 

• Mobility: Does the CC technique address mobility of nodes? 

• Low Bandwidth: Does the CC technique address low bandwidth? 

• Multi-hop Communication: Does the CC technique address multi-hop 

communication? 
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• Limited Battery Power: Does the CC technique address limited battery power? 

• Limited Storage: Does the CC technique address limited storage? 

• Frequent Disconnections: Does the CC technique address frequent 

disconnections? 

• Long-lived Transactions: Does the CC technique address long-lived transactions? 

 

 As shown in Table 2.1, none of the reviewed techniques addresses all the 

identified MANET database characteristics. In addition, we can observe the following 

from the table: 

• Most techniques are pessimistic and guarantee serializability by using locking.  

They do not fit well in MANETs databases because blocking time may be 

unbounded and abort rate may be high as a consequence.  

• All techniques adopt cellular mobile networks, except for SESAMO which is 

designed for MANETs. 

• CC managers are distributed in all techniques except for LAP [Lam, 2005] and 

SLMA [Moiz, 2007]. 

• All techniques support strict database consistency except for PGSG [Dirckze, 

2000], which relaxes database consistency. 

• Only PGSG [Dirckze, 2000] and MVOCC-NT [Lei, 2008] are proposed for 

processing nested transactions, while the other techniques process flat 

transactions. 
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• Only PGSG [Dirckze, 2000] and SESAMO [Brayner, 2005] address global 

serializability, while the other techniques only support local serializability 

• Most techniques apply caching/replication schemes to overcome the limited 

wireless bandwidth, but these schemes will not work without the data broadcast 

by MSSs, which are static and have unlimited energy and high bandwidth. 

• Only LAP [Lam, 2005] and MVOCC-NT [Lei, 2008] support real-time 

applications. 

• No technique addresses multi-hop communication. 

• Some techniques which are proposed for cellular mobile networks take into 

account mobility, low bandwidth, limited energy or frequent disconnections. 

However, these cannot be done without applying caching/replication and heavily 

relying on MSSs to either broadcast data periodically for mobile nodes or process 

transactions on behalf of mobile nodes. In MANETs, it is impossible for any node 

to play the same role like a MSS. 

• SESAMO [Brayner, 2005] addresses low bandwidth and long-lived transactions, 

but both of them are accomplished by assuming that global transactions do not 

conflict with each other. 

• All techniques support long-lived transactions by either using cached/replicated 

data or partial validation at mobile nodes. 



 

Table 2.1 Summary of the reviewed CC techniques and issues 

Techniques/ 

Issues 

SESAMO 
[Brayner, 

2005] 

LAP 
[Lam, 
2005] 

MV-T 
[Madria, 

2007] 

SLMA 
[Moiz, 
2007] 

AVI 
[Moiz, 
2008] 

OCC/DTA 
[Choi, 
2006] 

MVOCC-
NT 

[Lei, 2008] 

2POCC 
[Choi, 
2009] 

PGSG 
[Dirckze, 

2000] 

MTC-SG/SQ 
[Hwang, 2000] 
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Type of CC 
Algorithm 

Pessimistic Pessimistic Pessimistic Pessimistic Pessimistic Optimistic Optimistic Optimistic Hybrid Hybrid 

Rule of 
Producing 
Serializability 

Locking Locking 
Timestamp 

Ordering and 
locking 

Locking 
Timestamp 

ordering 
Timestamp 

Ordering 
Timestamp 
Ordering 

Timestamp 
ordering 

Timestamp 
ordering, and 
serialization 
graph testing 

Locking, 
timestamp 

ordering and 
serialization 
graph testing 

Mobile System 
Architecture 

MANET 
Cellular 
mobile 

network 

Cellular 
mobile 
network 

Cellular 
mobile 
network 

Cellular 
mobile 
network 

Cellular 
mobile 
network 

Cellular 
mobile 
network 

Cellular 
mobile 
network 

Cellular 
mobile 
network 

Cellular 
mobile 
network 

Location of CC 
Manager 

Distributed Centralized Distributed Centralized Distributed Distributed Distributed Distributed Distributed Distributed 

Level of 
Consistency 

Strict Strict Strict Strict Strict Strict Strict Strict 
Relaxed 
or Strict 

Strict 

Transaction 
Model 

Flat Flat Flat Flat Flat Flat Nested Flat Nested Flat 

A
p

p
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ti

o
n

 

Is
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Global 
Serializability 

Yes No No No No No No No Yes No 

Cached/ 
Replicated data 

No No No Yes Yes Yes Yes Yes No Yes 

Real-time 
Application 

No Yes No No No No Yes No No No 

M
A
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T
 D

a
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b
a
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C
h

a
ra

ct
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Mobility No No No No No No No No Yes Yes 

Low Bandwidth Yes Yes No Yes Yes Yes Yes Yes No Yes 
Multi-hop 
Communication 

No No No No No No No No No No 

Limited Battery 
Power 

No Yes No No Yes No Yes Yes No Yes 

Frequent 
Disconnections 

No No Yes Yes No No No No Yes No 

Long-lived 
Transactions 

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

36 
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2.3 Clustering Algorithms to Elect Cluster Heads and Form Clusters in MANETs 

 Several weighted clustering algorithms have been proposed and surveyed in [Yu, 

2005] to group mobile nodes into clusters and to elect a node called a cluster head for 

each cluster. Here we briefly review some of the newly published approaches and other 

approaches which are already reviewed in [Yu, 2005], but are strongly related to our 

algorithm MEW. By considering the system parameters that are utilized to calculate the 

weight of each node, these approaches are categorized as mobility-only-based [Basu, 

2001; Kim, 2006], energy-only-based [Sheu, 2006] and combination-based [Basagni, 

1999; Chatterjee, 2002; Liu, 2005]. 

 

2.3.1 Mobility-only-based 

 Mobility of nodes triggers re-clustering and makes networks unstable, thus, it 

becomes the key attribute in the weight computation in the mobility-only-based 

clustering algorithms. 

 In MOBIC [Basu, 2001], in order to form stable clusters that have low cluster 

head change rate, the Relative Mobility (RM) metric is introduced and calculated as the 

logarithm of ratio of Received Signal Strengths (RSS): 
2

1
10log*10

RSS

RSS , where RSS1 and 

RSS2 are read from the RSS indicator when two successive HELLO messages, which are 

sent by the same neighbor, are received. For each node, the variance of RMs among its 

neighbors with respect to 0 (not the exact mean) is calculated as the aggregate local 

mobility metric.  If a node has the lowest aggregate local mobility among all its 

neighbors, it declares itself as a cluster head; otherwise it joins its neighboring cluster 
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head that has  the lowest aggregate local mobility as a cluster member.  If a node is a 

neighbor of two cluster heads, then it becomes a gateway node of those two cluster 

heads.  Unfortunately, it is possible that some elected cluster heads may almost run out of 

energy, thus, the re-election has to be invoked soon. 

 In [Kim, 2006], to overcome the negative effects caused by nodes moving fast or 

moving back and forth, the average connection time (ACT) of each node with its 

neighbors during a time period is introduced as the major parameter to form and maintain 

the clusters.  Those nodes having the largest ACT values become cluster heads.  For each 

of the remaining nodes, if it has one or more neighboring cluster heads, it joins the one 

with the largest ACT value as a cluster member; otherwise, it declares itself as a cluster 

head. However,  similar to the cumulative time in WCA [Chatterjee, 2002] or elapsed 

time [Liu, 2005], this technique has a problem in that it may  elect a node as a cluster 

head because it has the largest ACT even though it almost runs out of energy; such 

election wastes energy and time.  

 

2.3.2 Energy-only-based 

 A node with a higher remaining energy level is, of course, a better candidate for 

the cluster head; so energy is the only system parameter applied to calculate the weight 

of each node in energy-only-based clustering algorithms. 

 Because nodes with higher remaining energy have a higher priority to become 

cluster heads, it is possible that nodes with the least energy being left out and claiming 

themselves as cluster heads.  In Sheu’s Stable Cluster Algorithm (SCA) [Sheu, 2006], 
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Sheu et al. set up an energy level threshold, define nodes whose battery level is below the 

threshold as bottlenecks, count the number of neighbors that are bottlenecks for each 

node, and elect nodes with the largest number of bottlenecks as cluster heads.  For each 

of the remaining nodes, if it has one or more neighboring cluster heads, it joins the one 

with the highest remaining energy as a cluster member; otherwise, it declares itself as a 

cluster head.  By taking the detour in the election, nodes with the least energy are kept 

from becoming cluster heads, thus, the clusters become more stable.  Unfortunately, 

because the mobility of nodes is not considered in the election, the possibility of re-

clustering is still high when elected cluster heads have high mobility. 

 

2.3.3 Combination-based 

 Each node is assigned with a weight, which is calculated by considering more 

than one system parameters like node degree, remaining energy, roaming speed, and so 

on [Yu, 2005]. In DCA (Distributed Clustering Algorithm) [Basagni, 1999], each node is 

assumed to have a different weight, nodes with the highest weights are elected as cluster 

heads, and neighbors of elected cluster heads join the cluster as cluster members. 

However, the calculation of nodes’ weights is not discussed [Basu, 2001]. 

 In WCA (Weighted Clustering Algorithm) [Chatterjee, 2002], to determine 

whether a node v is suited for being a cluster head, the weight of each node (Wv) is 

calculated by a formula as shown below that consists of four system parameters: sum of 

distance with all neighbors (Dv), average running speed (Mv), cumulative time of serving 

as a cluster head (Pv) and degree difference of nodes (∆v), where ∆v = |dv – δ|, in which dv 

is the number of neighbors and δ is the ideal number of neighbors that a cluster head can 



40 
 

handle. Unfortunately, how to choose δ is not discussed [Yu, 2005]. 
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The values of f1, f2, f3 and f4 are varied based on different applications. Those nodes 

having the lowest weights are elected as cluster heads.  For each of the remaining nodes, 

if it has one or more neighboring cluster heads, it joins the one with the lowest weight as 

a cluster member; otherwise, it declares itself as a cluster head.  However, how to 

normalize these parameters is not addressed explicitly. The global positioning system 

(GPS), the accuracy of which is not ideal for fine computing and the operations of which 

would drain the limited energy of the node quickly, has to be applied to obtain the 

coordinates of each node for computing the running speed.  The cumulative time of a 

node already serving as a cluster head cannot accurately reflect the current energy level 

because a busy node may almost run out of energy even though it may have never been a 

cluster head. 

 In Liu’s Group Management (GM) [Liu, 2005], the resource (R) richness and 

elapsed time of a node being a cluster head (leader) are integrated to evaluate a node’s 

suitability for being a cluster head.  The resources are CPU load (L), memory (M), 

battery (B) and bandwidth (BW).  The elapsed time (ET) is the time between now and the 

last time a node is a cluster head.  The weight of a node v is calculated by the following 

formulas, and nodes with the highest weights are elected as cluster heads.  For each of 

the remaining nodes, if it has one or more neighboring cluster heads, it joins the one with 

the highest weight as a cluster member; otherwise, it declares itself as a cluster head.   
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However, how to normalize these parameters is not addressed explicitly either.  The use 

of elapsed time in cluster head determination has the same disadvantage as the use of 

cumulative time in WCA [Chatterjee, 2002].  In addition, re-clustering may be frequently 

triggered since the mobility of nodes is not considered in the election. 

 

2.3.4 Summaries of reviewed clustering algorithms 

 Table 2.2 summarizes the characteristics of some weighted clustering algorithms, 

which have been proposed to elect cluster heads, form clusters and maintain clusters in a 

MANET. 

 In those algorithms, when calculating the weight utilized to determine whether a 

node is eligible to be a cluster head, they either consider only one metric (like mobility or 

energy of nodes) [Basu, 2001; Kim, 2006; Sheu, 2006] or rely on some metrics collected 

from extra devices (such as locations of nodes read from Global Positioning Systems) 

[Chatterjee, 2002]. This often leads to a higher possibility of re-clustering and, 

consequently, quality of service cannot be provided. 
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Table 2.2 Summary of the reviewed clustering algorithms 

Techniques/Issues 
System Parameters Used in the 

Weight Calculation 
Relying on Any Metrics 

Collected from Extra Devices 

ACT [Kim, 2006] 
Mobility-only: average 
connection time 

No 

DCA [Basagni, 1999] 
Each node is assumed to have a 
different weight, but how to 
compute it is unspecified. 

Unspecified 

GM [Liu, 2005] 
Combination: elapsed time of 
being a cluster head and system 
resources (CPU load, memory, 
energy and bandwidth) 

No 

MOBIC [Basu, 2001] Mobility-only: aggregate local 
mobility 

No 

SCA [Sheu, 2006] 
Energy-only: number of 
neighbors with low energy level 

No 

WCA [Chatterjee, 2002] Combination: sum of distance 
with all neighbors, average 
running speed, cumulative time 
of serving as a cluster head and 
degree difference of nodes 

Yes. Global positioning system 
(GPS) 

  

2.4 Conclusions 

 In this chapter, we discussed the general issues and application-dependent issues 

that need to be addressed in the design of CC algorithms for mobile databases, and then 

we reviewed the CC techniques proposed for cellular mobile databases and MANET 

databases according to these issues. The review shows that SESAMO is the only 

algorithm proposed for MANET databases, but it does not take energy efficiency into 

account.  All other techniques designed for cellular mobile databases are not suitable for 

MANET databases either because in those algorithms, servers are static and broadcast is 

heavily used to disseminate data from servers to clients. 

 We also reviewed clustering algorithms developed to elect cluster heads and form 
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clusters in MANETs. In those clustering algorithms, when calculating nodes’ weights 

utilized to elect cluster heads, they either consider only one metric like mobility or 

energy of nodes, or rely on some metrics collected from extra devices such as GPS.  This 

often leads to a higher possibility of cluster head change and re-affiliation.  New CC 

techniques and node clustering algorithms need to be developed to address MANET 

characteristics including energy limitation, mobility, and frequent disconnection. 
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CHAPTER 3 

MANET DATABASE ARCHITECTURE  

USED IN THE PROPOSED ALGORITHM 
 

 In this chapter, we introduce our clustered MANET architecture which is built by 

applying our robust weighted clustering algorithm called MEW (Mobility, Energy, and 

Workload) [Xing, 2010] to group nodes into groups (or clusters).  MEW takes mobile 

nodes’ mobility, energy and workload into consideration when clustering mobile nodes 

in a MANET.  In this architecture as shown in Figure 3.1, mobile nodes are divided into 

clusters, each of which has one cluster head working as the coordinating server 

responsible for the transaction processing of the mobile nodes, called cluster members, 

within the cluster.  Cluster heads can communicate with each other through some mobile 

nodes that work as gateways.  Similarly, mobile nodes within the same cluster as well as 

from different clusters can also communicate with each other, but they have to go 

through their cluster heads to get the destination addresses first.  In order to guarantee 

global serializability and reduce communication overhead, among cluster heads the one 

with the highest remaining energy is further elected as the primary cluster head to 

maintain the information of committed global transactions and validate transactions 

globally.  

