
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

AN ENERGY-EFFICIENT CONCURRENCY CONTROL ALGORITHM FOR

MOBILE AD-HOC NETWORK DATABASES

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

DOCTOR OF PHILOSOPHY

By

ZHAOWEN XING
Norman, Oklahoma

2011

AN ENERGY-EFFICIENT CONCURRENCY CONTROL ALGORITHM FOR

MOBILE AD-HOC NETWORK DATABASES

A DISSERTATION APPROVED FOR THE
SCHOOL OF COMPUTER SCIENCE

BY

 Dr. Le Gruenwald, Chair

 Dr. John Albert

 Dr. Mohammed Atiquzzaman

 Dr. Qi Cheng

 Dr. Changwook Kim

© Copyright by ZHAOWEN XING 2011

All Rights Reserved.

IV

ACKNOWLEDGEMENTS

I would like to take the opportunity to thank the people who guided and

supported me during this PhD study. Without their contributions, this research would

not have been possible.

First, I would like to thank my PhD advisor, Dr. Le Gruenwald. During my

PhD study, Dr. Gruenwald taught me how to do research, and she was always patient

and helpful whenever her guidance and assistance was needed. As an international

student, I found technical writing was difficult. She contributed much of her valuable

time to help me improve my writing skills. She also gave advice on how to

communicate and cooperate with other researchers as a professional. Therefore, I do

want to show my deep appreciation to her.

I am also grateful to Dr. Albert, Dr. Atiquzzaman, Dr. Cheng, and Dr. Kim for

serving on my PhD committee, and thank them for spending time reviewing this work

and giving valuable suggestions and comments on my work. I also appreciate

valuable discussions with my former committee member, Dr. Yifei Dong, visiting

professor Dr. Keat Keong Phang (Malaya University, Malaysia) and visiting professor

Dr. Seokil Song (Chungju National University, Republic of Korea).

There was help from the research teams inside and outside of OU. I still

remember the time when Jason Foss, Nickolas Hunter, Syed Maruful Huq, and Ying

Su worked together with me. It was my great pleasure to work with them in our

database research lab. Their suggestions and comments also encouraged me in these

years. Besides this, I also want to thank Michele Mastrogiovanni (University of

Roma, Italy), who provided valuable information about clustering MANETs.

V

Therefore, I want to thank all of them too.

I would like to show my deep appreciation to my parents, parents-in-law,

brothers (above all, Zhaoyun Xing) and sisters for their continuous support during all

these years. Last, but not least, my wife, Suyu Li, also contributed much of her time

and efforts to support me during my study. Without any one of them, the work would

not have been possible.

To my beloved wife Suyu, and to our beloved sons Jerry and Jasper: thank you

for all the love, support, and happiness that you brought to me.

This work was supported in part by funding from the National Science

Foundation (NSF) Grant No. IIS-0312746. This support is gratefully acknowledged.

VI

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... IV
TABLE OF CONTENTS ... VI
LIST OF TABLES .. VIII
LIST OF FIGURES ... IX
ABSTRACT ... XI
CHAPTER 1 .. 1
INTRODUCTION ... 1

1.1 Mobile Ad-hoc Networks and Their Applications ... 1
1.1.1 Disaster responses and disaster discovery using hybrid MANETS 2
1.1.2 Mobile telemedicine system ... 4
1.1.3 Military operations in battlefields .. 5
1.1.4 Common characteristics of mission-critical MANET applications 6

1.2 Concurrency Control in Transaction Processing and Why Energy Efficiency Is
Necessary .. 7
1.3 Research Challenges due to MANETs ... 8
1.4 Objectives and Contributions of this Research... 10
1.5 The Outline of Dissertation .. 12

CHAPTER 2 .. 14
LITERATURE REVIEW .. 14

2.1 Issues in Designing Concurrency Control Algorithms for Mobile Databases ... 14
2.1.1 General issues ... 14
2.1.2 Application-dependent issues ... 21

2.2 Concurrency Control Techniques for MANET Databases and Cellular Mobile
Databases .. 23

2.2.1 Pessimistic CC methods ... 23
2.2.2 Optimistic CC methods .. 27
2.2.3 Hybrid CC methods .. 30
2.2.4 Summaries of reviewed CC techniques ... 32

2.3 Clustering Algorithms to Elect Cluster Heads and Form Clusters in MANETs 37
2.3.1 Mobility-only-based ... 37
2.3.2 Energy-only-based ... 38
2.3.3 Combination-based... 39
2.3.4 Summaries of reviewed clustering algorithms ... 41

2.4 Conclusions .. 42
CHAPTER 3 .. 44
MANET DATABASE ARCHITECTURE.. 44
USED IN THE PROPOSED ALGORITHM ... 44

3.1 Mobile Node Functionality ... 46
3.2 The Basis of Our Clustering Algorithm - MEW .. 47
3.3 Cluster Formation ... 50
3.4 Cluster Maintenance ... 52
3.5 Analysis of Clustering Overhead .. 54

3.5.1 Hello protocol overhead ... 56
3.5.2 Cluster formation overhead .. 56

VII

3.5.3 Cluster maintenance overhead ... 56
3.5.4 Total message overhead ... 59

3.6 Conclusions .. 60
CHAPTER 4 .. 61
THE PROPOSED CONCURRENCY CONTROL ALGORITHM: SEQUENTIAL
ORDER WITH DYNAMIC ADJUSTMENT ... 61

4.1 Preliminaries ... 61
4.2 Proposed Concurrency Control Algorithm - SODA... 64

4.2.1 Algorithm description and examples.. 64
4.2.2 Proof of correctness .. 72
4.2.3 Complexity analysis ... 74

4.3 How SODA Works in a Clustered MANET Database 75
4.3.1 The transaction execution model.. 76
4.3.2 The primary cluster head functionality .. 77
4.3.3 The cluster head functionality .. 78
4.3.4 The participating server functionality .. 78

4.4 Conclusions .. 79
CHAPTER 5 .. 81
PERFORMANCE EVALUATION OF MEW .. 81
USING THE NS-2 SIMULATOR ... 81

5.1 Simulation Description and Parameters ... 81
5.2 Simulation Results .. 82

5.2.1 Effect of maximum speed .. 83
5.2.2 Effect of transmission range ... 86

5.3 Conclusions .. 89
CHAPTER 6 .. 90
PERFORMANCE EVALUATION OF SODA ... 90
USING THE SIMULATIONS .. 90

6.1 Simulation Parameters and Performance Metrics .. 93
6.2 Simulation Results .. 98

6.2.1 Effect of inter-arrival time.. 99
6.2.2 Effect of proportion of read-only transactions ... 107
6.2.3 Effect of disconnection probability .. 115
6.2.4 Effect of disconnection time .. 123
6.2.5 Effect of node moving speed .. 131