 We choose this architecture for three reasons.  First, users are logically grouped 

in many MANET applications in the literature, such as disaster response and recovery 

systems [Catarci, 2008; Lu, 2007] and military operations [Viswacheda, 2007].  Second, 

because every node is mobile in a MANET, the network topology may change rapidly 

and unpredictably over time.  According to [Chatterjee, 2002], clustered architectures are 
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proper to keep the network topology stable as long as possible, so that the performance 

of routing and resource relocation protocols is not compromised.  Third, in order to 

accommodate our optimistic CC algorithm SODA to guarantee the global serializability, 

the information of committed global transactions is maintained by the cluster head with 

the highest remaining energy.  

  

 

Figure 3.1 Architecture of a clustered MANET database 

 

 Figure 3.1 shows an example of a clustered MANET database architecture with 

three clusters, each of which is represented by a large solid circle with mobile clients and 

servers shown as PDA/iphone and laptop icons, respectively.  The arrows between the 

devices show the communication between them.  In the rest of this chapter, we describe 
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the functionality of mobile nodes (Section 3.1), the MEW algorithm (Section 3.2), the 

cluster formation (Section 3.3), the cluster maintenance (Section 3.4), and the analysis of 

clustering overhead (Section 3.5). 

 

3.1 Mobile Node Functionality 

 Depending on the communication strength, computing power and storage size, 

mobile nodes are classified into clients and servers [Pabmanabhan, 2006].  On clients, 

only the query processing modules that allow them to submit transactions and receive 

results are installed, while on servers, the complete database management systems are 

installed to provide transaction processing services.  Servers are further classified into 

coordinating servers or participating servers.  Coordinating servers are the ones which 

receive global transactions from clients, divide them into sub-transactions, forward these 

sub-transactions to appropriate participating servers, and maintain the ACID (Atomicity, 

Consistency, Isolation, and Durability) properties of global transactions.  Participating 

servers are the ones that process sub-transactions transmitted from coordinating servers, 

and preserve their ACID properties. 

 The entire data in the database are partitioned into fragments and distributed to 

different servers, and there is no caching or replication technique involved for simplicity.  

Transactions are based on the simple flat model, which contains a set of read, write, 

insert, and delete operations.  Any subset of operations of a global transaction that access 

the same server is submitted and executed as a single sub-transaction [Dirckze, 2000]. 

 With respect to the clustered MANET architecture shown in Figure 3.1, a mobile 

node is either a cluster head when it is a coordinating server or is a cluster member when 
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it is either a participating server or a client.  In order to guarantee global serializability 

and reduce communication overhead, among cluster heads the one with the highest 

remaining energy is further elected as the primary cluster head, which maintains the 

information of committed global transactions and validates transactions globally. 

 

3.2 The Basis of Our Clustering Algorithm - MEW 

 Being inspired by MOBIC [Basu, 2001] and WCA [Chatterjee, 2002] and 

considering a new system parameter, called “Energy Decreasing Rate (EDR)”, we 

propose a weighted clustering algorithm, called MEW (Mobility, Energy, and 

Workload), to build a stable backbone in MANETs. Although our proposed clustering 

algorithm is also combination-based (based on a combination of parameters), it can 

become mobility-only-based if we tune the weighting factors accordingly.  In other 

words, our approach can build a more stable backbone for MANETs by forming clusters. 

 To capture the mobility of nodes, we do not consider their absolute roaming 

speed, which is actually applied in WCA [Chatterjee, 2002]. This is because it is easy to 

calculate the speed’s quantity but it is hard to predict the direction of movement. Without 

the direction, the speed’s quantity alone is not appropriate to justify whether or not a 

node is a good candidate for cluster head.  For instance, given two nodes that have small 

speeds, but both move in the opposite directions, as time goes, they will be out of each 

other’s transmission range and get disconnected from each other. Also the utilization of 

GPS is opted out due to the following reasons: 

• When a GPS is utilized, every node must be equipped with one GPS, which 
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incurs high hardware costs. In addition, these GPSs consume the limited energy 

of nodes.  

• GPS does not work indoor because buildings shield the satellite signals [Basu, 

2001; Bruning, 2007].  

• The accuracy of a typical civilian GPS is in the range of 6-12 meters [Berrabah, 

2009]; thus, the returned results could be the same when two GPSs are located 

within 10 meters. 

• If data cannot be read from the GPS and no substitution of the missing data can 

be found, then the whole system has to wait or fail. 

 Instead, in our algorithm, two mobility metrics, Relative Mobility (RM) [Basu, 

2001] and Mobility Prediction (MP), are introduced to monitor the mobility of nodes and 

applied to determine whether a node is suitable to be a cluster head as follows: 

• For each node j (1 ≤ j ≤ N for N nodes in the network), after receiving two 

successive HELLO messages from every 1- hop neighbor i (1 ≤ i ≤ n if there are 

n neighbors), the RMij is calculated by the formula (3.1). RSSij1 and RSSij2 are the 

received signal strength (RSS) that are read from the RSS indicator when the first 

and second HELLO messages from the same neighbor are received, respectively. 

Based on the value of RMij, we can say that if RMij is equal to 1, then the node j 

and its neighbor i either do not move at all or move with the same speed in the 

same direction; if RMij is less than 1, then they move close to each other; 

otherwise, they move away from each other.  
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• For each node j, to take into account the mobility of all n  neighbors, MPj is 

calculated as the standard deviation of RM1j, RM2j, …, RMnj shown in the formula 

(3.2). However, for the stability of elected clusters, we prefer RMij to be equal to 

or less than 1 because we want cluster heads not to move away from their 

members. Thus, in the MPj calculation, the mean of RMij (1 ≤ i ≤ n) is 1 instead of 

the actual mean. A node j with a lower MPj means that it stays closer to its 

neighbors, thus, it is a better candidate for the cluster head among its neighbors.  
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 When dealing with the limited energy, we consider not only the Remaining 

Energy (RE) of each node but also its Energy Decrease Rate (EDR) as the workload 

because nodes with heavier workload consume more energy, so that we can balance the 

energy usage and prevent cluster heads from running out of energy quickly. In other 

words, for each node j, EDRj is considered because REj represents only the current state 

of energy level and the energy will run out soon if this node usually has a heavy 

workload (for instance, it provides service as a server and relays packets for many 

neighbors). The EDRj at time interval [t1, t2] is calculated by using the formula (3.3), 

where REj1 and REj2 are the remaining energy at time t1 and t2, respectively.  
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 A node with a lower EDR indicates that it was not busy at least during the 
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interval [t1, t2]. However, when a node had a busy work history, it most likely would be 

busy in the future as well. Since the larger the time interval is, the more accurate the EDR 

is in indicating a node’s workload history, during the initial election, each node saves a 

copy of its initial remaining energy and initial time as REj1 and t1, such that a more 

accurate EDR can be calculated in the future cluster head re-election.  

 Based on the above analysis about energy, mobility and workload, it is obvious 

that a node j is the best candidate for a cluster head among all its neighbors if its REj is 

the highest, its MPj is the lowest and its EDRj is the lowest. In other words, a node with 

the highest weight is the best candidate for a cluster head when we combine these three 

metrics together as the weight, which is calculated in formula (3.4). Since these metrics 

have different units, we apply the inversed exponential function to normalize MPj and 

EDRj and bound their values between 0 and 1. REj is left out because it is the remaining 

energy level in percentage and its value is already between 0 and 1. 

jj EDR

j

MP

j efREfefW
−−

++= *** 321  
(3.4) 

In formula (3.4), REj = REj2, the weighting factors f1, f2 and f3 are set according to the 

different scenarios in the applications, and f1 + f2 + f3 = 1. When we let f2 = f3 = 0, that is, 

we take away the effect of energy and workload, our algorithm turns into a mobility-

only-based approach just like MOBIC [Basu, 2001]. 

 

3.3 Cluster Formation 

 Cluster formation involves the following four steps, where the messages used in 

cluster formation and maintenance are summarized in Table 3.1. 
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 Step 1: Each node j periodically broadcasts (this broadcast interval is predefined 

[Basu, 2001]) a HELLO message with the same transmission power. In the mean time, 

the remaining energy level REj1 is recorded at the initial election time t1; for each 

HELLO message received from neighbor i, RSSij is recorded. If only one HELLO 

message from a neighbor is received after j broadcasts three successive HELLO 

messages, then this neighbor is excluded from the weight calculation [Basu, 2001]. 

 

Table 3.1 Messages used in MEW 

Message Description 

HELLO(my_ID, my_W, CH_ID, 
my_RE, other_CH) 

To notify neighbors about my ID, my weight, my cluster head’s 
ID, my remaining energy and any other neighboring cluster 
heads. 

WEIGHT(my_ID, my_W) To notify neighbors about the value of my weight. 

CLUSTERHEAD(my_ID, 
CH_ID) 

To notify neighbors about my role: I am a cluster head, that is, 
my ID is the same as my cluster head’s ID. 

JOIN(my_ID, CH_ID) 

To notify neighbors that I am going to join the cluster whose 
cluster head’s ID is CH_ID. If a cluster head broadcasts a JOIN 
message, then it informs its members about its resignation and 
joins a cluster at the same time. 

 

 Step 2: Immediately after each node j receives two successive HELLO messages 

from all the neighbors, it records the remaining energy level REj2 and the time t2, and 

then node j calculates the values of RMj, MPj, EDRj and Wj using the formulas 3.1, 3.2, 

3.3 and 3.4 defined above, respectively. When the weight is re-calculated, the saved 

remaining energy REj1 at time t1 is applied in the calculation of EDRj. 

 Step 3: Each node j broadcasts the value of Wj to all its neighbors in a WEIGHT 

message, and waits for their WEIGHT messages. 

 Step 4: Upon receiving the weights from all neighbors, the nodes with the highest 
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weight declare themselves as cluster heads among their neighbors by broadcasting a 

CLUSTERHEAD message, but, no two cluster heads should be neighbors. All neighbors 

of elected cluster heads just join them as their members by broadcasting JOIN messages. 

If two nodes have the same weight, then the node with a smaller ID becomes the cluster 

head [Basu, 2001]. If it happens that a node is neighbor of two or more cluster heads, 

then it joins the cluster head with the highest weight and works as a gateway for these 

cluster heads.  

 Note that because clients have less communication strength, less computing 

power and smaller storage size than servers, clients cannot be elected as cluster heads 

and cannot work as coordinating servers. 

 

3.4 Cluster Maintenance 

 Because every node can roam and has limited energy in a MANET, the links 

between members and cluster heads can be broken, and the links between two cluster 

heads can be generated [Xue, 2006]. Consequently, clusters need be re-clustered. In other 

words, leaving clusters, joining clusters, merging clusters, and re-electing cluster heads 

are normal re-clustering operations in a clustered MANET. However, these operations 

should be performed only on demand to reduce the overhead of computation and 

communication, and to provide consistent quality of service.  

 In order to detect the link breaks and new link establishments, each node 

periodically broadcasts a HELLO message, which contains the ID and weight of itself, its 

cluster head’s ID, its remaining energy and any other neighbor which is a cluster head (a 
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Boolean variable). Being a cluster head, it has to periodically monitor its remaining 

energy level so that it will resign when the remaining energy drops below a predefined 

threshold. Also each node keeps recording the values of RSS from the last two HELLO 

messages and re-calculating its weight in case of future re-elections.  

 Relying on these two periodical operations, cluster maintenance can be done by 

the following recovery: 

• From the link break between a member and its cluster head: after three 

successive broadcast intervals (BI) [Wang, 2007a], if no HELLO message is 

received from a member, the cluster head will just remove this member from its 

neighbor and member lists. On the other hand, if a member does not receive a 

HELLO message from the cluster head after three successive BIs, it removes the 

cluster head from its neighbor list, and joins another cluster head with the highest 

weight if any. If no other cluster head is available from its neighbor list, this 

member declares itself as a cluster head. 

• From the link establishment when two cluster heads become neighbors: if a 

cluster head has become a neighbor of another cluster head for a predefined 

Cluster Contention Interval (CCI) [Basu, 2001], then the cluster head with the 

smaller weight resigns and joins the cluster head with the larger weight. The 

members of the resigned cluster head cannot join the new cluster head because 

they are not neighbors. They have to join other cluster heads with the highest 

weight or declare themselves as cluster heads instead.   

• From the link break when a cluster head resigns: if the current remaining energy 

of a cluster head becomes less than the Low Energy Threshold (LET), and if there 
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exists a member whose energy is higher than LPT, and this member has no other 

neighbor that is a cluster head, then the cluster head resigns and triggers a cluster 

head re-election; but this re-election is limited to inside the old cluster instead of 

the whole network, that is, the resigned cluster head goes through each member’s 

profile, which is periodically updated after receiving a HELLO message, and 

finds a replacement that has the highest weight. After the new cluster head is 

elected, the resigned cluster head joins its cluster. If a member cannot join the 

new cluster head because they are not neighbors, it has to join other cluster heads 

or declare itself as a cluster head. 

 

3.5 Analysis of Clustering Overhead 

 In this section, we analyze MEW with respect to the message overhead per time 

step per node and time complexity per network topology change.  These terms are 

defined below. The approach used is inspired by the theoretical analysis in [ER, 2005]. 

 The price of clustering is that extra time is consumed and additional messages are 

incurred to form and maintain clusters.  The consequence of these additional messages is 

called message overhead (the more messages are transmitted, the more traffic is in the 

network and the more energy of nodes is consumed). Since bandwidth and energy of 

each node are limited in MANETs, message overhead is an important metric for 

evaluating the performance of a clustering algorithm. We analyze the message overhead 

by analyzing the overhead due to the HELLO protocol and the overheads due to cluster 

formation and maintenance. In the mean time, the time complexity per network topology 

change is also computed. 
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 To simplify the analysis, the continuous runtime is divided into discrete time 

steps, which are the duration between the time when a message is sent and the time when 

the message is received and processed by a receiver [Bettstetter, 2002]. The random 

waypoint mobility model with zero pause time is assumed.  The following definitions are 

used in the analysis [ER, 2005]: 

• N: the number of nodes in the MANET; 

• m: the average number of cluster members in a cluster;  m = Θ(1) because all 

clusters should have a maximum size constrain to avoid overburdening cluster 

heads [Banerjee, 2001].  

• fhello: the number of HELLO messages broadcast by a node per time step; fhello = 

Θ(1) because fhello is proportional to average node speed s and inversely 

proportional to the transmission radius R, and both s and R are less than or equal 

to some constants [Sucec, 2004]. 

• flink: the average frequency of network topology changes occurred per time step; 

flink = Θ(N) [Sucec, 2004]. 

• T: the number of time steps taken by the algorithm after a network topology 

change to re-establish a valid cluster structure (or called re-clustering); 

• M: the number of messages (or called packets) exchanged between nodes after a 

network topology change to re-establish a valid cluster structure; 

• L: the total evaluation time in terms of time steps. 

 In terms of the average number of messages transmitted by MEW per time step 

per node, and the number of time steps needed to re-establish a valid cluster structure 
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after a topology change, the following claims are made: 

Claim 1: the message overhead of MEW is O(1) packet transmissions per time step per 

node. 

Claim 2: the time complexity of MEW is T ≤ 2 per network topology change. 

 Both claims are proved in the following subsections. 

 

3.5.1 Hello protocol overhead 

 In order to discover its neighborhood and compute its weight, each node 

broadcasts HELLO messages periodically. Thus, the HELLO protocol introduces an 

overhead of fhello*N packets per time step for all nodes.  

 

3.5.2 Cluster formation overhead 

 Immediately after each node calculates its weight, it broadcasts a WEIGHT 

message in one time step. After receiving WEIGHT messages from all its neighbours, 

each node either becomes a cluster head by broadcasting a CLUSTERHEAD message or 

joins some cluster by broadcasting a JOIN message in one time step. Thus, for all nodes, 

they broadcast 2N messages in 2 time steps, that is, cluster formation overhead is N 

messages per time step. 

 

3.5.3 Cluster maintenance overhead 

 From the discussion of cluster maintenance, it is obvious that every network 
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topology change is detected by relying on the periodical HELLO messages, and each 

cluster head resignation is verified by periodically checking the remaining energy level. 

Once a network topology change or a cluster head resignation occurs, relating nodes have 

to take respective actions to re-establish a valid cluster structure. Because of these 

actions, cluster formation and maintenance overheads incur, which are investigated in the 

following four subsections. 

 

3.5.3.1 Link break between a member and its cluster head 

 Since the cluster structure is still valid when a link break occurs between nodes 

from different clusters or nodes that are members from the same cluster, there is no 

action. Only a link break between a member and its cluster head triggers the re-

clustering.  

 The cluster head removes this member from its neighbor and member lists, so no 

message is necessarily transmitted. On the other hand, this member removes this cluster 

head from its neighbor list as well, and joins another cluster head with the highest weight 

if any. This case is done by broadcasting a JOIN message in one time step. If no other 

cluster head is available from its neighbor list, this member declares itself as a cluster 

head, and broadcasts a CLUSTERHEAD message in one time step. Thus, we have: T = 1 

and M = 1 for one of this kind of link breaks. 

 

3.5.3.2 Link establishment because two cluster heads become neighbours 

 When a cluster head becomes a neighbor of another cluster head for a predefined 
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duration of CCI interval, the cluster head with the smaller weight resigns and joins the 

cluster head with the larger weight.  The resigned cluster head has to broadcast a JOIN 

message to inform all its members in one time step. After receiving the JOIN message 

from their cluster head, each member of this resigned cluster head has to do re-clustering, 

which is the same as the case in subsection “Link Break between a Member and Its 

Cluster Head”. To summarize, T = 2 and M = m + 1 for one of this kind of link 

establishments. 

 

3.5.3.3 Link break because a cluster head resigns 

 When the current remaining energy of a cluster head is less than the threshold 

LPT, and there exists one of its members that can be a new cluster head, this cluster head 

resigns and triggers a cluster head re-election. 

 Once a new cluster head is elected, the resigned cluster head broadcasts a JOIN 

message to inform all its members in one time step. After receiving the JOIN message 

from its cluster head, each member of this resigned cluster head has to do re-clustering, 

which is also the same as the case in subsection “Link Break between a Member and Its 

Cluster Head”. In short, T = 2 and M = m + 1 for one of this kind of link breaks. 

 

3.5.3.4 Total cluster maintenance overhead 

 Since M = 1 in the case of “link break between a member and its cluster head” 

and M = (m+1) in the case of “link establishment because two cluster heads become 

neighbors”, the total number of messages transmitted per network topology change due 
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to link state changes is (m+2).  As the average network topology changes occurred per 

time step is flink, there are totally flink*(m+2) messages per time step due to link state 

changes.  

 Since a node cannot become a cluster head any more once it resigns due to its 

lower remaining energy, there are at most N cluster head resignations in an evaluation. 

An evaluation period consists of L time steps, thus, the average number of cluster head 

resignations per time step is N/L. Therefore, the total number of messages is N(m+1)/L 

per time step due to the cluster head resignation. 

 In summary, the total cluster maintenance overhead is flink*(m+2) + N(m+1)/L 

messages per time step. 

 

3.5.4 Total message overhead 

 To summarize, the message overhead of MEW (OMEW) is the sum of the overhead 

due to the HELLO protocol, the overhead due to cluster formation and the overhead due 

to cluster maintenance, that is,  

/L m N m*fN*NfO linkhelloMEW )1()2( +++++=  

Since fhello = Θ(1), flink = Θ(N), m = Θ(1), L is an integer and L > 1, given some constants 

c1, c2 and c3, we have: fhello ≤ c1, flink ≤ c2*N,  m ≤ c3 and (1/L) < 1. Therefore, OMEW can 

be expressed as follows: 
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After dividing O(N) by the number of nodes N, the message overhead of MEW is O(1) 

per time step per node and Claim 1 is proved. 

 T = 1 for a link break between a member and its cluster head, and T = 2 for both a 

link establishment and a link break due to the resignation of some cluster head, therefore, 

the convergence time is at most 2 time steps per topology change as per Claim 2. 

 

3.6 Conclusions 

 In this chapter, our robust weighted clustering algorithm, called MEW (Mobility, 

Energy, and Workload), was introduced to form and maintain stable clusters in 

MANETs.  Unlike the existing node clustering algorithm, MOBIC, that considers only 

nodes’ mobility during electing cluster heads and forming clusters, MEW takes not only 

nodes’ mobility but also nodes’ energy and workload into account when clustering nodes 

in a MANET.  We also analyzed MEW with respect to the message overhead per time 

step per node and time complexity per network topology change.  The message overhead 

of MEW is O(1) packet transmissions per time step per node and the time complexity of 

MEW is T ≤ 2 per network topology change. 
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CHAPTER 4 

THE PROPOSED CONCURRENCY CONTROL ALGORITHM: 

SEQUENTIAL ORDER WITH DYNAMIC ADJUSTMENT 

 

 In this chapter, we describe our proposed CC technique, called Sequential Order 

with Dynamic Adjustment (SODA).  We first provide some preliminaries to help explain 

our approach.  Second, we describe how SODA works without the clustered MANET 

database involved; in other words, how SODA works in a centralized MANET database. 

Third, we provide the complexity analysis and correctness proof of SODA. Finally, we 

discuss how SODA works in a clustered MANET database presented in Chapter 3. 

 

4.1 Preliminaries 

 Two operations (or transactions) are called conflict operations (or transactions) 

if they access the same data item and at least one of them is a write operation (or 

transaction) [Bernstein, 1987]. 

 Let S = {T1, …, Tn} be a set of transactions. A History (also called Schedule or 

Log) over S is an execution of S where the operations of the transactions are interleaved, 

but the order of operations within the same transaction is preserved [Bernstein, 1987].  

Two histories are conflict equivalent if they involve the same set of transactions, and 

every pair of conflict operations is ordered in the same way in both histories [Bernstein, 

1987]. 

 A history is serial if each transaction is executed from the beginning to the end 

before the next one can start [Bernstein, 1987]. 
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 A history is serializable if it is conflict equivalent to a serial history [Bernstein, 

1987]. 

 The serialization graph (SG) of a history is a directed graph where the nodes are 

the transactions executed in the history. In the SG, there is an edge Ti → Tj (i ≠ j) if and 

only if at least one of Ti’s operations precedes and conflicts with one of Tj’s operations in 

the execution history [Bernstein, 1987].  

 The Serializability Theorem [Bernstein, 1987]: A history H is serializable if and 

only if there is no cycle in the serialization graph of H. 

 Timestamp Ordering (TO) [Bernstein, 1987]: a unique timestamp is assigned to 

each transaction, and conflict operations between every two transactions are executed in 

their timestamp order. The timestamp may be assigned at the beginning, middle or end of 

the execution of a transaction.  

 Backward validation: a validating transaction is validated against only 

committed transactions, and the currently active transactions are not involved. 

 Given a transaction T, Optimistic Concurrency Control (OCC) [Kung, 1981] 

has three phases to go through:  

• Read and Compute Phase (Phase 1): T reads the values of a set of data items 

(called read set, and denoted by RS(T)) and saves them into local variables. When 

T reads a data item d, a timestamp is assigned (denoted by TS(d)). T also 

computes the values for a set of data items (called write set, and denoted by 

WS(T)) and saves them in local variables. 

• Validation Phase (Phase 2): the read set and write set of T are validated against a 
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set of committed transactions. If T passes the validation test, then a timestamp is 

assigned to T (denoted by TS(T)), and used as the commit time of T and the 

timestamp of the write set (denoted by WS_TS(T)). WS_TS(T) is +∞ if T is a 

validating transaction.  

• Commit and Write Phase (Phase 3): if T succeeds in the Validation Phase, then it 

can write the values of the write set into the database and commit; otherwise, T 

has to be aborted.  

 Definition 4.1: Given a validating (or committed) transaction T1, a committed 

transaction T2 and a commonly accessed data item d, T1 must-be-serialized-before T2 if 

any one of the following conditions is satisfied (Note: Ti→TS(d) stands for Ti getting the 

read timestamp of data d): 

• Read-Write (RW) conflict: RS(T1) ∩ WS(T2) ≠ ∅ and T1→TS(d) < WS_TS(T2). 

• Write-Write (WW) conflict: WS(T1) ∩ WS(T2) ≠ ∅ and WS_TS(T1) < 

WS_TS(T2). 

• Write-Read (WR) conflict: WS(T1) ∩ RS(T2) ≠ ∅ and WS_TS(T1) < T2→TS(d). 

 Definition 4.2: Given a validating (or committed) transaction T1, a committed 

transaction T2 and a commonly accessed data item d, T1 must-be-serialized-after T2 if 

any one of the following conditions is satisfied: 

• Read-Write (RW) conflict: RS(T1) ∩ WS(T2) ≠ ∅ and T1→TS(d) > WS_TS(T2). 

• Write-Write (WW) conflict: WS(T1) ∩ WS(T2) ≠ ∅ and WS_TS(T1) > 

WS_TS(T2). 

• Write-Read (WR) conflict: WS(T1) ∩ RS(T2) ≠ ∅ and WS_TS(T1) > T2→TS(d). 
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4.2 Proposed Concurrency Control Algorithm - SODA 

 Inspired by the dynamic adjustment technique proposed in MTC-SG/SQ [Hwang, 

2000], and based on the combination of Timestamp ordering (TO), OCC, and backward 

validation, we propose an optimistic CC algorithm, called Sequential Order with 

Dynamic Adjustment (SODA).  

 

4.2.1 Algorithm description and examples 

 Assume that Ti’s (i = 1, …, n) are committed transactions, and T is a 

validating/committing transaction. If we simply let the validation/commit order be the 

serialization order like OCC [Kung, 1981], and if there is a RW conflict between T and 

Ti, i.e. RS(T) ∩ WS(Ti) ≠ ∅ and T→TS(d) < WS_TS(Ti) for some data item d, then T is 

aborted because two orders are different. Such aborts should be avoided if possible. The 

following sections describe how SODA avoids such unnecessary aborts.  

 In SODA, a dynamic order instead of the validation order among committed 

transactions is used, that is, a Sequential Order (SO) of committed transactions is 

maintained as {T1, T2, …, Ti, ..., Tn} (also called a history list, which is ordered from left 

to right) and can be dynamically adjusted. The dynamic adjustment consists of simple 

and complex cases. In the simple case, the validating transaction T can be directly 

inserted into the maintained sequential order without adjustment, and the final sequential 

order will be: {T1, T2, …, low, … T, up, ..., Tn}, such that T must-be-serialized-after low 

but before up. On the other hand, in the complex case, the sequential order must be 
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adjusted before the insertion of T. 

 The simple case: Our goal is to find the transactions low and up, such that 

SO(low) < SO(T) < SO(up). If we do, then T passes the validation test (lines 2 to 19 in 

Figure 4.3).  SO(Ti) is the function to get the sequential order number of Ti in the history 

list. For instance, SO(T2) = 2 and SO(Ti) = i if the sequential order is {T1, T2, …, Ti, ..., 

Tn}. 

 Without loss of generality, we should find two transactions low and up where,  

SO(low)=max{SO(Ti)|T must-be-serialized-after Ti, 1≤ i ≤ n}, 

SO(up)=min{SO(Ti)|T must-be-serialized-before Ti, 1≤ i ≤ n}. 

If low (up) is not found, then we can conclude that T is not serialized after (before) any 

other transactions, and we say that SO(low) = 0 (SO(up)= n + 1) (line 1 in Figure 4.3). 

However, if SO(low) = SO(up), then it is impossible for T to be serialized before and 

after Ti at the same time, thus, T is aborted. If SO(low) > SO(up), T should be aborted 

because it cannot be inserted anywhere in the list. However, T passes the validation test 

if the serialization graph testing is applied instead. Thus, this kind of aborts should be 

avoided too if possible. The details are given in the complex case below. 

 To illustrate how SODA works for the easy case, let’s see an example: T can be 

directly inserted in the maintained sequential order. 

 Example 1 (for the simple case): Let {T1, T2, T3} be the sequential order of 

committed transactions, and T be a validating transaction at a server. The read sets, write 

sets and the timestamps are shown in Table 4.1. 

 Since WS(T1) ∩ WS(T)≠ ∅ and WS_TS(T) > WS_TS(T1), T must-be-serialized-



66 
 

after T1 and low = T1. Since WS(T2) ∩ RS(T) ≠ ∅ and WS_TS(T2) > T→TS(x), T must-

be-serialized-before T2 and up = T2. Since SO(low) < SO(up), this is the simple case and 

T passes the validation test. T is inserted immediately before T2, and the final sequential 

order is {T1, T, T2, T3} as shown in Figure 4.1, where the arrow (�) in the graph 

indicates the serialization order between two transactions such as T1 � T2 means that T1 

must-be-serialized-before T2. 

 

Table 4.1 Transaction information used in Example 1 

 T1 T2 T3 T 

Read Set (RS) {x} {y} {x, y} {x} 

Write Set (WS) {z} {x} ∅ {z} 

Read Timestamp of Data d (TS(d)) 5 15 25, 30 18 

Timestamp of Write Set (WS_TS) 10 20  +∞ 

  

 

Figure 4.1 Validating transaction T in Example 1 

  

 To better understand why a validating transaction should be aborted due to 

SO(low) > SO(up), let us explain by example. 

 Example 2: Let {T1, T2} be the sequential order of committed transactions, and T 
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be a validating transaction at a server. The read sets, write sets and the timestamps are 

shown in Table 4.2. 

 

Table 4.2 Transaction information used in Example 2 

Transactions T1 T2 T 

Read set (RS) {x} {y} {x} 

Write set (WS) {x} ∅ {y} 

TS (d) 5 20 8 

Timestamp of WS 10  +∞ 

  

 Since RS(T2) ∩ WS(T) ≠ ∅ and T2→TS(y) < WS_TS(T), T must-be-serialized-

after T2.  Since WS(T1) ∩ RS(T) ≠ ∅ and WS_TS(T1) > T→TS(x), T must-be-serialized-

before T1. Thus, low = T2, up = T1, and the final sequential order should be {T2, T, T1} or 

SO(T2) < SO(T) < SO(T1);  but this is impossible because the given sequential order is 

SO(T1) < SO(T2). So, T has to be aborted because it cannot be inserted in the given 

sequential order.  However, if the serialization graph testing is applied instead, T passes 

the validation because there is no cycle in the serialization graph as shown in Figure 4.2. 