6.3 Conclusions .. 139
CHAPTER 7 .. 140
CONCLUSIONS AND FUTURE RESEARCH ... 140

7.1 Conclusions .. 140
7.2 Summary of Simulation Results ... 141
7.3 Future Research .. 142

REFERENCES .. 144

VIII

LIST OF TABLES

Table 2.1 Summary of the reviewed CC techniques and issues 36

Table 2.2 Summary of the reviewed clustering algorithms ... 42

Table 3.1 Messages used in MEW ... 51

Table 4.1 Transaction information used in Example 1 .. 66

Table 4.2 Transaction information used in Example 2 .. 67

Table 4.3 Transaction information used in Example 3 .. 70

Table 4.4 Transaction information used in Example 4 .. 71

Table 5.1 Simulation parameters ... 82

Table 6.1 Static parameters .. 94

Table 6.2 Dynamic parameters .. 94

IX

LIST OF FIGURES

Figure 1.1 Disaster rescue application [Lu, 2007] ... 2

Figure 1.2 Workpad for emergency management [Catarci, 2008] 3

Figure 1.3 Mobile telemedicine system [Viswacheda, 2007] .. 5

Figure 1.4 Military operations in a battlefield [ATAC, 2005] 6

Figure 3.1 Architecture of a clustered MANET database .. 45

Figure 4.1 Validating transaction T in Example 1 ... 66

Figure 4.2 The serialization graph in Example 2 ... 67

Figure 4.3 SODA - validation and preparation .. 68

Figure 4.4 SODA - update the sequential order ... 69

Figure 4.5 Validating transaction T in Example 3 ... 71

Figure 4.6 Validating transaction T in Example 4 ... 72

Figure 4.7 Workflow of SODA ... 76

Figure 5.1 Lifetime of network by varying maximum speed 84

Figure 5.2 Rate of cluster head changes by varying maximum speed 85

Figure 5.3 Rate of re-affiliation by varying maximum speed 86

Figure 5.4 Lifetime of network by varying transmission range................................... 87

Figure 5.5 Rate of cluster head changes by varying transmission range 88

Figure 5.6 Rate of re-affiliation by varying transmission range 89

Figure 6.1 Total time when servers are in active mode vs. inter-arrival time 100

Figure 6.2 Abort rate vs. inter-arrival time .. 101

Figure 6.3 System throughput vs. inter-arrival time .. 102

Figure 6.4 Average validation time that the primary cluster head spends on a global
transaction vs. inter-arrival time .. 103

Figure 6.5 Average of response time vs. inter-arrival time 104

Figure 6.6 Total number of cluster head reelections vs. inter-arrival time 105

Figure 6.7 Total energy consumed by all servers vs. inter-arrival time 106

Figure 6.8 Average difference in remaining energy between two servers vs. inter-
arrival time ... 107

Figure 6.9 Total time when servers are in active mode vs. proportion of read-only
transactions .. 108

Figure 6.10 Abort rate vs. proportion of read-only transactions................................ 109

Figure 6.11 System throughput vs. proportion of read-only transactions 110

Figure 6.12 Average validation time that the primary cluster head spends on a global
transaction vs. proportion of read-only transactions .. 111

Figure 6.13 Average of response time vs. proportion of read-only transactions 112

Figure 6.14 Total number of cluster head reelections vs. proportion of read-only
transactions .. 113

Figure 6.15 Total energy consumed by all servers vs. proportion of read-only
transactions .. 114

Figure 6.16 Average difference in remaining energy between two servers vs.
proportion of read-only transactions .. 115

Figure 6.17 Total time when servers are in active mode vs. disconnection probability
.. 116

Figure 6.18 Abort rate vs. disconnection probability .. 117

X

Figure 6.19 System throughput vs. disconnection probability 118

Figure 6.20 Average validation time that the primary cluster head spends on a global
transaction vs. disconnection probability ... 119

Figure 6.21 Average response time vs. disconnection probability 120

Figure 6.22 Total number of cluster head reelections vs. disconnection probability 121

Figure 6.23 Total energy consumed by all servers vs. disconnection probability 122

Figure 6.24 Average difference in remaining energy between two servers vs.
disconnection probability ... 123

Figure 6.25 Total time when servers are in active mode vs. disconnection time 124

Figure 6.26 Abort rate vs. disconnection time ... 125

Figure 6.27 System throughput vs. disconnection time ... 126

Figure 6.28 Average validation time that the primary cluster head spends on a global
transaction vs. disconnection time ... 127

Figure 6.29 Average response time vs. disconnection time 128

Figure 6.30 Total number of cluster head reelections vs. disconnection time 129

Figure 6.31 Total energy consumed by all servers vs. disconnection time 130

Figure 6.32 Average difference in remaining energy between two servers vs.
disconnection time ... 131

Figure 6.33 Total time when servers are in active mode vs. node moving speed 132

Figure 6.34 Abort rate vs. node moving speed .. 133

Figure 6.35 System throughput vs. node moving speed .. 134

Figure 6.36 Average validation time that the primary cluster head spends on a global
transaction vs. node moving speed .. 135

Figure 6.37 Average of response time vs. node moving speed 136

Figure 6.38 Total number of cluster head reelections vs. node moving speed 137

Figure 6.39 Total energy consumed by all servers vs. node moving speed............... 138

Figure 6.40 Total average difference in remaining energy between two servers vs.
node moving speed .. 139

XI

ABSTRACT

 With the rapid growth of the wireless networking technology and mobile

computing devices, there is an increasing demand for processing mobile database

transactions in mission-critical applications such as disaster rescue and military

operations that do not require a fixed infrastructure, so that mobile users can access

and manipulate the database anytime and anywhere. A Mobile Ad-hoc Network

(MANET) is a collection of mobile, wireless and battery-powered nodes without a

fixed infrastructure; therefore it fits well in such applications. However, when a node

runs out of energy or has insufficient energy to function, communication may fail,

disconnections may happen, execution of transactions may be prolonged, and thus

time-critical transactions may be aborted if they missed their deadlines. In order to

guarantee timely and correct results for multiple concurrent transactions, energy-

efficient database concurrency control (CC) techniques become critical. Due to the

characteristics of MANET databases, existing CC algorithms cannot work effectively.

In this dissertation, an energy-efficient CC algorithm, called Sequential Order

with Dynamic Adjustment (SODA), is developed for mission-critical MANET

databases in a clustered network architecture where nodes are divided into clusters,

each of which has a node, called a cluster head, responsible for the processing of all

nodes in the cluster. The cluster structure is constructed using a novel weighted

clustering algorithm, called MEW (Mobility, Energy, and Workload), that uses node

mobility, remaining energy and workload to group nodes into clusters and select

cluster heads. In SODA, in order to conserve energy and balance energy

consumption among servers so that the lifetime of the network is prolonged, cluster

heads are elected to work as coordinating servers. SODA is based on optimistic CC

XII

to offer high transaction concurrency and avoid unbounded blocking time. It utilizes

the sequential order of committed transactions to simplify the validation process and

dynamically adjusts the sequential order of committed transactions to reduce

transaction aborts and improve system throughput.

 Besides correctness proof and theoretical analysis, comprehensive simulation

experiments were conducted to study the performance of MEW and SODA. The

simulation results confirm that MEW prolongs the lifetime of MANETs and has a

lower cluster head change rate and re-affiliation rate than the existing algorithm

MOBIC. The simulation results also show the superiority of SODA over the existing

techniques, SESAMO and S2PL, in terms of transaction abort rate, system

throughput, total energy consumption by all servers, and degree of balancing energy

consumption among servers.

1

CHAPTER 1

INTRODUCTION

 In this chapter, we first introduce MANETs and their applications. We then

discuss concurrency control in transaction processing, why energy efficiency is necessary

in transaction processing and research challenges due to MANETs. Finally we state our

objectives and contributions of our research and the outline of this dissertation.

1.1 Mobile Ad-hoc Networks and Their Applications

 A mobile ad hoc network (MANET) is a collection of battery-powered mobile

nodes (or hosts) connected by relatively lower bandwidth wireless links. Each node has

an area of influence called cell, only within which other nodes can receive its

transmissions [Fife, 2003]. Due to no fixed infrastructures, all nodes can move freely, the

network topology may change rapidly and unpredictably over time, and nodes have to

form their own cooperative infrastructures. Thus, each node operates as an autonomous

end system and a router for other nodes in the network. As no fixed infrastructure is

required, MANET databases can be deployed in a short time and mobile users can access

and manipulate data anytime and anywhere, and they become an attractive solution to

handle mission-critical database applications, such as disaster response and recovery

systems [Catarci, 2008; Lu, 2007; Alampalayam, 2009], mobile telemedicine systems

[Viswacheda, 2007] and military operations like battlefields [Alampalayam, 2009].

2

1.1.1 Disaster responses and disaster discovery using hybrid MANETS

 When a hurricane, earthquake or tsunami occurs, disaster response and recovery

are usually hampered by communications failure because the incumbent communications

infrastructures have most likely been damaged or destroyed during these disasters. A

mobile ad-hoc communications infrastructure, with support for multimedia traffic such as

voice over IP and video streaming, must be rapidly developed to support the command,

control and communication needs of the rescue and recovery operations [Lu, 2007].

Figure 1.1 Disaster rescue application [Lu, 2007]

 Figure 1.1 shows a system architecture that consists of two tiers: satellite layer

and WiFi layer [Lu, 2007]. In the satellite layer, multiple rescue teams can communicate

among themselves as well as with their headquarters via satellite links. The team

3

members in each team (group) communicate among themselves using a multi-hop

MANET, but team members from different teams do not communicate with each other

directly.

Figure 1.2 Workpad for emergency management [Catarci, 2008]

 In order to design successful communication technology architectures for

emergency management, Workpad employs user-centered techniques from human–

computer interaction paradigms. User-centered design relies on continuous interaction

with end users, so that designers understand how organizations are arranged during

4

disasters, what information is critical, and how teams exchange information among

themselves and with their operational centers as shown in Figure 1.2. Workpad designers

collaborated with the Civil Protection of Calabria, Italy, and involved interviewing

officers and generic actors from the organizations most critical to emergency

management in that region. They also studied the emergency management structures of

different European countries and found that most of them had emergency management

structures similar to Italy’s [Catarci, 2008].

1.1.2 Mobile telemedicine system

 Remote areas lack telecommunication infrastructures, thus, it is difficult to

provide medical services in time and quality manner. Telemedicine is defined as the

delivery of medical healthcare and medical expertise using a combination of

telecommunication technologies. Telemedicine systems can support applications ranging

from video conference to providing diagnostics, high quality image and still-image, and

medical database records. Applications in Telemedicine are classified into basic and

extended services. Basic services applications are digital electrocardiogram, oxy-meter,

patient database records, and location information based on GPS technologies, while

extended services applications are complete multimedia services. Both services can be

used in rural areas based on wireless communication despite the fact that hospitals have

wired communication. [Viswacheda, 2007].

Figure 1.3 shows two MANET based sub networks (MANET1 and MANET2). In

a sub network, mobile nodes (MN) communicate directly with each other in peer-to-peer

connections, and each MN acts as a router for other nodes. The health practitioners use

5

MNs to request/transmit patient’s data from/to the healthcare center or mobile

ambulance. The server in the mobile ambulance functions as a local database if there is

no connection to the health care center [Viswacheda, 2007].

Figure 1.3 Mobile telemedicine system [Viswacheda, 2007]

1.1.3 Military operations in battlefields

In a battlefield, soldiers are organized into platoons, stay close to their tanks or

humvees, and share information through them. In other words, there is a leader or a group

of leaders who tells everybody where and how to move or in which area to work as

shown in Figure 1.4 [ATAC, 2005]. In general, their movements are driven by tactical

6

reasons. Due to this, the units normally use the optimal path to a destination. The

destinations depend on the work area that is based on tactical issues. The tactics as well

as the scene are usually hierarchically organized. Typically, the site is divided into

different tactical areas. Each unit belongs to one of these areas. Thus, the area in which a

unit moves depends on tactical issues but is restricted to one specific area [Aschenbruck,

2008].

Figure 1.4 Military operations in a battlefield [ATAC, 2005]

1.1.4 Common characteristics of mission-critical MANET applications

The MANET applications described above have the following common

characteristics:

• These applications are mission-critical as they are related to human lives, thus,

transactions must be executed not only correctly but also within their deadlines.

• These applications are semantics-based and users are already organized into logic

7

groups.

• Groups share information among each other through the help of satellites, but

satellites are not always available [Viswacheda, 2007].

• Users can move randomly within application area. However, their movement is

within a finite range and they stay within the groups. In other words, the

application area is divided into different tactical areas. Each group belongs to one

of these areas, and is restricted to one specific area.

1.2 Concurrency Control in Transaction Processing and Why Energy Efficiency Is

Necessary

 Database management systems ensure convenient and efficient access of

databases for their users, and transaction Manager (TM) is a vital component in the

system. TM is responsible for ensuring that a database remains in a correct/consistent

state even if system fails. Also TM applies concurrency control to ensure that concurrent

transaction executions proceed without interleaving. CC is the activity of preventing

transactions from destroying the consistency of the database while allowing them to run

concurrently, so that the throughput and resource utilization of database systems are

improved and the waiting time of concurrent transactions is reduced [Silberschatz, 2005].

A CC technique is pessimistic if it avoids conflicts at the beginning of transactions, or

optimistic if it detects and resolves conflicts right before the commit time.

 Because of the mobility and portability, mobile nodes have severe resource

constraints in terms of capacity of battery, memory size and CPU speed [Fei, 2008]. As

the battery capacity is limited, it compromises the ability of each mobile node to support

8

services and applications [Chlamtac, 2003]. Also the battery technology is not developed

as rapidly as the mobile devices and wireless technologies, so that the limited battery

lifetime is always a bottleneck for the development of improved mobile devices

[Sklavos, 2007]. Therefore, a suitable CC algorithm for MANET databases should be

energy-efficient. Here, energy efficiency refers to the amount of service work that a

system can accomplish in the least amount of energy consumption when its battery

capacity is limited [Fei, 2008].

1.3 Research Challenges due to MANETs

 The flexibility and convenience in a MANET introduces a number of

constraints/characteristics which impact transaction processing and are listed below. As a

result of these constraints and of the fact that servers are also mobile, CC techniques for

cellular mobile databases cannot be directly applied in MANET environments. In a

cellular mobile database, servers are generally static nodes running on a wired network,

while clients are mobile nodes communicating with servers through static mobile support

stations to have their transactions processed.

• Mobility: When a node roams, its network and physical location change

dynamically, and at the same time, the states of transactions and accessed data

items have to move along with the node.

• Low bandwidth: Wireless network bandwidth is much lower than its wired

counterpart. For example, the widely used 802.11b wireless card has a maximum

data rate of 11 Mbit/s [Hofmann, 2006]; however, currently an affordable Gigabit

9

Ethernet card realizes a maximum data rate of 1000 Mbit/s [StarTech, 2011].

Thus, within the cell of a node, inside neighbors, which are defined as nodes

within 1-hop communication of each other, have to share and compete for the

same channel. If someone fails, it may keep sending requests until timeout. This

low bandwidth can result in communication delays, a high risk of disconnections

and long-lived transactions.

• Multi-hop communication: In a MANET, nodes can communicate with each other

either directly or via other nodes that function as routers. When communication

requires more hops, more energy and bandwidth are consumed, and more

execution time is needed to complete transactions.

• Limited energy: Because of the mobility and portability, clients and servers have

severe resource constraints in terms of capacity of battery. Once a node runs out

of energy or has insufficient energy to function, communication fails,

disconnections happen, execution of transactions is prolonged, and some time-

critical transactions may be aborted if they missed their deadlines.

• Frequent disconnections: A node is disconnected when it roams freely and is out

of the transmission range of all its neighbors; or it fails to compete for the

channels of popular neighbors; or its battery runs out; or it runs into some

failures. It is normal for a node to become disconnected in a MANET and the

disconnected nodes may reconnect after some time. When disconnections happen,

more transactions may be delayed or blocked, and even aborted if they are real-

time and miss their deadlines.