To further reduce the abort rate, we need resolve this complex case too. 

 

 

Figure 4.2 The serialization graph in Example 2 

T1 T2 

T 
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Boolean SODA(T, History) { 

1: low_index = 0; up_index = History→length() + 1; 
2: counter = 1; // Find transaction up 
3: for (Ti = History→begin(); Ti != History→end(); Ti++) { 
4:        if (must-be-serialized-before(T, Ti)) { 
5:                 up = Ti; up_index = counter; 
6:                 break; 
7:         } 
8:         counter++; 
9: } 
10: counter = History→length(); // Find transaction low 
11: for (Ti =--(History→end());Ti >=History→begin();Ti--) { 
12:         if ( must-be-serialized-after(T, Ti)) { 
13:                 low = Ti; low_index = counter; 
14:                 break; 
15:         } 
16:         counter--; 
17: }  
18: if (low_index < up_index) // The simple case 
19:         return true; 
20: range = History→subset(up, low); // The complex case 
21: T_SB→push_back(T); 
22: for (Ti = range→begin(); Ti != range→end(); Ti++) { 
23:      for (Tj = T_SB→begin(); Tj != T_SB→end(); Tj++) { 
24:           if ( must-be-serialized-before(Tj, Ti)) { 
25:                 if ( must-be-serialized-after(T, Ti)  
26:                         return false; // A cycle is detected 
27:                 T_SB→push_back(Ti); 
28:                 break; 
29:           } 
30:      } 
31: } 
32: return true; // Got here. T passes the validation test 
} 

Figure 4.3 SODA - validation and preparation 

  

 The complex case: We have SO(Ti) < SO(Tj) from the maintained sequential 

order {T1, T2, T3, …, Ti, …, Tj, …, Tn}, but we conclude that SO(Ti) > SO(T) > SO(Tj) 

after finding low and up where low = Tj and up = Ti. Since T is just stuck between Ti and 

Tj, if we can find all transactions between Ti and Tj that T must-be-serialized-before 
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directly and indirectly (called T_SB), and if there are no transactions in T_SB that T 

must-be-serialized-after, then T passes the validation test; otherwise, a cycle is detected 

and T has to be aborted (lines 20 to 32 in Figure 4.3). 

 After T passes the validation test, the sequential order has to be updated to reflect 

the changes. In the simple case, T is directly inserted in the position just before up (lines 

1 to 2 in Figure 4.4). In the complex case, by looping through all transactions between up 

and low, all the transactions in T_SB constructed in the first part of SODA are removed 

first (lines 3 to 11 in Figure 4.4). To construct SO(low) < SO(T) < SO(up), T and all 

transactions in T_SB are inserted in the position immediately after low (lines 12 to 18 in 

Figure 4.4).  

 

void update_SO(low, up, T, History,  T_SB) { 

1: if (SO(low) < SO(up)) // The simple case 
2:         History→insert(up, T);  
3: range = History→subset(up, low); // The complex case 
4: Tm = T_SB→begin(); 
5: for (Ti = range→begin(); Ti != range→end(); Ti++) { 
6:         if (Ti == Tm) { 
7:                 History→erase(Ti); Tm++; 
8:                 if (Tm == T_SB→end()) 
9:                         break; 
10:         } 
11: } 
12: low++; // Insert T immediately after low 
13: History→insert(low, T); 
14: // Insert all the transactions in T_SB  
15: while (!T_SB→empty()) { 
16:         History→insert(low, T_SB→front()); 
17:         T_SB→pop_front(); 
18: } 
} 

Figure 4.4 SODA - update the sequential order 

  

 Now, let us see an example of T passing the validation in a complex case. 
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 Example 3: Let {T1, T2, T3, T4, T5, T6, T7} be a set of committed transactions and 

the sequential order, and T be a validating transaction at a server. The read sets, write 

sets and the timestamps are shown in Table 4.3. 

 Since WS(T3) ∩ RS(T) ≠ ∅ and WS_TS(T3) > T→TS(a), T must-be-serialized-

before T3 and up = T3. Similarly, low = T6. Since SO(low) > SO(up), this is the complex 

case. T_SB = {T3, T4}, and none of T3 and T4 must-be-serialized-before either T5 or T6, 

thus, T passes the validation test. T3 and T4 are removed first and then T, T3 and T4 are 

inserted immediately after T6, the final sequential order is {T1, T2, T5, T6, T, T3, T4, T7} 

as shown in Figure 4.5, where the arrow (�) in the graph indicates the serialization order 

between two transactions such as T1 � T3 (T1 is serialized before T3). 

 

Table 4.3 Transaction information used in Example 3 

 T1 T2 T3 T4 T5 T6 T7 T 

RS {x} {y} {z} {a} ∅ {b} {c} {a} 

WS {z} {x} {a} ∅ {b, c} ∅ ∅ {b} 

TS (d) 5 15 25 35  45 50 28 

TS_WS 10 20 30  40   +∞ 

 



71 
 

 

Figure 4.5 Validating transaction T in Example 3 

  

  It is time to give another example in which the sequential order is not adjustable 

because of the existence of a cycle. 

 Example 4: Let {T1, T2, T3, T4, T5, T6, T7, T8} be a set of committed transactions 

and their sequential order. T is a validating transaction. Their read sets, write sets and 

their timestamps are shown in Table 4.4. 

 

Table 4.4 Transaction information used in Example 4 

Transactions T1 T2 T3 T4 T5 T6 T7 T8 T 

Read set (RS) {x} ∅ {a} {a} ∅ {b} ∅ {c} {y, a} 

Write set (WS) {y} {x} {a} ∅ {b} ∅ {b, c, w} ∅ {w} 

TS (d) 5 ∅ 20 30 ∅ 40 ∅ 50 8, 18 

Timestamp of WS 10 15 25  35  45  +∞ 

  

 Since WS(T1) ∩ RS(T) ≠ ∅ and WS_TS(T1) > T→TS(y), T must-be-serialized-

before T1 and and up = T1. Since WS(T7) ∩ WS(T) ≠ ∅ and WS_TS(T7) < WS_TS(T), T 
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must-be-serialized-after T7 and low = T7. Because SO(low) > SO(up), T 

must_be_serializes_after T7, T_SB = {T1, T2, T3, T4}, and T_SB conflicts with T7; thus, a 

cycle is detected, the sequential order is not adjustable and T cannot pass the validation. 

As shown in Figure 4.6, it is easy to see that there is a cycle: T→T3→T4→T7→T. 

Actually, T3 and T4 are part of T_SB; therefore, the cycle can be simplified as 

T→T_SB→T7→T. 

    

 

Figure 4.6 Validating transaction T in Example 4 

 

4.2.2 Proof of correctness  

 To prove the correctness of SODA, we must show that any schedule produced by 

SODA is serializable. To fulfil this goal, we utilize the Serializability Theorem “A 

schedule S is serializable iff SG(S) is acyclic” [Bernstein, 1987], that is, we must prove 

that the new serialization graph is still acyclic after the addition of a newly committed 

transaction that has passed the validation test. 

 Lemma 1: Given a sequential order {T1, T2, T3, …, Tn} produced by SODA, 

SODA either does not create any cycle or detects every cycle, if any, in SG({T1, T2, T3, 

…, Tn}+{T}) during the validation of any committing transaction T. 

T3 T5 

T 

T1 T7 T4 T2 T6 

SO(up) = 1 
SO(low) = 6 

T8 
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 Proof: Since the sequential order of transactions complies with their serialization 

order, every edge (Ti, Tj), if any, must have the same direction. In other words, the edge 

(Ti, Tj) goes from left to right because SO(Ti) < SO(Tj), where 1 ≤ i, j ≤ n.  

 In the simple case, SODA does not create any cycle in SG({T1, T2, T3, …, 

Tn}+{T}): Since low and up are found and SO(low) < SO(T) < SO(up), all newly added 

edges are either (Ti, T) or (T, Tj) where SO(Ti) ≤ SO(low) and SO(up) ≤ SO(Tj). 

Therefore, all existing edges and newly added edges must have the same direction, i.e. 

going from left to right, and thus it is impossible for T to involve any cycle. 

 In the complex case, SODA captures every cycle in SG({T1, T2, T3, …, Tn}+{T}): 

Since low and up are found, but SO(low) ≥ SO(up) in the sequential order and, 

consequently, T may be involved in cycles, such as, T → [up] →…  Ti … → [low] → T, 

where SO(up) < SO(Ti) < SO(low), and [up] and [low] are optional.  

 Without loss of generality, let the cycle be T → Ti1 →… Tim → T, where SO(up) 

≤ SO(Tik) ≤ SO(low), i1 ≤ ik < im, and im equals to the number of nodes/transactions in the 

cycle and between up and low in the sequential order. Now, we prove that SODA 

captures every cycle during the validation for T by the induction on im.  

 The basic step, for im = 1: that is, the cycle is T → Ti1 → T. Since T → Ti1, the 

function must-be-serialized-before(T, Ti1) returns true (line 24 in Figure 4.3). Since Ti1 

→ T, the function must-be-serialized-after(T, Ti1) returns true (line 25 in Figure 4.3). 

Thus, SODA returns false because a cycle is detected (line 26 in Figure 4.3). 

 The induction step for im = k: Suppose every cycle is detected for im ≤ k, that is, 

the cycle T → Ti1 → …  Tik-1 → Tik → T is detected because T_SB = {Ti1, Ti2, …, Tik-1}, 
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Tik-1 → Tik and Tik → T (lines 22 to 26 in Figure 4.3). Actually, this cycle is equivalent to 

T → T_SB → Tik → T. Now, we show that every cycle is detected for im = k+1. Since 

Tik-1 → Tik, and T is not serialized after Tik directly, Tik is also added into T_SB (lines 24 

to 29 in Figure 4.3). Since Tik → Tik+1 and Tik is part of the T_SB and Tik+1 → T, the 

cycle T → Ti1 → … → Tik → Tik+1 → T (or T → T_SB → Tik+1 → T) is detected as well. 

Thus, SODA returns false for im = k+1 (lines 22 to 26 in Figure 4.3). 

 Therefore, SODA either captures every cycle, if any, or does not create any cycle 

in SG({T1, T2, T3, …, Tn}+{T}) during the validation of any committing transaction T. 

 Theorem 1: If S is a schedule produced by SODA, then S is serializable. 

 Proof: By Lemma 1, SODA either detects every cycle in SG(S) or does not create 

any cycle when it validates any committing transaction, so SG(S) is acyclic. Thus, S is 

serializable according to the Serializability Theorem [Bernstein, 1987]. 

 

4.2.3 Complexity analysis 

 Theorem 2: The time complexity of SODA is (p*n
2 + n) = O(n2), where n is the 

number of committed transactions in the sequential order, and p is the probability of a 

committing transaction conflicting with both low and up and SO(low) > SO(up). 

 Proof: Assume that the number of operations in a transaction is constant and the 

time to check if two transactions conflict is also constant [Hwang, 2000]. In the simple 

case (case 1): SODA runs one FOR loop after another to find low and up, and the 

maximum number of iterations in each loop is n (lines 2 to 17 in Figure 4.3). In the 

complex case (case 2): SODA runs two nested FOR loops to test the possibility of 
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dynamic adjustment, the maximum number of iterations in each loop is n, and the 

probability of the complex case to happen is p (lines 18 to 32 in Figure 4.3). In update 

sequential order (case 3): SODA runs one FOR loop and one WHILE loop to update the 

sequential order, and the maximum number of iterations in each loop is n (lines 3 to 18 in 

Figure 4.4). By combining the three cases above, the complexity of SODA is: 

  

 If we assume the conflict probability between two transactions is x, then the value 

of x will be very small (0 < x < 1) as most of transactions in MANET are read-only, and 

thus, x
2 will be even smaller.  Since p is the probability of a committing transaction 

conflicting with both low and up and SO(low) ≥ SO(up), p < x2.  For instance, if x = 0.01, 

then p < x2 = 0.0001.  Therefore, we can safely claim that SODA mostly runs in the linear 

time. In contrast, the complexity of a serialization graph testing algorithm is always 

O(n2) [Hwang, 2000]. 

 

4.3 How SODA Works in a Clustered MANET Database 

 In order to make SODA work effectively in a clustered MANET database, the 

coordinating server functionality is combined with the cluster head’s functionality 

because a cluster head is elected by our MEW algorithm [Xing, 2010] as described in 

Chapter 3 and is the nearest server with the highest energy in clients’ neighborhood.  

This would enable clients to save time, limited battery energy and bandwidth that they 

must spend on identifying suitable servers to which they send their transactions.  

Therefore, only three major functionalities are required: the primary cluster head 

) O(n n  p*n
22

=+
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functionality, cluster head functionality, and participating server functionality as shown 

in Figure 4.7.  Note that one server can have all the three functionalities at the same time. 

  

4.3.1 The transaction execution model 

 As shown in Figure 4.7, a transaction T issued by a client is distributed to its 

cluster head; the cluster head divides T into sub-transactions and transmits them to the 

appropriate participating servers according to the global database schema.  Each 

participating server processes the sub-transactions locally and sends the results back to 

the cluster head.  The cluster head runs the 2-Phase Commit (2PC), and gathers all results 

from the participating servers. Note that we adopt 2PC here due to its simplicity as our 

research goal is to develop a concurrency control algorithm, not a commit algorithm; 

however, we do plan to include a more suitable commit protocol for MANET databases 

in our future work. If running 2PC successfully, the cluster head sends T to the primary 

cluster head to validate T globally based on the SO of committed global transactions; 

otherwise, the cluster head sends an abort message directly to the client. After receiving 

the global validation result, the cluster head sends the final results to the client. 

 

Figure 4.7 Workflow of SODA 
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4.3.2 The primary cluster head functionality 

 The primary cluster head has the following functionalities: 

• It maintains the sequential order (SO) of committed global transactions. 

• It receives global transaction validation requests from non-primary cluster heads. 

• It validates global transactions using SODA.  After validation, it sends the 

validation results to the non-primary cluster head. 

• It updates the SO after a global transaction commits and adds this global 

transaction’s read set, write set and the timestamp of both sets to the data 

structure of the maintained SO. 

• It removes the old committed transactions that are not serialized after any 

active/committed global transaction from the maintained SO after a global 

transaction commits.  

• It periodically checks (after a global transaction commits) its remaining energy 

level.  If its level is below a predefined threshold LET and another cluster head’s 

remaining level is above the threshold, it resigns its cluster head status and elects 

a new primary cluster head that has the highest remaining energy from all cluster 

heads.  It then transfers the information of all the transactions it stores to the new 

primary cluster head. Note that since the primary cluster head is also a non-

primary one, if the primary one resigns, the non-primary one also resigns if there 

is a candidate in the neighborhood. 
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4.3.3 The cluster head functionality 

 The cluster head has the following functionalities: 

• It receives a global transaction from a client, divides them into sub-

transactions, and sends the sub-transactions to appropriate participating 

servers. 