10

• Long-lived transactions: Due to wireless communication delay, less processing

power, frequent disconnections and unbounded disconnection time, transactions

in MANET databases tend to be long-lived. When the execution is prolonged, the

probability of conflicts with other executing transactions becomes higher and,

consequently, transactions are likely blocked if a pessimistic CC method applies,

or aborted if an optimistic CC method is in use.

1.4 Objectives and Contributions of this Research

 CC research in MANET databases is still in an early stage. To the best of our

knowledge, only one MANET CC algorithm, called Semantic Serializability Applied to

Mobility (SESAMO) [Brayner, 2005], has been proposed. SESAMO does not take

energy efficiency into account, and is based on semantic serializability, which requires

that not only databases on mobile nodes be disjoint but also updates on a database

depend only on the values of the data in the same database. Therefore, in SESAMO,

transaction atomicity and global serializability can be relaxed. Transaction atomicity

ensures that a transaction either terminates normally to make all of its effects permanent

or is aborted to have no effect at all [Bernstein, 1987]. Global serializability requires that

all global transactions be serialized in the same order at all the participating servers at

which they execute [Dirckze, 2000]. However, in MANET databases for mission-critical

applications, the assumption for semantic serializability does not hold because each

database depends on each other due to the organizational structure of the applications.

For example, in a disaster rescue scenario, before sending firefighters out to pursue some

actions, the status of their equipment has to be checked to ensure atomic decisions

11

[Obermeier, 2009], where the firefighter database may be stored on one mobile server,

and the equipment database may be stored on another mobile server. In a battlefield

scene, before a tank fires its cannon, the locations of their own soldiers have to be

checked to ensure their safety, where the tank database may be stored on one mobile

server, and the soldiers’ information may be located on another mobile server.

 Except for SESAMO, all other techniques are designed for cellular mobile

databases, in which powerful servers are static and broadcast is heavily used to

disseminate data from servers to clients, thus, they are not suitable for MANET databases

either. With broadcasting, static servers transmit latest data items to clients periodically

regardless of their demands, and then the clients read the data items of interest from the

broadcast channel [Choi, 2006]. In this dissertation, our objective is to design a CC

algorithm that is energy-efficient and suitable for mission-critical MANET databases that

require global serializability. In other words, our new algorithm should minimize energy

consumption of mobile nodes, clients as well as servers, and balance energy consumption

among servers, so that servers with low energy do not run out of energy quickly, and

thus, the number of disconnections and transaction aborts due to low energy or energy

exhaustion can be reduced and system throughput can be improved as well.

In this dissertation, an energy-efficient CC algorithm, called Sequential Order

with Dynamic Adjustment (SODA), is developed for mission-critical MANET databases

in a clustered network architecture where nodes are divided into clusters, each of which

has a node, called a cluster head, responsible for the processing of all nodes in the

cluster. The cluster structure is constructed using a novel weighted clustering algorithm,

called MEW (Mobility, Energy, and Workload), that uses node mobility, remaining

12

energy and workload to group nodes into clusters and select cluster heads. In SODA, in

order to conserve energy and balance energy consumption among servers so that the

lifetime of the network is prolonged, cluster heads are elected to work as coordinating

servers. SODA is based on optimistic CC to offer high transaction concurrency and

avoid unbounded amount of blocking time. It utilizes the sequential order of committed

transactions to simplify the validation process and dynamically adjusts the sequential

order of committed transactions to reduce transaction aborts and improve system

throughput.

 Besides correctness proof and theoretical analysis, comprehensive simulation

experiments were conducted to study the performance of MEW and SODA. The

simulation results confirm that MEW prolongs the lifetime of MANETs and has a lower

cluster head change rate and re-affiliation rate than the existing algorithm MOBIC. The

simulation results also show the superiority of SODA over the existing techniques in

terms of transaction abort rate, system throughput, total energy consumption by all

servers, and degree of balancing energy consumption among servers.

1.5 The Outline of Dissertation

 The rest of the dissertation is organized as follows. Chapter 2 first reviews

concurrency control techniques for MANET databases and cellular mobile databases, and

then reviews clustering algorithms to elect cluster heads and form clusters in MANETs.

Chapter 3 describes the MANET database architecture used in the proposed algorithm,

and how to construct this architecture using our clustering algorithm MEW (Mobility,

Energy, and Workload). Chapter 4 presents our concurrency control algorithm, SODA.

13

Chapter 5 presents the performance evaluation of MEW compared with MOBIC using

the NS-2 simulator [Basagni, 2006]. Chapter 6 discusses the performance evaluation of

SODA compared with SESAMO and S2PL (Strict 2-Phase Locking) [Bernstein, 1987]

using the AweSim simulation language [Pritsker, 1999]. Finally Chapter 7 concludes the

dissertation with future research.

14

CHAPTER 2

LITERATURE REVIEW

 The contributions of this research are a concurrency control (CC) algorithm for

MANET databases and a clustering algorithm for MANETs, thus in this chapter, we

review not only CC design issues and CC techniques for mobile databases but also

clustering algorithms for MANETs.

2.1 Issues in Designing Concurrency Control Algorithms for Mobile Databases

 In this section, we discuss the general issues and application-dependent issues

that need to be addressed in the design of CC algorithms for mobile databases.

2.1.1 General issues

 General issues are those that every CC algorithm for mobile databases needs to

address.

2.1.1.1 Types of concurrency control algorithms

 To guarantee the correct results and consistency of databases, the conflicts

between transactions can be either avoided, or detected and then resolved. Most of the

existing mobile database CC techniques use the (conflict) serializability as the

correctness criterion, where serializability requires that the effects of executing a set of

15

transactions concurrently be equivalent to the effects of executing the same set

transactions in some serial order [Bernstein, 1987]. They are either pessimistic if they

avoid conflicts at the beginning of transactions, or optimistic if they detect and resolve

conflicts right before the commit time, or hybrid if they are mixed. To fulfill this goal,

locking, timestamp ordering (TO) and serialization graph testing can be used as either a

pessimistic or optimistic algorithm. An improper type of CC algorithm may waste

limited system resources like bandwidth and battery power in MANET databases, and

cause more transactions aborted.

2.1.1.2 Rules of producing serializability

 There are three general rules to produce serializability: locking, timestamp

ordering and serialization graph testing [Bernstein, 1987]. In a locking scheme, each

data item has a lock associated with it. Before a transaction can access a data item, it

must obtain the lock of this data item first; otherwise, it has to wait until other

transactions release the lock. In timestamp ordering, a unique timestamp is assigned to

each transaction, and transactions are executed based on the order of their timestamps. In

serialization graph testing, each transaction is added to the graph as a node, and there is

an edge between two nodes if there is a conflicting operation between these two

transactions. If there is a cycle in the graph after adding a new node, the newly added

transaction is aborted to maintain the serializability. However, locking is not suitable for

MANET databases because it is an unnecessary overhead when transactions are read-

only. In addition, because of the early prevention, available limited system resources

cannot be fully utilized. Due to frequent disconnections in MANETs, timestamp

16

ordering scheme may abort lots of transactions with smaller timestamps if severs

disconnect, reconnect after a while and cannot execute them based on their timestamps.

Serialization graph testing is time-consuming because it always requires quadratic time

to check serializability [Hwang, 2000].

2.1.1.3 Concurrency control granularity

 The granularity of a data item is the size of the data contained in the data item

[Bernstein, 1987]. The CC granularity, which is the size of data items used to

prevent/detect transaction conflicts, can be a database row, a page, a table or a database.

If a typical transaction accesses a small number of rows, then it is advantageous to have

row granularity for higher concurrency and fewer aborts. If a transaction typically

accesses many rows of the same table, then it is better to have table granularity so that

the resources, which are required to prevent conflicts in a pessimistic method or detect

conflicts in an optimistic method, can be saved. In other words, higher concurrency and

fewer aborts but more resources are required for fine granularity. In contrast, lower

concurrency and more aborts but fewer resources are required for coarse granularity;

however, more aborts consequently wastes the limited system resources like wireless

bandwidth and battery power in MANETs.

2.1.1.4 Mobile system architecture

 A mobile system architecture can be classified as either a cellular mobile network

architecture or a MANET architecture. A cellular mobile network architecture consists

17

of fixed nodes and mobile nodes, where only mobile nodes are mobile and battery-

powered. Mobile nodes retain their network connections through a wireless interface

supported by some fixed nodes known as mobile support station (MSS) [Serrano-

Alvarado, 2004]. In a MANET architecture, every node is mobile, wireless and battery-

powered, and can communicate with each other directly either through one hop or

multiple hops. Unlike cellular mobile databases where servers are static, servers can

move freely in MANET databases, so that it is hard to check serializability among

mobile servers.

2.1.1.5 Location of concurrency control manager(s)

 A CC manager (or scheduler) is the heart of a CC algorithm because every data

request or final transaction validation before the commit time in an optimistic algorithm

must go through it. Depending on the architecture of a database system (centralized or

distributed) and the design of a CC algorithm, a CC manager can be either centralized or

distributed as well. For instance, in a distributed database system, if there is only one CC

manager that is located at one node to schedule all transactions, then this CC manager is

centralized. However, in MANET databases, besides the bottleneck problem, a

centralized CC manager may not always be available due to frequent disconnections.

Also the computation overhead gets worse because of limited battery power, memory

and disk space. To resolve these problems and process transactions in a timely manner,

there should be more than one CC manager located at different sites, where each CC

manager has autonomous processing capability on local transactions that access or

update data in only one server, and may coordinate with each other to execute global

18

transactions that access or update data in more than one servers. However, the tradeoff

of distributed CC managers is the communication overhead in terms of handshaking

among them for the cooperation or broadcasting data and invalidation information among

them.

2.1.1.6 Improving system performance

 In order to improve transaction throughput and response time and to effectively

utilize system resources, it is natural to allow multiple concurrent transactions to be

executed simultaneously. However, when a transaction does not complete its execution

successfully because of transaction failure or database inconsistency, it is aborted or

restarted and, consequently, the transaction execution time and system resources are

wasted. It is expensive to abort or restart transactions in MANET databases because this

would consume the limited bandwidth, battery power and storage and, consequently,

more transactions are aborted due to the MANET database characteristics discussed in

Chapter 1. Therefore, a good CC algorithm for MANET databases should offer high

transaction concurrency and avoid unnecessary aborts, so that more transactions will

have chances to complete and commit in a timely manner and nodes will not waste their

scarce resources, especially power, which may subsequently cause disconnections.

2.1.1.7 Cascading abort

 When a transaction aborts, the recovery scheme must restore the database to the

consistent state that existed before the transaction started. It is necessary to ensure that

19

any transaction that has read data written by the aborted transaction is also aborted. This

phenomenon is called cascading rollback [Bernstein, 1987]. Cascading abort usually can

be avoided by not allowing transactions to read un-committed data items in the CC

design; otherwise the consistency property is not preserved and it also results in a

significant amount of transaction undo work, which is expensive in MANET databases

because once limited battery power is consumed, it cannot be replaced until the battery is

recharged. When battery power is low or runs out, communication may fail or

transactions cannot be processed.

2.1.1.8 Insert and delete operations

 Besides read and write (update) operations, an insert operation inserts a new data

item with an initial value into the database; and a delete operation deletes a data item

from the database. Read, write, insert and delete can be conflict operations and result in

the phantom phenomena or logic errors when any two of them execute in different orders

[Silberschatz, 2005]. For instance, a logic error will occur when a data item is read after

it is deleted or before it is inserted. To avoid logic errors, insert and delete operations

have to be treated like write operations; otherwise, corresponding transactions have to be

aborted or restarted, and aborts are expensive in MANET because they waste limited

system resources like bandwidth and battery power, which were discussed in Chapter 1.

2.1.1.9 Level of consistency

 In some applications (e.g. statistical analysis or traffic information), in order to

20

increase the degree of concurrency and reduce transaction abort rate, it is acceptable to

relax the transaction consistency requirement by reading stale data; however, this loose

consistency may compromise the accuracy of the database. In mission-critical

applications like disaster rescue and battle field of military operation, consistency cannot

be relaxed and accurate data are required; consequently, it becomes a challenging task in

the MANET environment because every node is mobile, wireless and battery-powered.

2.1.1.10 Transaction model

 Depending on applications, a transaction can be flat or nested [Moss, 1985]. The

flat model is simpler to implement, but rolling back the entire transaction and starting

from the very beginning is the only option when some part of the transaction fails. This

would definitely waste lot of the limited system resources in MANETs because every

mobile node has limited bandwidth and battery power. In other words, when some nodes

occupy the wireless bandwidth to process those transactions that are aborted later, other

nodes have to wait for some time period and then try to connect again; once the limited

battery power is consumed, it cannot be replaced until the battery is recharged. In a

nested model, a transaction can be dynamically decomposed into a hierarchy of sub-

transactions (child transactions), and this decomposition grants the opportunity to

rollback/restart only the failed sub-transaction rather than the entire transaction. This of

course reduces the amount of completed work that is wasted by a flat model, but the

tradeoff is that a nested model complicates the ACID (Atomicity, Consistency, Isolation

and Durability) properties of transactions [Özsu, 1999] in MANETs. For instance, some

sub-transactions committed early to improve concurrency, but their parent transactions

21

cannot complete and cannot rollback those already committed sub-transactions due to

frequents disconnections. Then how to guarantee transaction atomicity and consistency

has to be addressed.

2.1.2 Application-dependent issues

 Not all mobile applications have the same requirements for CC algorithm design.

In this section, we discuss the issues that are application-dependent.

2.1.2.1 Global serializability

 The consistency of a global transaction may not be guaranteed although its sub-

transactions are serializable at each participating server because the serialization orders

may be different at different participating servers. Thus, in a distributed client-server

database system, serializability has to be maintained at not only the local level but also

the global level. To achieve global serializability, due to MANET characteristics, it is

crucial to address the following:

• How to require less communication because every node is wireless and more

communication consumes more battery power

• How to utilize battery power efficiently since every node has limited battery

power

• How to allow nodes to effectively cooperate with each other because frequent

disconnections are normal in MANET environments.

22

2.1.2.2 Degree of local autonomy

 In a heterogeneous database (or multi-database) system that allows local

autonomy, each local database system has the right to share internal data or not, and

choose its own mechanisms for data and transaction management. Local autonomy is

preserved if the local site does not need to be modified in order to coordinate global

serializability. When the local site has more autonomy, it can effectively utilize its local

system resources. However, in MANET mission-critical applications like disaster rescue

and military operations, global serializability is required; so the local autonomy cannot

be preserved; but each system still needs to share as few data items as possible to achieve

the global serializability. This would allow limited wireless bandwidth and battery

power to be saved because fewer shared data would require less communication.

2.1.2.3 Cached/Replicated data

 In order to improve data access time and availability, caching/replication is a

process that creates several duplications of the same data and stores one copy at a

different site. Caching slightly differs from replication in that cached data is only

available to the site where the data is cached. However, in MANETs, since every node is

battery-powered, to save and balance the power consumption of primary copy servers,

which maintain the primary copies of data, must be addressed; otherwise, no service

would be provided when those servers run out of power. Servers with frequent

disconnections (due to mobility or power failure) should not be considered as primary

23

copy servers or caching/replication servers because it is difficult to maintain

cached/replicated data consistency and guarantee data availability.