• It runs 2PC to request the status of the sub-transactions and requests the 

timestamps of the global transaction’s read set. 

• It propagates the global transaction to the primary cluster head after it receives 

all successful messages of the sub-transactions. After receiving the validation 

result, it sends the final results to the client.  

• It periodically checks (after a global transaction commits) its remaining energy 

level.  If the level is below a predefined threshold and there is a candidate for 

cluster head in the neighborhood, it resigns its cluster head status and elects a 

new cluster head in the neighborhood.  It then transfers the information of all 

the transactions it stores to the new cluster head. Note that if the old cluster 

head is also the primary cluster head, then the new cluster head can be the new 

primary cluster head as well if this new one has the highest remaining energy 

among all cluster heads. 

 

4.3.4 The participating server functionality 

 A participating server has the following functionalities: 
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• It receives and processes sub-transactions, and maintains the SO of committed 

sub-transactions. 

• It runs SODA locally based on the local SO of committed sub-transactions 

when it receives the request about the status of the sub-transactions. 

• It sends the final status of the sub-transactions to the requesting cluster head. It 

also sends the timestamps of the read sets of the sub-transactions to the cluster 

head if the sub-transactions pass the validation. 

• It updates the local SO of committed sub-transactions if a sub-transaction 

commits and adds this sub-transaction’s read set, write set and timestamps of 

both sets to the data structure of the maintained SO.  It removes the old 

committed sub-transactions that are not serialized after any active/committed 

sub-transaction from the maintained SO after a sub-transaction commits. 

 

4.4 Conclusions 

 In this chapter, we introduced and proved the correctness of our energy-efficient 

CC algorithm, called Sequential Order with Dynamic Adjustment (SODA), for mission-

critical MANET databases in a clustered network architecture.  In SODA, in order to 

conserve energy and balance the energy consumption among servers so that the lifetime 

of the network is prolonged, we elected cluster heads using our weighted clustering 

algorithm MEW to work as coordinating servers.  SODA is based on optimistic CC to 

offer high concurrency and avoid unbounded blocking time.  It utilizes the sequential 

order of committed transactions to simplify the validation process, and dynamically 
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adjusts the sequential order of committed transactions to reduce transaction aborts. Its 

complexity is O(n2), where n is the number of committed transactions in the sequential 

order. 
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CHAPTER 5 

PERFORMANCE EVALUATION OF MEW  

USING THE NS-2 SIMULATOR 

  

 In this chapter, we present the performance evaluation of our network clustering 

algorithm MEW (Mobility, Energy, and Workload) using simulation. First, we describe 

the simulation parameters and performance metrics. We then present and analyze the 

simulation results. 

 

5.1 Simulation Description and Parameters 

 The performance of MEW and MOBIC [Basu, 2001] is evaluated using the NS-2 

simulator with clustering framework [Basagni, 2006].  Table 5.1 lists the simulation 

parameters, most of which are the same as the ones in [Basu, 2001].  Since mobility is 

the major cause of re-clustering, the weighting factor of mobility f1 = 0.8, the weighting 

factor of energy f2 = 0.15 and the weighting factor of workload f3 = 0.05 are used. The 

initial energy level of each node is randomly distributed between 20% and 100%. 

 To measure the stability of a clustered MANET, we consider the following 

metrics: 

• The lifetime of the network: the duration from the beginning of the simulation 

until a node runs out of its energy [Choi, 2006; Sheu, 2006].  

• The cluster head change rate (per second): the total number of cluster heads is 

divided by the total simulation time [Basu, 2001]. 
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• The re-affiliation (joining a cluster and becoming a member) rate (per second): 

the total number of cluster members is divided by the total simulation time [Choi, 

2006]. 

 

Table 5.1 Simulation parameters 

Parameter Value Reference 

Number of nodes (N) 50 [Basu, 2001] 

Simulation area  670 * 670 meters2 [Basu, 2001] 

Maximum speed of  node movement 1, 10, 20, 30 meters/second (or m/s) [Basu, 2001] 

Transmission range (TR) 10 meters – 250 meters [Basu, 2001] 

Pause time (PT) 0 second, 30 seconds [Basu, 2001]  

Broadcast interval (BI) 1 second  

Cluster contention interval (CCI)  3 seconds  

Low energy threshold (LET) 30%  

Mobility weighting factor (f1) 0.8  

Energy weighting factor (f2) 0.15  

Workload weighting factor (f3) 0.05  

Initial energy level 20% - 100%  

Simulation time 200 seconds [Viswacheda, 2007] 

  

5.2 Simulation Results 

 This section presents the results of the experiments performed by varying 

maximum speed and transmission range.  All metrics in the following figures are 

collected from an average value of 50 simulation runs in 50 different scenarios, which 

are randomly generated using the random waypoint model (built-in in NS-2).  To better 

mimic a real wireless network, 25 constant bit rate (CBR) connections are randomly 

generated by the traffic-scenario generator.  Each source sends a 512-byte packet through 
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UDP (User Datagram Protocol) [Wang, 2007b] at a rate of one packet per second.  

 

5.2.1 Effect of maximum speed 

 In this experiment, the maximum node moving speed is varied to study the effect 

on the performance. The maximum speed of a node is varied from 1 m/s to 30 m/s.  The 

experiment results are shown in Figures 5.1 - 5.3. 

 In Figure 5.1, the lifetime of the network decreases as the maximum node moving 

speed increases in both MOBIC and MEW.  This is expected because nodes with higher 

speed are more likely to become neighbors or get disconnected.  This will trigger more 

cluster head changes and more re-affiliations, thus, more energy are consumed to 

maintain clusters.  Regardless of the pause time PT = 0s or 30s, MEW prolongs the 

lifetime of the network by 9% to 42% (or 23% on average) better than that of MOBIC.  

Since mobility is dealt with in the same way in both MOBIC and MEW, how to address 

mobility is not the main cause of longer lifetime of the network.  In other words, these 

promising results confirm affirmatively the effects of taking into consideration the 

energy and workload in the weight calculation and the forced resignation of a cluster 

head when its remaining energy becomes too low. 

 



84 
 

 

Figure 5.1 Lifetime of network by varying maximum speed 

 

 Figure 5.2 shows that the cluster head change rate of MEW and MOBIC 

increases as the node speed increases no matter PT = 0s or PT = 30s.  This is because 

cluster heads with higher speed are more likely to become neighbors and, consequently, 

the one with a lower weight has to resign.  MEW produces 5 to 12 (or 7 on average) 

fewer cluster heads than MOBIC when PT = 0s and PT = 30s, respectively.  Given that 

both MOBIC and MEW deal with mobility using the relative mobility, MEW still 

produces fewer cluster heads mainly because nodes with higher energy are likely to get 

elected as cluster heads and, hence, they can function as cluster heads for a longer time. 
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Figure 5.2 Rate of cluster head changes by varying maximum speed 

 

 Figure 5.3 shows that the re-affiliation rate of MEW and MOBIC increases as the 

node speed increases.  This is because cluster members with higher speeds are likely to 

get disconnected from their original cluster heads and join other cluster heads.  MEW 

produces 34 to 66 (or 44 on average) fewer cluster members than MOBIC for both PT = 

0s and PT = 30s.  The advantage of MEW having a lower re-affiliation rate is mainly 

attributed to the less likelihood of the resignation of a cluster head due to energy 

exhaustion. 
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Figure 5.3 Rate of re-affiliation by varying maximum speed 

 

5.2.2 Effect of transmission range 

 In this experiment, the transmission range is varied to study the effect on the 

performance. The transmission range of a node is varied from 10 meters to 250 meters.  

The experiment results are shown in Figures 5.4 - 5.6. 

 In Figure 5.4, the lifetime of the network decreases as the transmission range 

increase in both MOBIC and MEW.  This is expected because the larger the transmission 

range is, the more energy is required to transmit packets, and thus, the more energy is 

consumed.  MEW outperforms MOBIC by 2% to 27% (or 15% on average) when the 

transmission range is larger than 50 meters.  These promising results confirm that 

MOBIC is mobility-only-based algorithm.  In other words, MOBIC does not consider 

energy during cluster head election, so some nodes with low remaining energy become 

cluster heads and, consequently, these cluster heads run out of energy soon. 
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Figure 5.4 Lifetime of network by varying transmission range 

  

 In Figure 5.5, the cluster head change rate of both algorithms increases when the 

transmission range is less than 50 meters, this is expected because more nodes appear 

within range of each other for shorter periods of time as the transmission range increases, 

so that more cluster heads have to give up their roles and join others as cluster members.  

However, when the transmission range becomes larger than 50 meters, the cluster head 

change rate decreases as more nodes are within range of other nodes and stay together for 

longer periods of time.  MEW produces 5 to 13 (or 10 on average) fewer cluster heads 

than MOBIC.  Given that both MOBIC and MEW deal with mobility using the same 

way, MEW still produces fewer cluster heads mainly because nodes with higher energy 

are likely to get elected as cluster heads and, hence, they can function as cluster heads for 

a longer time. 
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Figure 5.5 Rate of cluster head changes by varying transmission range 

 

 In Figure 5.6, the re-affiliation rates of MEW and MOBIC increase as the 

transmission range is less than 100 meters and increases.  This is expected because more 

nodes appear within range of more than one cluster heads and join the one with largest 

weight.  However, when the transmission range becomes larger than 100 meters, the re-

affiliation rates of both algorithms decrease because cluster members are within range of 

their cluster heads and stay together for longer periods of time.  MEW produces 34 to 43 

(or 40 on average) fewer re-affiliations than MOBIC when the transmission range is 

greater than or equal to 100 meters.  Due to the same solution of addressing mobility, the 

advantage of MEW having a lower re-affiliation rate is mainly attributed to the less 

likelihood of the resignation of a cluster head due to energy exhaustion. 
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Figure 5.6 Rate of re-affiliation by varying transmission range 

 

5.3 Conclusions 

 In this chapter, we presented the performance evaluation of our weighted 

clustering algorithm MEW using NS-2 simulation by varying the maximum node moving 

speed and the transmission range. MEW is compared with MOBIC. The simulation 

results show that MEW prolongs the lifetime of MANETs and has a lower cluster head 

change rate and re-affiliation rate than the existing algorithm MOBIC.   
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CHAPTER 6 

PERFORMANCE EVALUATION OF SODA  

USING THE SIMULATIONS  

 

 The simulation experiments are conducted to compare the performance of our 

proposed SODA with those of SESAMO [Brayner, 2005] and the most widely used CC 

protocol - S2PL (Strict 2-Phase Locking) [Bernstein, 1987]. As we discussed in Chapter 

2, SESAMO relaxes atomicity and global serializability due to its assumption.  However, 

global serializability is guaranteed by S2PL when S2PL is combined with 2PC [Abdouli, 

2005].   

 Our simulation model consists of a transaction generator, a real-time scheduler 

that schedules transactions using early deadline first [Pabmanabhan, 2006], participating 

servers, coordinating servers or cluster heads for SODA only, and a deadlock manager 

for SESAMO and S2PL.  In the SODA model shown in Figure 4.7, a transaction T issued 

by a client is transmitted to its cluster head CHc; CHc divides T into several sub-

transactions, and transmits them to the appropriate participating servers through their 

cluster heads according to the global schema.  Each participating server processes the 

sub-transactions locally, and sends the results back to CHc.  CHc runs the 2PC and 

gathers all results from the participating servers.  If running 2PC successfully, CHc sends 

T to the primary cluster head to validate T globally based on the SO of committed global 

transactions; otherwise, CHc sends an abort message directly to the client.  After 

receiving the global validation result, CHc sends the final results to the client.  
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 The simulation models for SESAMO and S2PL are similar to that of SODA 

except for a couple of points.  One is that SODA is applied locally and globally to 

validate transactions, while in SESAMO, strict 2PL is applied globally [Brayner 2005] 

and locally [Holanda, 2008], and in S2PL, strict 2PL is run only locally. The other point 

is that SESAMO and S2PL have no any cluster head and use coordinating servers 

instead.  

 Three simulation models are built to compare SODA with S2PL and SESAMO. 

All three simulation models are implemented using the AweSim simulation language 

[Pritsker, 1999].  Each simulation model is defined in the following three aspects: mobile 

hosts, transactions and mobility model [Li, 2004]. The static parameters and dynamic 

parameters about the database and system settings are shown in Tables 6.1 and 6.2. 

These values are chosen in order to create scenarios with high utilization of data and 

more data contention.  Since transactions in mission-critical applications must be 

executed not only correctly but also within their deadlines where, 

 factor ime)*slacknnection tated discome + estimecution titimated extime + (es creation Deadline =  

In other words, we use real-time firm transactions to evaluate the performance.  

Therefore, in our simulation, a transaction will be aborted if either it missed its deadline 

or the system could not complete it successfully (e.g. when it is aborted by the CC 

technique). 

1. Mobile nodes: In the simulation model, 10 servers and 40 clients are system 

resources, randomly deployed in 3 areas initially, and the radius of each area is 

about 100 meters. Each mobile node is assigned with a unique id, x and y 

coordinates as location, moving direction and initial energy level between 80% 
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and 100%. Each of the servers stores a portion of the whole database, and the data 

stored on one server are not replicated on other servers. The transmission range of 

a server is 250 meters and of a client is 100 meters.  The bandwidth is fixed at 11 

Mbps according to the current wireless technology such as the Intel Wireless 

WiFi Link 5300 wireless card [Intel, 2008].  The server is modelled from the 

Lenovo Thinkpad T400s notebook [Notebookcheck, 2009], which has Intel Core 

2 Duo SP 9600 2.53 GHz CPU, a 4 GB DDR3 RAM and 23240 MIPS (Million 

Instructions per Second). The client is modelled from the HP iPAQ 210, which 

has Marvell PXA310 624MHz Processor with the 128MB SDRAM [HP, 2008] 

and 800 MIPS.  

2. Transactions: Global transactions are entities, request and release system 

resources during the execution. Transaction start time, transaction id, transaction 

type (read-only or write), deadline, and number of sub-transactions are assigned 

when they are generated. The inter-arrival time, proportion of read-only 

transactions, number of sub-transactions, and number of participating servers are 

defined in Table 6.1 and Table 6.2.    

3. Mobility Model: Mission-critical (or tactical) applications are strictly structured 

(e.g., platoons in military operation) and their actions are strictly organized. There 

is a leader or a group of leaders who tells everybody where and how to move or 

in which area to work. In general, their movements are driven by tactical reasons. 

Due to this, the units normally use the optimal path to a destination. The 

destinations depend on the work area that is based on tactical issues. The tactics 

as well as the scene are usually hierarchically organized.  Typically, the site is 
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divided into different tactical areas. Each unit belongs to one of these areas.  For 

example, in a disaster rescue scenario, firefighters belong to an incident site and 

medical workers are in the casualty’s treatment area.  Once the units are sent to a 

specific location, they stay close to this location.  Thus, the area in which a unit 

moves depends on tactical issues but is restricted to one specific area 

[Aschenbruck, 2008].  The simulation area is fixed in a 1000x1000 meters2 

region. All the nodes are divided into groups, and in each group, nodes are 

moving within a relative direction angle being in the range (-30o, 30o) [Lu, 2008] 

and the moving direction is random from a set of eight possible directions (�, �, 

, �, , �, �, �) [Li, 2004].  By placing 10 servers and 40 clients onto the 

region with the size of 1000x1000 meters2, the MANET is assumed to remain 

good connectivity, implying the network partitions occur rarely.  