2.1.2.4 Real-time applications

 A real-time transaction is defined as a transaction that must be executed within its

deadline. In some cases, data items associated with real-time transactions have temporal

constraints, that is, they remain valid only within a certain time interval. These data are

called temporal data. Due to frequent disconnections, unbounded disconnection time and

long-lived transactions in MANETs, how to meet transaction deadlines (and how to

process data within their valid time intervals if temporal data exist) is critical for real-

time applications in addition to guaranteeing database consistency.

2.2 Concurrency Control Techniques for MANET Databases and Cellular Mobile

Databases

 In this section, most recently published CC algorithms for mobile databases are

reviewed according to MANET database characteristics. These algorithms are classified

into three categories based on their types: pessimistic, optimistic and hybrid.

 2.2.1 Pessimistic CC methods

 In a pessimistic CC method, many transactions are assumed to conflict with each

other. Each data access (read or write) by a transaction is checked for conflicts, and

conflicting transactions are blocked, restarted or aborted. A lot of recent CC research in

24

mobile databases use this method and apply a locking scheme to produce transaction

serializability. However, this method is not suitable for high volumes of transactions,

and it is an unnecessary overhead when transactions are read-only. Also because of this

early prevention, available limited system resources cannot be fully utilized. As

transaction execution is prolonged and disconnection time is unbounded in MANET

databases, the possibility of conflicts among concurrent transactions increases as well.

When there are more conflicts, more transactions will be blocked, restarted, or directly

aborted.

2.2.1.1 Semantic Serializability Applied to Mobility

 Semantic Serializability Applied to Mobility (SESAMO) [Brayner, 2005] is

proposed for MANET databases. SESAMO is based on the semantic serializability,

which assumes that databases are disjoint and updates on a database only depend on

values of data in the same database; therefore, transaction atomicity and global

serializability can be relaxed. However, in SESAMO, global transactions still need be

serialized at each site using strict 2PL, while at the same time, each site must maintain

the consistency of its own local database. The limited bandwidth is saved and transaction

execution time is reduced because global serializability is automatically guaranteed

without coordination among servers, and the locks held by the sub-transactions of a

global transaction can be released once they finish at the local sites. However, SESAMO

may fail in MANET applications in which global transactions conflict with each other

because it assumes “Any two given mobile multi-database transaction schedulers do not

schedule any transaction in common” [Brayner, 2005]. Due to no coordination among

25

servers, database consistency is not preserved when some sub-transactions cannot

commit along with others due to disconnections.

2.2.1.2 Look-Ahead Protocol

 To maintain data consistency of broadcast data in mobile environments and

overcome repeatedly restarting update transactions, Look-Ahead Protocol (LAP) is

proposed in [Lam, 2005]. In LAP, update transactions are classified into hopeful

transactions and hopeless ones. Hopeless transactions are those that can not commit

before their deadlines, and are aborted as earlier as possible to save system resources and

reduce data locks, while hopeful transactions can continue to execute their read and write

operations using the 2PL algorithm. Unfortunately, in MANETs, because of node

disconnections, locked data may be unavailable for an unbounded amount of time.

2.2.1.3 Multi-Version Transaction

 A Multi-Version Transaction (MV-T) processing model and a deadlock-free

concurrency control algorithm based on the multi-version 2-phase locking scheme are

introduced in [Madria, 2007] for mobile database systems. A successful mobile

transaction (MT) goes through three states (start, commit that is different from the

commit in database systems, and terminate). A MT can start and commit at a mobile

node but it terminates only at one of the database servers. A read operation is never

blocked because it always gets the last committed or terminated version of data. In

addition to read-lock and write-lock, a verified-lock is introduced to achieve isolation. A

26

write-lock is converted to a verified-lock after a MT commits locally. When requesting a

write-lock, a MT with a higher timestamp may be blocked by one with a lower

timestamp that holds a write-lock or a verified-lock, but just like applying the timestamp

ordering, the requesting MT is rejected or restarted if it has a lower timestamp, therefore,

there is no deadlock. Unfortunately, in MANETs, because of frequent disconnections,

locked data may be unavailable for an unbounded amount of time.

2.2.1.4 Single Lock Manager Approach

 Single Lock Manager Approach (SLMA) [Moiz, 2007] is proposed for cellular

mobile networks, in which a single lock manager resides at a fixed server and handles all

lock and unlock requests from mobile clients (or nodes). Transactions are initiated and

executed at mobile clients, but required data items are read from the fixed server and

final updates are done at the fixed server. To increase the system throughput and save the

limited uplink bandwidth, SLMA applies a dynamic timer to roll back transactions if

they lock data items too long, and puts them in a round robin queue for the next

execution. To recover the failure of the single fixed lock manager, the final updates of

transactions are also replicated at other fixed hosts. Unfortunately, in MANET, every

node is mobile; so it will be challenging to elect a stable node as the single lock manager.

2.2.1.5 Absolute Validation Interval

 A concurrency control approach using Absolute Validation Interval (AVI) is

proposed in [Moiz, 2008]. The AVI is the life span of a data item in which it is said to be

27

valid. Mobile nodes copy data items from fixed hosts to their private memory and

execute transactions locally. Fixed nodes maintain the AVIs of all data items, commit

update transactions requested by mobile nodes, and provide the invalidation reports to

mobile nodes. During the local execution of a mobile transaction T, if the current time for

accessing data is greater than the total of read timestamp of data item plus AVI, this

transaction is restarted. However, in MANETs, since every node is mobile, wireless and

battery-powered, it is challenging to elect which nodes to work as the fixed nodes to

maintain the AVIs of all data items and provide invalidation reports.

2.2.2 Optimistic CC methods

 In contrast with pessimistic CC techniques, an optimistic CC method assumes

that not too many transactions conflict with each other and, thus, allows transactions to

be executed simultaneously, and delays the serializability check of these transactions

until their commit time. This delay provides CC mangers with more information to

determine the fate of committing transactions. However, the tradeoff is the overhead of

late transaction restart and waste of limited resources if a committing transaction must be

aborted. This tradeoff becomes worse when the probability of conflicts among

concurrently executing transactions is high due to the prolonged execution of

transactions and unbounded amount of disconnection time in MANET databases.

2.2.2.1 Optimistic Concurrency Control with Dynamic Timestamp Adjustment

 Based on the same technique – the timestamp interval with dynamic adjustment

28

[Lee, 1993] like PVTO [Lee, 2002b], Optimistic Concurrency Control with Dynamic

Timestamp Adjustment (OCC/DTA) [Choi, 2006] is proposed to process transactions in

a mobile centralized broadcast environment. Since less information is transmitted

between mobile clients and the centralized server, and the timestamp intervals of

validating transactions are adjusted only when they read/write data items, OCC/DTA

works like a lightweight version of the PVTO protocol. Thus, OCC/DTA has the same

drawbacks as those of PVTO. In addition, one of the validation rules need be justified:

“if a committed transaction Tc already read some data and a validating/active

transaction T tries to write the same data, the serialization order between them is T

precedes Tc” [Choi, 2006]. This is because the authors adopt this rule partially from [Lee,

2002a], change it slightly but do not provide their own correctness proof. Unfortunately,

in MANETs, since every node is mobile, wireless and battery-powered, how to elect a

node to work as the centralized server need be addressed.

2.2.2.2 Multi-Version Optimistic Concurrency Control for Nested Transactions

 Multi-Version Optimistic Concurrency Control for Nested Transactions

(MVOCC-NT) [Lei, 2008] is proposed to process mobile real-time nested transactions

using multi-version of data in mobile broadcast environments. MVOCC-NT also adopts

the timestamp interval with dynamic adjustment like OCC/DTA [Choi, 2006] to avoid

unnecessary aborts. At mobile clients, all active transactions perform backward pre-

validation against transactions committed in the last broadcast cycle at the fixed server.

Read-only transactions can commit locally if they pass the pre-validation, but survived

update transactions have to be transferred to the fixed server for the final validation.

29

Since data conflicts are detected early, processing and communication resources are

saved. However, in MANETs, since every node is mobile, wireless and battery-powered,

it is challenging to elect which node to work as the fixed server to do final validation and

periodically broadcast data.

2.2.2.3 2-Phase Optimistic Concurrency Control

 Choi et al. propose a 2-Phase Optimistic Concurrency Control (2POCC) [Choi,

2009] to process mobile transactions in wireless broadcast environments. Transaction

validation is done in two phases: partial backward validation at mobile clients and final

validation (forward validation first and then backward validation) at the static server. To

guarantee transaction serializability in both phases, 2POCC validates mobile transactions

using the following two rules. If a transaction Ti is serialized before transaction Tj:

1. No overwriting, that is, the writes of Ti should not overwrite the writes of Tj;

2. No read dependency, that is, the writes of Ti should not affect the reads of Tj.

To avoid too many restarts of mobile transactions with the read phase lasting several

broadcast cycles, the end of a mobile transaction’s read phase and validation phase can

be shifted to before the beginning of the next broadcast cycle if the unread data objects

were not updated during the current broadcast cycle. Unfortunately, in MANETs, since

every node is mobile and battery-powered, electing which node to work as the static

server to do final validation will be a challenge.

30

2.2.3 Hybrid CC methods

 A hybrid method is a combination of optimistic and pessimistic CC methods. For

instance, an optimistic method may be used to validate global transactions and

pessimistic one is applied to verify local transactions in a distributed database system.

Thus, all the problems existing in both methods have to be addressed.

2.2.3.1 Partial Global Serialization Graph

 Partial Global Serialization Graph (PGSG) [Dirckze, 2000] is introduced to

enforce a range of consistency and isolation in the cellular mobile multi-databases

environment. In PGSG, before committing a global transaction, a partial global

serialization graph is built to check for cycles. The local sites serialize transactions by

applying the ticket method proposed in [Georgakopoulos, 1991]. A global data structure

moves along with a mobile node when it migrates from one cell to another. When a

mobile node disconnects, its status is marked as disconnected, and its Mobile Support

Station (MSS) saves all the responses in a structure called ResponseList, and delivers

them to this mobile node upon reconnection. If a catastrophic failure occurs during the

disconnection, then the status is changed to suspended. In order to minimize erroneous

aborts, suspended transactions are not aborted until they obstruct other executing

transactions. In order to release resources in a timely manner and tolerate long-lived

transactions, compensable sub-transactions can commit before the global ones commit.

Unfortunately, in MANETs, since every node is mobile and battery-powered, during

disconnections/mobility, electing which neighboring node as the MSS to

backup/maintain the information will be a challenge. Also, in case of disconnections,

31

some predecessor graphs may not be collected, and then the PGSG algorithm has to stop

and wait. Also some of MANET applications may not have the compensable

transactions or are mission-critical, thus, it is impossible to allow sub-transactions to

commit early and roll back later. For instance, to query the location of enemies before

firing a missile, the accurate data has to be returned.

2.2.3.2 Mobile Transaction Commit using Serialization Graph/Sequential Order

 In [Hwang, 2000], to speed up transaction processing and to reduce wireless

communication, mobile clients execute transactions against the local cache and use strict

2PL to serialize transactions. To ensure that cached data are up-to-date, an invalidation

report is periodically broadcast by the centralized static database server. Before

transactions commit, the commit request must be validated at the centralized database

server by applying one of the three algorithms: Mobile Transaction Commit using

Serialization Graph (MTC-SG), SeQuential order (MTC-SQ) or MTC-Hybrid. MTC-SG

maintains only committed transactions, and builds the serialization graph to guarantee no

cycle is involved. In MTC-SQ, every validating transaction is checked if it can be

inserted somewhere into the maintained sequential order of committed transactions, and

the final order must comply with the serialization order. In MTC-Hybrid, MTC-SQ is

applied first, and if it fails, then MTC-SG is employed. When mobile clients migrate

from one cell to another, their last invalidation report must be checked to ensure that they

receive the latest report. Unfortunately, in MANETs, because of limited energy and

bandwidth, no node can process all commit requests and, at the same time, keep

broadcasting periodically like the static database server. In MTC-SG/Hybrid, building

32

the serialization graph and checking for cycles require more time and energy to

accomplish. When the centralized database server disconnects, not only mobile clients

cannot receive broadcast data and invalidation report, but also commit requests cannot be

processed at the server.

2.2.4 Summaries of reviewed CC techniques

 In this section, we summarize each discussed design issue and its possible

solutions from the existing techniques along with the identified MANET database

characteristics (the environment issues), which are reviewed above. For every issue, the

following specified terms/answers are expected to distinguish the reviewed techniques.

• Types of CC Algorithms: Which type does the CC technique adopt to guarantee

the isolation property: pessimistic, optimistic, or hybrid?

• Rules of Producing Serializability: Which rule does the CC technique utilize to

produce serializability: locking, timestamp ordering, serialization graph testing or

serial execution?

• CC Granularity: What kind of granularity does the CC technique apply: row

level, page level, table level, database level or unspecified?

• Mobile System Architecture: Which architecture does the CC technique adopt:

cellular mobile network, MANET or mobile hybrid network?

• Location of CC Manager(s): Where are the CC managers located: centralized or

distributed?

33

• Improving System Performance: How does the CC technique improve the system

performance: response time or abort rate (or restart rate)?

• Cascading Rollback: Does the CC technique handle cascading rollback?

• Insert and Delete Operations: Does the CC technique handle insert and delete

operations?

• Level of Consistency: Which level of consistency does the CC technique support:

relaxed or strict?

• Transaction Model: Which transaction model is utilized in the CC technique: flat

or nested?

• Global Serializability: Does the CC technique guarantee the isolation property of

global transactions?

• Degree of Local Autonomy: In order to guarantee the isolation property of global

transactions, what does the CC technique do to the autonomy of local database

system: preserved, violated or unspecified?

• Cached/Replicated Data: Does the CC technique apply any caching/replication

scheme?

• Real-Time Applications: Does the CC technique support real-time transactions?

• Mobility: Does the CC technique address mobility of nodes?

• Low Bandwidth: Does the CC technique address low bandwidth?

• Multi-hop Communication: Does the CC technique address multi-hop

communication?

34

• Limited Battery Power: Does the CC technique address limited battery power?

• Limited Storage: Does the CC technique address limited storage?

• Frequent Disconnections: Does the CC technique address frequent

disconnections?

• Long-lived Transactions: Does the CC technique address long-lived transactions?

 As shown in Table 2.1, none of the reviewed techniques addresses all the

identified MANET database characteristics. In addition, we can observe the following

from the table:

• Most techniques are pessimistic and guarantee serializability by using locking.

They do not fit well in MANETs databases because blocking time may be

unbounded and abort rate may be high as a consequence.

• All techniques adopt cellular mobile networks, except for SESAMO which is

designed for MANETs.

• CC managers are distributed in all techniques except for LAP [Lam, 2005] and

SLMA [Moiz, 2007].

• All techniques support strict database consistency except for PGSG [Dirckze,

2000], which relaxes database consistency.

• Only PGSG [Dirckze, 2000] and MVOCC-NT [Lei, 2008] are proposed for

processing nested transactions, while the other techniques process flat

transactions.

35

• Only PGSG [Dirckze, 2000] and SESAMO [Brayner, 2005] address global

serializability, while the other techniques only support local serializability

• Most techniques apply caching/replication schemes to overcome the limited

wireless bandwidth, but these schemes will not work without the data broadcast

by MSSs, which are static and have unlimited energy and high bandwidth.