 

6.1 Simulation Parameters and Performance Metrics 

 The simulation static parameters and their values are shown in Table 6.1.  Note 

that in a clustered MANET, cluster heads are more stable than non-cluster head nodes; so 

cluster heads should have lower disconnection probability than non-cluster head nodes.  

In order to include this observation, the percentage of disconnection that cluster heads 

can have is set to 10%. For example, if the default disconnection probability is 0.3, then 

the disconnection probability of cluster heads is 0.27 = 0.3 – 10% * 0.3. 
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Table 6.1 Static parameters 

Parameter Values Reference 
Server energy consumption rate in active 
mode 30.3 Watts 

[Notebookcheck, 
2009] 

Server energy consumption rate in idle mode 12.5 Watts 
[Notebookcheck, 
2009] 

Client energy consumption rate in active 
mode 0.99 Watts [HP, 2008] 

Server transmission range 250 meters [Zhang, 2010] 

Client transmission range 100 meters [HP, 2008] 

Speed of server processor 2.53GHZ(23240 MIPS) 
[Notebookcheck, 
2009] 

Speed of client processor 624MHZ(800 MIPS) [HP, 2008] 

Packet size 512 bytes [Zhang, 2010] 

Bandwidth  2 Mbps [Zhang, 2010] 

No. of sites in global transaction Triangular(3,4,5) [Li, 2004] 

No. of operations or sub-transactions Uniform(5, 10) [Lei, 2009] 

CPU computation time 10 ms [Lei, 2009] 

Low energy threshold 50%  
Percentage off disconnection probability due 
to being a stable cluster head 10%  

No. of clients 40 [Li, 2004] 

No. of servers 10  

Slack factor   4 [Lei, 2009] 

Simulation area 1000x1000 meters2 [Li, 2004] 

 

Table 6.2 Dynamic parameters 

Parameter Value Range Default Value Reference 

Mean inter-arrival time  
1 to 10 seconds 
(exponentially distributed) 5 

[Leu, 2007; Lei, 
2009] 

Proportion of read-only 
transactions  0.1 to 0.85 0.8 

[Li, 2004; Nouali, 
2010] 

Disconnection probability  0.1 to 0.9 0.3 [Li, 2004] 

Mean disconnection time  1 to 10 seconds 5 
[Guo, 2008; Lei,  
2009] 

Node moving speed 1 to 10 m/s 3 
[Denko, 2009; Li, 
2007]  
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 The dynamic parameters, their value ranges and their default values are listed in 

Table 6.2. We use these five dynamic parameters to study their effects on the 

performance of the concurrency control algorithms. 

• Inter-arrival time is the mean of an exponentially distributed time between the 

arrivals of two consecutive transactions; it varies over the range from 1 to 10 

seconds in order to vary the system load [Gruenwald, 2007] and create a scenario 

with high data contention.  

• Proportion of read-only transactions is the percentage of read-only transactions 

among the total simulated transactions. More read-only transactions mean fewer 

conflicts among transactions. In other words, proportion of read-only transactions 

can also create a scenario with high or low data contention. 

• One of the major characteristics of MANET is frequent disconnections due to the 

mobility and energy limitation of nodes and unreliable wireless communication 

between nodes; so two disconnection parameters are studied: disconnection 

probability and mean disconnection time. Disconnection probability is the 

probability of communication that is disconnected when a node tries to 

communicate with another node. Disconnection time is the time interval during 

which a node is unavailable to communicate with. 

• Node moving speed varies from 1 to 10 m/s to study the effect of node mobility 

on the performance. 
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 Eight performance metrics are used and they are defined in Equations (6.1), (6.2), 

(6.3), (6.4), (6.5), (6.6),(6.7) and (6.8), respectively: total time when servers are in active 

mode, abort rate, system throughput, average validation time that the primary cluster 

head spends on a global transaction, response time, total number of cluster head 

reelections, total energy consumed by all servers, and average difference in remaining 

energy between two servers.  Among these metrics, total time when servers are in active 

mode, average validation time that the primary cluster head spends on a global 

transaction, and total number of cluster head reelections are utilized to support other 

performance metrics. 

 The first performance metric is the total time when servers are in active mode.  A 

server is in active mode only if it is processing transactions; otherwise, it is in doze mode 

to save energy.  This metric evaluates whether servers are busy to process transactions 

most of time, where m is the total number of servers and Ta,i is the total time when server 

Si is in active mode. 
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 The second performance metric is the abort rate to measure the percentage of 

aborted transactions, and can be computed as below:  

%*
nstransactiogenerated of#Total

nstransactioabortedof#Total
ratetAbor 100=

 
(6.2) 

 The third performance metric is the system throughput to measure the 

performance of a database system in terms of the number of transactions completed in a 

minute.  Note that the time unit is not second because transaction response time is larger 
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than a second. 

60/timesimulationTotal

nstransactiocommittedof#Total
throughputSystem =

 
(6.3) 

 The fourth performance metric is the average validation time that the primary 

cluster head spends on a global transaction.  It is the elapsed time between submitting a 

global transaction to the primary cluster head for validation and receiving the validation 

result.  It is used to verify how long the primary cluster head prolongs the transaction 

response time, where ts is the time at which a global transaction is submitted by the 

client’s cluster head (or called coordinating server), and te is the time at which the 

validation result is received by the same coordinating server. 

 -   se t ttime validationAverage =  (6.4) 

 The fifth performance metric is the transaction response time that is the elapsed 

time between submitting a database transaction for execution and receiving a response. It 

is used to evaluate how an application is performing in the measurement of time, where ts 

is the time at which a transaction is submitted by a client, and te is the time at which a 

response is received by the same client. The major influences on transaction response 

time are communication delays and the database access time for data items accessed by 

the transaction. 

 - se t ttime responsenTransactio =  (6.5) 

 The sixth performance metric is the total number of cluster head (primary and 

non-primary) reelections to evaluate whether an algorithm takes balancing energy among 

servers into consideration, where Nprimay (Nnon-primay) is the number of primary (non-

primary) cluster head reelections.  However, more reelections do not guarantee more 
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balanced energy among servers because there is an overhead of transferring the 

information from the old cluster head to the new one.  

 primarynonprimay N Ntions ad  reelecluster  heber  of  cTotal  num
−

+=  (6.6) 

 The seventh performance metric is the total amount of energy consumed by all 

servers in both active mode and doze mode.  This metric evaluates how energy-efficient 

each technique is, where m is the total number of servers, ECRa (ECRd) is the energy 

consumption rate when a server is in active (doze) mode, and Ta,i (Td,i) is the total time 

when server Si is in active (doze) mode. 
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 The eighth performance metric is the average difference in remaining energy 

between two servers to evaluate how balanced the system is in terms of energy 

consumption.  The more balanced the system is, the longer lifetime the system has.  This 

metric is computed using the following formula, where m is the total number of servers, 

and REi and REj are the remaining energy of servers Si and Sj, respectively. 
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6.2 Simulation Results 

 This section presents the results of the experiments performed.  In each 

simulation run, 1000 transactions are simulated and results are collected at the end of 

each run.  When one dynamic parameter is studied, all other dynamic parameters are 
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fixed with their default values specified in Table 6.2.  The three compared algorithms are 

labelled as S2PL, SESAMO and SODA in the result figures.  

 

6.2.1 Effect of inter-arrival time 

 In this experiment, the inter-arrival time between two consecutive transactions is 

varied to test the system load and create scenarios with low or high data contention.  The 

inter-arrival time is generated using the exponential distribution with mean from 1 

second to 10 seconds. The experiment results are shown in Figures 6.1 - 6.8. 

 Figure 6.1 shows that the total time when servers are in active mode of S2PL, 

SESAMO and SODA increases as the transaction inter-arrival time increases. When 

transactions enter into the database system at a slow inter-arrival rate, which is the 

reciprocal of inter-arrival time, system has low workload. Thus, transactions have less 

waiting time for resources and have more chances to complete before their deadlines. 

Since the more transactions are committed, the more time servers spend on processing 

these committed transactions.  It is obvious that SESAMO performs the worst, SODA 

performs the best and S2PL is in the middle.  Furthermore, the increasing rate of 

SEASAMO and S2PL is much higher than that of SODA.  This happens because S2PL 

and SESAMO are pessimistic and utilize locks to hold limited system resources to 

prevent conflicting transactions from accessing them.  In other words, servers in S2PL 

and SESAMO have to be in active mode most of time to keep processing transactions.  

SESAMO performs the worst because it takes SESAMO more time to run strict 2PL 

locally and globally. 
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Figure 6.1 Total time when servers are in active mode vs. inter-arrival time 

 

 In Figure 6.2, the abort rates of S2PL, SESAMO and SODA decrease when the 

transaction inter-arrival time increases.  This is expected because when fewer 

transactions are in the system, fewer conflicts among transactions, so that servers are not 

overloaded, and transactions have less waiting time for resources and have more chances 

to commit before their deadlines.  The abort rate of SODA is much lower than those of 

SESAMO and S2PL right after the inter-arrival time is longer than 1 second.  This is 

mainly because transactions arrive at the system with a slow rate, and conflicts among 

transactions become rare, so that optimistic algorithms perform better than pessimistic 

algorithm due to no prevention of conflicts overhead.  SESAMO’s abort rate is lower 

than S2PL’s except after the inter-arrival time = 9 seconds.  Although SESAMO does not 

enforce global serializability, it still blocks many conflicting transactions due to running 

strict 2PL both locally and globally. S2PL runs strict 2PL locally only, but it enforces 
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global serializability using 2PC.  In other words, in S2PL, all locks of sub-transactions 

are held until global transactions commit, which also increases significant waiting time 

of conflicting transactions.  When the inter-arrival time is getting shorter, it is easy to see 

that the abort rate of SODA is close to SESAMO’s and S2PL’s because conflicts among 

transactions increase; in addition, this confirms the fact that optimistic CC techniques 

work well only if conflicts among transactions are rare. 

 

  

Figure 6.2 Abort rate vs. inter-arrival time 

 

 Figure 6.3 shows that the system throughput of the three algorithms does not have 

strict trends of increase or decrease as the inter-arrival time increases.  This seems not 

correct because the throughput should increase as the inter-arrival time increases due to 

the facts demonstrated in Figure 6.2: fewer transactions are aborted as the inter-arrival 

time increases.  However, when the inter-arrival time increases, more transactions are 
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committed, but at same time, the total simulation time becomes longer as well.  The 

system throughput of SODA is as least two more transactions/minute than those of 

SESAMO and S2PL right after the inter-arrival time is longer than 1 second.  This is 

mainly because SODA can commit more transactions than S2PL and SESAMO at each 

inter-arrival time (based on the fact: the less abort rate an algorithm has as shown in 

Figure 6.2, the more transactions it can commit), but the corresponding total simulation 

time is about the same. SESAMO’s system throughput is higher than S2PL’s when the 

transaction inter-arrival time is between 2 seconds and 8 seconds. 

 

 

Figure 6.3 System throughput vs. inter-arrival time 

 

 Figure 6.4 shows SODA’s average validation time that the primary cluster head 

spends on a global transaction increases first and then decreases as the inter-arrival time 

increases.  However, the average validation time of S2PL and SESAMO is always zero 

because their designs do not involve any cluster head.  In other words, S2PL and 



103 
 

SESAMO do not prolong the response time due to the primary cluster head. 

 

 

Figure 6.4 Average validation time that the primary cluster head spends on a 

global transaction vs. inter-arrival time 

 

 As shown in Figure 6.5, the response time of the S2PL, SESAMO and SODA 

roughly decreases as the inter-arrival time increases after the inter-arrival time is longer 

than 3 seconds.  This trend is expected because servers are not overloaded due to low 

transactions entry rate, so that servers can process transactions in time.  The response 

time of SODA is higher than those of S2PL and SESMO when the inter-arrival time is 

between 1 second and 9 seconds. This happens because SODA utilizes the primary 

cluster head to validate all global transactions and enforce the global serializability, thus, 

the primary cluster head has the bottleneck problem and, consequently, the transaction 

processing time is prolonged as shown in Figure 6.4. However, the prolonged response 

time in SODA is reasonable (averagely 17 seconds longer) because it is still within the 

transaction deadline; otherwise, SODA should not have the lowest abort rate shown in 
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Figure 6.2. SESAMO has shorter response time than S2PL right after the inter-arrival 

time = 5 seconds. Although shorter response time is expected by every algorithm, but the 

trade off has to be done among all performance metrics. In other words, SODA trades off 

the response time for lower abort rate, higher throughput, lower energy consumed by all 

servers and balancing energy better among all servers.  

 

  

Figure 6.5 Average of response time vs. inter-arrival time 

 

 Figure 6.6 shows the total number of cluster head reelections of SODA increases 

as the inter-arrival time increases.  When the inter-arrival time reaches 10 seconds, the 

total simulation time is around 3 hours (1000 transactions * 10 seconds = 10,000 

seconds).  Consequently, more cluster heads have the remaining energy below the 

predefined threshold LET, and more reelections are triggered to change roles for 

preserving energy and balancing energy usage.  However, the total number of reelections 
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of S2PL and SESAMO is always zero because their designs do not involve any cluster 

head.  In other words, S2PL and SESAMO do not rotate roles among servers to balance 

energy. 

 

 

Figure 6.6 Total number of cluster head reelections vs. inter-arrival time 

 

Figure 6.7 shows that the total energy consumption of all servers increases with 

the increase of the inter-arrival time.  This is expected because more transactions are 

committed as inter-arrival time increases as shown in Figure 6.2, so that each server has 

to spend more time in active mode on processing these committed transactions as shown 

in Figure 6.1.  In other words, the more transactions are committed and the more time 

servers are in active mode, the more energy is consumed, and Figure 6.7 confirms this 

fact.  SODA consumes at least 64,632 J and at most 563,676 J less than both S2PL and 

SESAMO right after the inter-arrival time is longer than 2 seconds.  This happens 

because transactions arrive into the system with a slow rate, and conflicts among 
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transactions become much rarer, so that optimistic SODA performs better than 

pessimistic S2PL and SESAMO due to no prevention of conflicts overhead.  

 

 

Figure 6.7 Total energy consumed by all servers vs. inter-arrival time 

 

The average difference in the remaining energy between two servers in the three 

algorithms does not have strict trends of increase or decrease as the inter-arrival time 

increases as shown in Figure 6.8.  Through this metric, we want to check whether the 

energy consumption is balanced among servers.  If a technique does not balance energy 

consumption among servers, some servers may run out of energy quickly and, 

consequently, those servers without energy affect the whole database system.  It is easy to 

see that SODA is the best to balance energy consumption, and S2PL does the worst 

except when the inter-arrival time = 2 seconds.  This is because more non-primary cluster 

heads and primary cluster heads with higher energy are reelected as shown in Figure 6.6.  

However, in S2PL and SESAMO, there is no role rotation strategy and clients may keep 
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submitting transactions to the same servers so that these servers are overloaded. 

 

 

Figure 6.8 Average difference in remaining energy between two servers vs. inter-

arrival time 

 

6.2.2 Effect of proportion of read-only transactions 

 In this experiment, the proportion of read-only transactions is varied to test the 

system load and create scenarios with low or high data contention similar to the inter-

arrival time discussed in Section 6.2.1. The experiment results are shown in Figures 6.9-

6.16. 

 When more read-only transactions are initiated, conflicts between transactions 

become rare, thus more transactions have chances to complete before their deadlines.  

The more transactions are committed, the more time servers spend on processing these 

committed transactions.  Figure 6.9 confirms that the total time when servers are in active 

mode in S2PL and SESAMO roughly increases when the proportion of read-only 



108 
 

transactions increases.  However, SODA does not follow the trend; instead, its total time 

almost remains unchanged because it is not sensitive to the proportion of read-only 

transactions.  It is obvious that SESAMO performs the worst, SODA performs the best 

and S2PL falls into the middle.  This reflects the fact that S2PL and SESAMO are 

pessimistic and utilize locks to hold data to prevent conflicting transactions from 

accessing the common data even though most of transactions are read-only. 

 

 

Figure 6.9 Total time when servers are in active mode vs. proportion of read-

only transactions 

 

 In Figure 6.10, the abort rates of S2PL, SESAMO and SODA decrease when the 

proportion of read-only transactions increases, but SODA does not decrease significantly 

because it is not sensitive to this parameter once the proportion of read-only transactions 

> 10%.  The abort rate of SODA is much lower (at most 47%) than those of SESAMO 

and S2PL.  This is mainly because SODA is optimistic and conflicts among transactions 
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become rarer as the proportion of read-only transactions increases, so that SODA can 

perform optimally due to the optimistic CC algorithm existence assumption: conflicts 

among transactions are rare.  SESAMO’s abort rate is lower than S2PL’s right after the 

proportion is 30%. This implies that S2PL running the 2PC to guarantee global 

serializability causes more aborts than SESAMO running the strict 2PL at the global 

level because both S2PL and SESAMO run the strict 2PL at the local level. 

 

 

Figure 6.10 Abort rate vs. proportion of read-only transactions 

 

 Figure 6.11 shows that the system throughput of these three algorithms increases 

as the proportion of read-only transactions increases.  This happens because conflicts 

between transactions become rarer when more read-only transactions are in the system, 

so that transactions do not compete with each other for common data and commit before 

their deadlines. The system throughput of SODA is as least two more transactions/minute 

than those of SESAMO and S2PL when the proportion of read-only transactions <= 
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80%.  This further confirms that SODA can perform optimally due to the assumption of 

optimistic CC algorithm existence: conflicts among transactions are rare.  SESAMO’s 

system throughput is higher than S2PL’s when the proportion of read-only transactions > 

20%, and this trend is consistent with the fact that SESAMO has less abort rate than 

S2PL as shown in Figure 6.10. 

 

 

Figure 6.11 System throughput vs. proportion of read-only transactions 

 

 Figure 6.12 shows SODA’s average validation time that the primary cluster head 

spends on a global transaction has no significant changes as the inter-arrival time 

increases.  However, the average validation time of S2PL and SESAMO is always zero 

because their designs do not involve any cluster head.  In other words, S2PL and 

SESAMO do not prolong the response time due to the primary cluster head. 
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Figure 6.12 Average validation time that the primary cluster head spends on a 

global transaction vs. proportion of read-only transactions 

 

 As shown in Figure 6.13, the response time of S2PL and SESAMO roughly 

increases when the proportion of read-only transactions increases.  However, SODA does 

not follow the trend; instead, it has almost the same response time because it is not 

sensitive to this parameter once the proportion of read-only transactions > 10%. It is 

obvious that the response time of SODA is higher than that of S2PL and SESMO.  This 

happens because SODA has the bottleneck problem due to primary cluster head and, 

consequently, the transaction processing time is prolonged as shown in Figure 6.12. 

However, the prolonged response time in SODA is still within the reasonable range 

(averagely 32 seconds longer); otherwise, SODA should not have the lowest abort rate 

shown in Figure 6.10.  S2PL and SESAMO have shorter response time alternately. 

Although shorter response time is expected by every algorithm, but the trade off has to be 

done among all performance metrics.  In other words, SODA trades off the response time 

for lower abort rate, higher throughput, lower energy consumed by all servers and 
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balancing energy better among all servers.  

 

 

Figure 6.13 Average of response time vs. proportion of read-only transactions 

 

 Figure 6.14 shows the total number of cluster head reelections of SODA occurs 

only once when the proportion of read-only transactions is 80%.  This is because the 

inter-arrival time is fixed with its default value 5 seconds when we study the effect of the 

proportion of read-only transactions, thus, the total simulation time is around 1.5 hours 

(1000 transactions * 5 seconds = 5,000 seconds) no matter how the proportion of read-

only transactions varies.  After running 1.5 hours, most cluster heads’ remaining energy 

is not below the predefined threshold LET yet, therefore, only one reelection is triggered 

to change roles for preserving energy and balancing energy usage.  However, the total 

number of reelections of S2PL and SESAMO is always zero because their designs do not 

involve any cluster heads. In other words, S2PL and SESAMO do not rotate roles among 

servers to balance energy. 
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Figure 6.14 Total number of cluster head reelections vs. proportion of read-only 

transactions 

 

Figure 6.15 shows that the total energy consumption of all servers in S2PL and 

SESAMO roughly increases with the increase of the proportion of read-only transactions.  

This is expected because more transactions are committed as the proportion of read-only 

transactions increases as shown in Figure 6.10, so that each server has to spend more time 

in active mode on processing transactions as shown in Figure 6.9.  In other words, the 

more transactions are committed, the more energy is consumed, and Figure 6.15 confirms 

this fact except for SODA.  However, SODA does not follow the trend due to reaching its 

transaction processing capacity or not being sensitive to this parameter. In addition, 

SODA consumes at least 178,615 J and at most 311,750 J less than both S2PL and 

SESAMO when the proportion of read-only transactions > 20%.  This happens because 

SODA is optimistic and is not in active mode most of the time as shown in Figure 6.9.  
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Figure 6.15 Total energy consumed by all servers vs. proportion of read-only 

transactions 

 

 In Figure 6.16, the average difference in remaining energy between two servers 

does not have strict trends of increase or decrease as the proportion of read-only 

transactions increases.  It is obvious that SODA is the best to balance energy 

consumption, and S2PL does the worst except when the proportion of read-only 

transactions = 40%.  This is because SODA elects nodes with higher remaining energy 

and less workload to be cluster heads, and these cluster heads work as coordinating 

servers and will be reelected when their remaining energy is low.  However, in S2PL and 

SESAMO, there is no clustering and role rotation strategy and clients may keep 

submitting transactions to the same servers so that these servers are overloaded. 
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Figure 6.16 Average difference in remaining energy between two servers vs. 

proportion of read-only transactions 
 

6.2.3 Effect of disconnection probability 

 In this experiment, the disconnection probability is varied to study the effect on 

the performance due to frequent disconnections in a MANET.  The experiment results 

are shown in Figures 6.17-6.24. 

  Figure 6.17 shows that in SODA, the total time when servers are in active mode 

increases as the disconnection probability increases, but in S2PL and SESAMO, this 

metric does not always increase or decrease as the disconnection probability increases. It 

is obvious that SESAMO performs the worst, and SODA performs the best. This 

confirms the fact that S2PL and SESAMO cannot work effectively in MANETs. In other 

words, even though servers are disconnected in S2PL and SESAMO, their data are still 

locked by some transactions, so that these servers have to be in active mode to keep 

processing transactions. 
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Figure 6.17 Total time when servers are in active mode vs. disconnection 

probability 
 

 As shown in Figure 6.18, the abort rates of S2PL, SESAMO and SODA increase 

when the disconnection probability increases.  This reflects the fact that fewer servers are 

available as more and more servers are disconnected.  The abort rate of SODA is much 

lower (at most 37%) than those of SESAMO and S2PL when the disconnection 

probability < 70%.  This is mainly because S2PL and SESAMO utilize locks to prevent 

conflicting transactions from accessing common data and now servers are frequently 

disconnected, so that lots of transactions are aborted because they could not access the 

required data and thus missed their deadlines.  SESAMO’s abort rate is lower than 

S2PL’s because S2PL runs strict 2PL locally along with 2PC to enforce global 

serializability, but 2PC does not work effectively when disconnections are frequent in the 

network.  In other words, since 2PC needs two rounds of communications  between the 

coordinating sever and participating servers to determine a commit or not, and now 
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servers are frequently disconnected, it takes significant waiting time for 2PC to finish, 

and thus, more transactions are aborted due to missing their deadlines.  

 

 

Figure 6.18 Abort rate vs. disconnection probability 

 

 Figure 6.19 shows that the system throughput of these three algorithms decreases 

as the disconnection probability increases.  This happens because servers are frequently 

disconnected and are not available to process transactions, so that lots of transactions are 

aborted because they missed their deadlines as shown in Figure 6.18. The system 

throughput of SODA is higher than that of SESAMO and S2PL until the disconnection 

probability = 70%.  This is still mainly because SODA is optimistic and non-blocking, so 

that servers do not lock data and can process transactions in time.  SESAMO’s system 

throughput is higher than S2PL’s all the time because SESAMO does not enforce global 

serializability and more transactions can complete before their deadlines. 
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Figure 6.19 System throughput vs. disconnection probability 

 

 Figure 6.20 shows the average validation time that the primary cluster head 

spends on a global transaction of SODA increases as the disconnection probability 

increases.  This happens because when the primary cluster head disconnects more 

frequently, it is often unavailable to validate transactions. However, the average 

validation time of S2PL and SESAMO is always zero because their designs do not 

involve any cluster head.  In other words, S2PL and SESAMO do not prolong the 

response time due to the primary cluster head. 
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Figure 6.20 Average validation time that the primary cluster head spends on a 

global transaction vs. disconnection probability 
 

 As shown in Figure 6.21, the response time of S2PL, SESAMO and SODA 

roughly increases when the disconnection probability increases. This happens because 

servers are frequently disconnected and not available more often, so that transaction 

execution time is prolonged.  S2PL has shorter response time than both SESAMO and 

SODA when the disconnection probability > 30%, but S2PL has higher abort rate than 

both SESAMO and SODA as shown in Figure 6.18.  Again, the response time of SODA 

is higher than those of S2PL and SESMO because the primary cluster head is applied for 

validating global transactions as shown in Figure 6.20. However, the prolonged response 

time in SODA is reasonable (averagely 22 seconds longer) because it is still within the 

transaction deadline; otherwise, SODA should not have the lowest abort rate shown in 

Figure 6.18.  
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Figure 6.21 Average response time vs. disconnection probability 

 

 Figure 6.22 shows that the total number of cluster head reelections of SODA 

occurs only once when the disconnection probability is 50%.  This is because the inter-

arrival time is fixed with its default value 5 seconds when we study the effect of the 

disconnection probability, thus, the total simulation time is around 1.5 hours (1000 

transactions * 5 seconds = 5,000 seconds).  After running 1.5 hours, most cluster heads’ 

remaining energy is not below the predefined threshold LET yet, therefore, only one 

reelection is triggered to change roles for preserving energy and balancing energy usage.  

However, the total number of reelections of S2PL and SESAMO is always zero because 

their designs do not involve any cluster heads. In other words, S2PL and SESAMO do 

not rotate roles among servers to balance energy. 
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Figure 6.22 Total number of cluster head reelections vs. disconnection 

probability 

 

In Figure 6.23, the total energy consumed by all servers of SODA slightly 

increases as the disconnection probability increases, but those  of S2PL and SESAMO do 

not always increase or decrease  as the disconnection probability increases.  It is easy to 

observe that SESAMO has the highest total energy consumed by all servers, followed by 

S2PL, and SODA has the lowest energy consumption.  This happens because S2PL and 

SESAMO utilize locks to hold limited system resources to prevent conflicting 

transactions from accessing them.  In other words, even though servers are disconnected 

in S2PL and SESAMO, their data are still locked by some transactions, and these servers 

have to be in active mode to keep processing transactions.  SODA consumes at least 

115,368 J and at most 271,638 J less than both S2PL and SESAMO. This happens 

because SODA is optimistic and is not in active mode most of the time as shown in 

Figure 6.15.  
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Figure 6.23 Total energy consumed by all servers vs. disconnection probability 

 

 In Figure 6.24, the average difference in remaining energy between two servers of 

S2PL roughly increases as the disconnection probability increases, but those of 

SESAMO and SODA goes up or down slightly as the disconnection probability 

increases.  It is easy to see that SODA is the best to balance energy consumption, and 

S2PL does the worst except when the disconnection probability <= 20%.  This is because 

SODA elects nodes with higher remaining energy and less workload to be cluster heads, 

and these cluster heads work as coordinating servers and will be reelected when their 

remaining energy is low.  However, in S2PL and SESAMO, there is no clustering and 

role rotation strategy and clients may keep submitting transactions to the same servers so 

that these servers are overloaded. 
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Figure 6.24 Average difference in remaining energy between two servers vs. 

disconnection probability 

 

6.2.4 Effect of disconnection time 

 In this experiment, the disconnection time is varied to study the effect on the 

performance of the three algorithms because frequent disconnections are common in 

MANETs. The experiment results are shown in Figures 6.25-6.32. 

 Figure 6.25 shows that the total time when servers are in active mode of SODA 

slightly increases as the disconnection time increases, but those of S2PL and SESAMO 

goes up or down as the disconnection time increases.  It is obvious that servers in 

SESAMO spend the longest total time in active mode on processing transactions, 

followed by S2PL, and SODA has the shortest total time.  This happens because S2PL 

and SESAMO are pessimistic and utilize locks to hold common data to prevent 

conflicting transactions from accessing them.  In other words, even though servers are 

disconnected in S2PL and SESAMO, their data are still locked by some transactions, and 
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these servers have to be in active mode to keep processing transactions. 

   

 

Figure 6.25 Total time when servers are in active mode vs. disconnection time 

  

 In Figure 6.26, the abort rates of S2PL, SESAMO and SODA increase when the 

disconnection time increases.  This reflects the fact that fewer servers are available as 

servers are disconnected from the network longer and longer.  The abort rate of SODA is 

much lower (at most 28%) than those of SESAMO and S2PL.  This is mainly because 

S2PL and SESAMO utilize locks to prevent conflicting transactions from accessing 

common data and now servers are frequently disconnected, so that lots of transactions are 

aborted due to not able to access data and missing deadlines.  SESAMO’s abort rate is 

lower than S2PL’s because SESAMO does not enforce global serializability. 
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Figure 6.26 Abort rate vs. disconnection time 

 

 Figure 6.27 shows that the system throughput of these three algorithms decreases 

as the disconnection time increases. This happens because servers are frequently 

disconnected and are not available for a while to process transactions, so that lots of 

transactions are aborted because they missed their deadlines as shown in Figure 6.26.  

The system throughput of SODA is at least two more transactions/minute than that of 

SESAMO and S2PL.  This is still mainly because SODA is optimistic and non-blocking, 

so that servers can process transactions in time. SESAMO’s system throughput is higher 

than S2PL’s all the time because SESAMO does not enforce global serializability and 

more transactions can complete before their deadlines.  
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Figure 6.27 System throughput vs. disconnection time 

 

 Figure 6.28 shows SODA’s average validation time that the primary cluster head 

spends on a global transaction increases as the disconnection time increases.  This 

confirms that when the primary cluster’s disconnection time gets longer, transactions 

have to wait longer for it to become available again before they can be validated.  

However, the average validation time of S2PL and SESAMO is always zero because 

their designs do not involve any cluster head.  In other words, S2PL and SESAMO do 

not prolong the response time due to the primary cluster head. 
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Figure 6.28 Average validation time that the primary cluster head spends on a 

global transaction vs. disconnection time 
 

 As shown in Figure 6.29, the response time of S2PL, SESAMO and SODA 

roughly increases when the disconnection time increases.  This happens because when 

servers’ disconnection time gets longer, transactions have to wait longer for servers to 

become available again before they can access their required data.  S2PL has shorter 

response time than both SESAMO and SODA when the disconnection time > 5 seconds, 

but S2PL has higher abort rate than both SESAMO and SODA as shown in Figure 6.26. 

Again, the response time of SODA is higher than those of S2PL and SESMO, and one of 

the major causes of this is due to the primary cluster head as shown in Figure 6.28.  

However, the prolonged response time in SODA is reasonable (averagely 25 seconds 

longer) because it is still within the transaction deadline; otherwise, SODA would  not 

have the lowest abort rate shown in Figure 6.26.  
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Figure 6.29 Average response time vs. disconnection time 

 

 Figure 6.30 shows the total number of cluster head reelections of SODA occurs 

only 4 times when the disconnection times are 5s, 8s, 9s and 10s.  This is because the 

inter-arrival time is fixed with its default value 5 seconds when we study the effect of the 

disconnection time, thus, the total simulation time is around 1.5 hours (1000 transactions 

* 5 seconds = 5,000 seconds).  After running 1.5 hours, most cluster heads’ remaining 

energy is not below the predefined threshold LET yet, therefore, only 4 reelections are 

triggered to change roles for preserving energy and balancing energy usage.  However, 

the total number of reelections of S2PL and SESAMO is always zero because their 

designs do not involve any cluster heads. In other words, S2PL and SESAMO do not 

rotate roles among servers to balance energy. 
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Figure 6.30 Total number of cluster head reelections vs. disconnection time 

 

In Figure 6.31, it can be observed that the total energy consumed by all servers of 

SODA slightly increases as the disconnection time increases, but those  of S2PL and 

SESAMO do not always increase or decrease  as the disconnection time increases.  

SESAMO has the highest total energy consumed by all servers, followed by S2PL, and 

SODA has the lowest energy consumption. This happens because S2PL and SESAMO 

utilize locks to hold limited system resources to prevent conflicting transactions from 

accessing them.  In other words, even though servers are disconnected in S2PL and 

SESAMO, their data are still locked by some transactions, and these servers have to be in 

active mode to keep processing transactions. SODA consumes at least 115,890 J and at 

most 299,643 J less than both S2PL and SESAMO.  This is expected because the more 

time when servers are in active mode as shown in Figure 6.25, the more energy is 

consumed by all servers.  
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Figure 6.31 Total energy consumed by all servers vs. disconnection time 

 

 Figure 6.32 shows that the average difference in remaining energy between two 

servers of the three algorithms does not always increase or decrease  as the disconnection 

time increases, and S2PL has a sudden increase at the disconnection time = 8 seconds 

and 9 seconds.  It is easy to observe that SODA is the best to balance energy 

consumption, followed by SESAMO, and S2PL is the worst.  This is expected because 

SODA elects nodes with higher remaining energy and less workload to be cluster heads, 

and these cluster heads work as coordinating servers and will be reelected when their 

remaining energy is low as shown in Figure 6.30.  However, in S2PL and SESAMO, 

there is no clustering and role rotation strategy and clients may keep submitting 

transactions to the same servers so that these servers are overloaded. 
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Figure 6.32 Average difference in remaining energy between two servers vs. 

disconnection time 

 

6.2.5 Effect of node moving speed 

 The effect of the node mobility on the performances is studied in this section 

since every node can move freely in a MANET.  Unlike other MANET characteristics, 

such as disconnection probability and disconnection time studied in Sections 6.2.3 and 

6.2.4, respectively, the node moving speed has negligible effects on all seven 

performance metrics.  In other words, regardless of the node moving speed, the 

performance metrics remain more or less the same.  This is because even if all nodes 

move with the maximum moving speed 10 m/s,  they move along with their  groups (due 

to application semantics) and are limited within the area 1000*1000 meters2, thus, the 

distances between nodes do not change significantly and the routine of transaction 

processing is not heavily impacted.  The experiment results are shown in Figures 6.33 - 

6.40 to confirm this observation.  



132 
 

 In Figure 6.33 the total time when servers are in active mode of the three 

algorithms shows no significant changes when  the node moving speed increases except 

for S2PL at the speed = 7 m/s.  It is obvious that servers in SESAMO spend the longest 

total time in active mode on processing transactions, followed by S2PL, and SODA has 

the shortest total time. This happens because S2PL and SESAMO are pessimistic and 

utilize locks to hold limited system resources to prevent conflicting transactions from 

accessing them.  In other words, even though servers are disconnected in S2PL and 

SESAMO, their data are still locked by some transactions, and these servers have to be in 

active mode to keep processing transactions. 

 

 

Figure 6.33 Total time when servers are in active mode vs. node moving speed 

 

 In Figure 6.34, the abort rates of S2PL, SESAMO and SODA show no significant 

changes when the node moving speed increases.  The abort rate of SODA is much lower 
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(at most 27%) than those of SESAMO and S2PL.  This is mainly because SODA is 

optimistic and non-blocking, and conflicts among transactions become rare, so that 

servers are not in active mode most of time as shown in Figure 6.33, and can process 

transactions in time.  SESAMO’s abort rate is lower than S2PL’s because SESAMO does 

not enforce global serializability and more transactions can complete before their 

deadlines. 

 

 

Figure 6.34 Abort rate vs. node moving speed 

 

 In Figure 6.35, the system throughput of the three algorithms shows no 

significant changes when the node moving speed increases, but it is easy to observe that 

the system throughput of SODA is at least 2 more transactions/minute than those of 

SESAMO and S2PL.  This is still mainly because SODA is optimistic and non-blocking, 

so that servers can process transactions in time.  SESAMO’s system throughput is higher 
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than S2PL’s all the time because SESAMO does not enforce global serializability and 

more transactions can complete before their deadlines.  

 

 

Figure 6.35 System throughput vs. node moving speed 

 

 In Figure 6.36, SODA’s average validation time that the primary cluster head 

spends on a global transaction shows no significant changes as the node moving speed 

increases.  However, the average validation time of S2PL and SESAMO is always zero 

because their designs do not involve any cluster head.  In other words, S2PL and 

SESAMO do not prolong the response time due to the primary cluster head. 
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Figure 6.36 Average validation time that the primary cluster head spends on a 

global transaction vs. node moving speed 
 

 As shown in Figure 6.37, the response time of S2PL, SESAMO and SODA show 

no significant changes when the node moving speed increases. S2PL and SESAMO have 

shorter response time alternately, but S2PL has higher abort rate than both SESAMO and 

SODA as shown in Figure 6.34.  Again, due to the bottleneck problem at the primary 

cluster as shown in Figure 6.36, the response time of SODA is higher than those of S2PL 

and SESMO.  However, the prolonged response time in SODA is reasonable (averagely 

19 seconds longer) because it is still within the transaction deadline; otherwise, SODA 

should not have the lowest abort rate shown in Figure 6.34.  
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Figure 6.37 Average of response time vs. node moving speed 

 

 Figure 6.38 shows the total number of cluster head reelections of SODA occurs 

only once at 2 m/s as the node moving speed increases.  This is because the inter-arrival 

time is fixed with its default value 5 seconds when we study the effect of the node 

moving speed, thus, the total simulation time is around 1.5 hours (1000 transactions * 5 

seconds = 5,000 seconds).  After running 1.5 hours, most cluster heads’ remaining 

energy is not below the predefined threshold LET yet, therefore, only one reelection is 

triggered to change roles for preserving energy and balancing energy usage.  However, 

the total number of reelections of S2PL and SESAMO is always zero because their 

designs do not involve any cluster heads. In other words, S2PL and SESAMO do not 

rotate roles among servers to balance energy. 
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Figure 6.38 Total number of cluster head reelections vs. node moving speed 

 

Figure 6.39 shows that the total energy consumption of all servers does not 

change significantly with the increase of the node moving speed, but it is easy to observe 

that SESAMO has the highest total energy consumed by all servers, followed by S2PL, 

and SODA has the lowest energy consumption. This happens because S2PL and 

SESAMO utilize locks to hold limited system resources to prevent conflicting 

transactions from accessing them and, consequently, servers have to be in active mode 

longer to process transactions as shown in Figure 6.33.  SODA consumes at least 199,388 

J and at most 296,734 J less than both S2PL and SESAMO.  This is expected because 

SODA is optimistic and is not in active mode most of the time as shown in Figure 6.33.  
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Figure 6.39 Total energy consumed by all servers vs. node moving speed 

 

  As shown in Figure 6.40, when varying the node moving speed, the 

average difference in remaining energy between two servers  in the three 

algorithm does not change significantly  except for S2PL at the speed = 2 m/s and 

3 m/s.  It is easy to observe that SODA is the best to balance energy consumption, 

followed by SESAMO, and S2PL is the worst. This is because SODA elects 

nodes with higher remaining energy and less workload to be cluster heads, and 

these cluster heads work as coordinating servers and will be reelected when their 

remaining energy is low as shown in Figure 6.38.  However, in S2PL and 

SESAMO, there is no node clustering and role rotation strategy and clients may 

keep submitting transactions to the same servers so that these servers are 

overloaded. 
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Figure 6.40 Total average difference in remaining energy between two servers 

vs. node moving speed 

 

6.3 Conclusions 

 In this chapter, simulation experiments were conducted to compare the 

performance of our proposed SODA algorithm with those of two existing algorithms, 

SESAMO and S2PL, when varying the inter-arrival time, proportion of read-only 

transactions, disconnection probability, disconnection time and node moving speed.  The 

simulation results show that SODA most of time performs better than both SESAMO and 

S2PL in terms of transaction abort rate, system throughput, total energy consumption by 

all servers, and average difference in remaining energy between two servers.  However, 

SODA has to tradeoff transaction response time for these superiorities.   
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CHAPTER 7  

CONCLUSIONS AND FUTURE RESEARCH 

 

7.1 Conclusions  

 In this dissertation, we proposed an energy-efficient CC algorithm, called 

Sequential Order with Dynamic Adjustment (SODA), for mission-critical MANET 

databases in a clustered network architecture.  In this architecture, nodes are divided into 

clusters, each of which has a node, called cluster head, responsible for the processing of 

all nodes in the cluster.  In SODA, in order to conserve energy and balance the energy 

consumption among servers so that the lifetime of the network is prolonged, we elected 

cluster heads using our weighted clustering algorithm MEW (Mobility, Energy, and 

Workload) to work as coordinating servers.  SODA is based on optimistic CC to offer 

high concurrency and avoid unbounded blocking time.  It utilizes the sequential order of 

committed transactions to simplify the validation process, and dynamically adjusts the 

sequential order of committed transactions to reduce transaction aborts. The simulation 

results show that MEW prolongs the lifetime of MANETs and has a lower cluster head 

change rate and re-affiliation rate than the existing algorithm MOBIC.  The simulation 

results show the superiority of SODA over the existing techniques SESAMO and S2PL, 

in terms of transaction abort rate, system throughput, total energy consumption by all 

servers, and degree of balancing energy consumption among servers.  However, SODA 

has to prolong transaction response time for these achievements.  
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7.2 Summary of Simulation Results  

Based on the simulation results presented in Chapter 6, we observed the following 

trends: 

• The abort rates of SODA, SESAMO and S2PL decrease as the transaction inter-

arrival time and proportion of read-only transactions increase, but they increase 

with the increase of disconnection probability and disconnection time. The abort 

rates of these three algorithms have no significant changes when the node moving 

speed varies. S2PL has the highest abort rate, followed by SESAMO, and SODA 

has the lowest abort rate, i.e., S2PL > SESAMO > SODA. 

• The system throughput of SODA, SESAMO and S2PL increases as the proportion 

of read-only transactions increases, but, it decreases with the increase of 

disconnection probability and disconnection time. The system throughput of these 

three algorithms follows no significant trend when the inter-arrival time and node 

moving speed vary. SODA has the highest throughput, followed by SESAMO, 

and S2PL has the lowest throughput, i.e., SODA > SESAMO > S2PL. 

• The average response time of SODA, SESAMO and S2PL increases as the 

disconnection probability and disconnection time increase, but it follows no 

significant trend when the inter-arrival time, proportion of read-only transactions 

and node moving speed vary.  The average response time of SODA is higher than 

that of S2PL and SESMO. However, the average response time of SODA is still 

within the reasonable range.  In other words, SODA has higher average response 

time, but its transactions are not aborted due to missing deadlines, i.e., SODA > 
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SESAMO > S2PL. 

• The total energy consumed by all servers of SODA, SESAMO and S2PL 

increases as the inter-arrival time increases, but it does not follow a significant 

trend when the proportion of read-only transactions, disconnection probability, 

disconnection time and node moving speed vary. SESAMO has the highest 

energy consumption, followed by S2PL, and SODA has the lowest energy 

consumption most of time, i.e., SESAMO > S2PL > SODA. 

• The average difference in remaining energy between two servers of SODA, 

SESAMO and S2PL follows no significant trend with the increase of the inter-

arrival time, proportion of read-only transactions, disconnection probability, 

disconnection time and node moving speed.  Most of time, SODA has the lowest 

difference, followed by SESAMO, and S2PL has the highest difference, i.e., 

S2PL > SESAMO > SODA. 

 

From the above observations, we conclude that SODA is the first choice if the 

prolonged transaction response time is not an issue; otherwise, S2PL is the best choice to 

get the results back in time regardless of high transaction abort rate.  If applications do 

not require global serializability and transactions should be completed within short 

deadlines, SESAMO is the right choice. 

 

7.3 Future Research 

 Since SODA has prolonged response time, a new version of SODA should be 

explored to shorten the response time. To guarantee global serializability, a primary 
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cluster head is elected to validate global transactions and, consequently, it becomes the 

bottleneck, thus, other solutions to enforce global serializability should be explored as 

well. 

In the simulation of S2PL and SODA, 2PC is simply applied to guarantee 

transaction atomicity, but 2PC does not take MANET characteristics into consideration, 

thus, a new commit protocol should be investigated to overcome the drawbacks of 2PC. 

In order to deal with network partition and improve data access time and data 

availability, a suitable data replication technique should be adopted into our simulation 

model.   
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