• Only LAP [Lam, 2005] and MVOCC-NT [Lei, 2008] support real-time

applications.

• No technique addresses multi-hop communication.

• Some techniques which are proposed for cellular mobile networks take into

account mobility, low bandwidth, limited energy or frequent disconnections.

However, these cannot be done without applying caching/replication and heavily

relying on MSSs to either broadcast data periodically for mobile nodes or process

transactions on behalf of mobile nodes. In MANETs, it is impossible for any node

to play the same role like a MSS.

• SESAMO [Brayner, 2005] addresses low bandwidth and long-lived transactions,

but both of them are accomplished by assuming that global transactions do not

conflict with each other.

• All techniques support long-lived transactions by either using cached/replicated

data or partial validation at mobile nodes.

Table 2.1 Summary of the reviewed CC techniques and issues

Techniques/

Issues

SESAMO
[Brayner,

2005]

LAP
[Lam,
2005]

MV-T
[Madria,

2007]

SLMA
[Moiz,
2007]

AVI
[Moiz,
2008]

OCC/DTA
[Choi,
2006]

MVOCC-
NT

[Lei, 2008]

2POCC
[Choi,
2009]

PGSG
[Dirckze,

2000]

MTC-SG/SQ
[Hwang, 2000]

G
en

er
a

l
Is

su
es

Type of CC
Algorithm

Pessimistic Pessimistic Pessimistic Pessimistic Pessimistic Optimistic Optimistic Optimistic Hybrid Hybrid

Rule of
Producing
Serializability

Locking Locking
Timestamp

Ordering and
locking

Locking
Timestamp

ordering
Timestamp

Ordering
Timestamp
Ordering

Timestamp
ordering

Timestamp
ordering, and
serialization
graph testing

Locking,
timestamp

ordering and
serialization
graph testing

Mobile System
Architecture

MANET
Cellular
mobile

network

Cellular
mobile
network

Cellular
mobile
network

Cellular
mobile
network

Cellular
mobile
network

Cellular
mobile
network

Cellular
mobile
network

Cellular
mobile
network

Cellular
mobile
network

Location of CC
Manager

Distributed Centralized Distributed Centralized Distributed Distributed Distributed Distributed Distributed Distributed

Level of
Consistency

Strict Strict Strict Strict Strict Strict Strict Strict
Relaxed
or Strict

Strict

Transaction
Model

Flat Flat Flat Flat Flat Flat Nested Flat Nested Flat

A
p

p
li

ca
ti

o
n

Is
su

es

Global
Serializability

Yes No No No No No No No Yes No

Cached/
Replicated data

No No No Yes Yes Yes Yes Yes No Yes

Real-time
Application

No Yes No No No No Yes No No No

M
A

N
E

T
 D

a
ta

b
a

se

C
h

a
ra

ct
er

is
ti

cs

Mobility No No No No No No No No Yes Yes

Low Bandwidth Yes Yes No Yes Yes Yes Yes Yes No Yes
Multi-hop
Communication

No No No No No No No No No No

Limited Battery
Power

No Yes No No Yes No Yes Yes No Yes

Frequent
Disconnections

No No Yes Yes No No No No Yes No

Long-lived
Transactions

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

36

37

2.3 Clustering Algorithms to Elect Cluster Heads and Form Clusters in MANETs

 Several weighted clustering algorithms have been proposed and surveyed in [Yu,

2005] to group mobile nodes into clusters and to elect a node called a cluster head for

each cluster. Here we briefly review some of the newly published approaches and other

approaches which are already reviewed in [Yu, 2005], but are strongly related to our

algorithm MEW. By considering the system parameters that are utilized to calculate the

weight of each node, these approaches are categorized as mobility-only-based [Basu,

2001; Kim, 2006], energy-only-based [Sheu, 2006] and combination-based [Basagni,

1999; Chatterjee, 2002; Liu, 2005].

2.3.1 Mobility-only-based

 Mobility of nodes triggers re-clustering and makes networks unstable, thus, it

becomes the key attribute in the weight computation in the mobility-only-based

clustering algorithms.

 In MOBIC [Basu, 2001], in order to form stable clusters that have low cluster

head change rate, the Relative Mobility (RM) metric is introduced and calculated as the

logarithm of ratio of Received Signal Strengths (RSS):
2

1
10log*10

RSS

RSS , where RSS1 and

RSS2 are read from the RSS indicator when two successive HELLO messages, which are

sent by the same neighbor, are received. For each node, the variance of RMs among its

neighbors with respect to 0 (not the exact mean) is calculated as the aggregate local

mobility metric. If a node has the lowest aggregate local mobility among all its

neighbors, it declares itself as a cluster head; otherwise it joins its neighboring cluster

38

head that has the lowest aggregate local mobility as a cluster member. If a node is a

neighbor of two cluster heads, then it becomes a gateway node of those two cluster

heads. Unfortunately, it is possible that some elected cluster heads may almost run out of

energy, thus, the re-election has to be invoked soon.

 In [Kim, 2006], to overcome the negative effects caused by nodes moving fast or

moving back and forth, the average connection time (ACT) of each node with its

neighbors during a time period is introduced as the major parameter to form and maintain

the clusters. Those nodes having the largest ACT values become cluster heads. For each

of the remaining nodes, if it has one or more neighboring cluster heads, it joins the one

with the largest ACT value as a cluster member; otherwise, it declares itself as a cluster

head. However, similar to the cumulative time in WCA [Chatterjee, 2002] or elapsed

time [Liu, 2005], this technique has a problem in that it may elect a node as a cluster

head because it has the largest ACT even though it almost runs out of energy; such

election wastes energy and time.

2.3.2 Energy-only-based

 A node with a higher remaining energy level is, of course, a better candidate for

the cluster head; so energy is the only system parameter applied to calculate the weight

of each node in energy-only-based clustering algorithms.

 Because nodes with higher remaining energy have a higher priority to become

cluster heads, it is possible that nodes with the least energy being left out and claiming

themselves as cluster heads. In Sheu’s Stable Cluster Algorithm (SCA) [Sheu, 2006],

39

Sheu et al. set up an energy level threshold, define nodes whose battery level is below the

threshold as bottlenecks, count the number of neighbors that are bottlenecks for each

node, and elect nodes with the largest number of bottlenecks as cluster heads. For each

of the remaining nodes, if it has one or more neighboring cluster heads, it joins the one

with the highest remaining energy as a cluster member; otherwise, it declares itself as a

cluster head. By taking the detour in the election, nodes with the least energy are kept

from becoming cluster heads, thus, the clusters become more stable. Unfortunately,

because the mobility of nodes is not considered in the election, the possibility of re-

clustering is still high when elected cluster heads have high mobility.

2.3.3 Combination-based

 Each node is assigned with a weight, which is calculated by considering more

than one system parameters like node degree, remaining energy, roaming speed, and so

on [Yu, 2005]. In DCA (Distributed Clustering Algorithm) [Basagni, 1999], each node is

assumed to have a different weight, nodes with the highest weights are elected as cluster

heads, and neighbors of elected cluster heads join the cluster as cluster members.

However, the calculation of nodes’ weights is not discussed [Basu, 2001].

 In WCA (Weighted Clustering Algorithm) [Chatterjee, 2002], to determine

whether a node v is suited for being a cluster head, the weight of each node (Wv) is

calculated by a formula as shown below that consists of four system parameters: sum of

distance with all neighbors (Dv), average running speed (Mv), cumulative time of serving

as a cluster head (Pv) and degree difference of nodes (∆v), where ∆v = |dv – δ|, in which dv

is the number of neighbors and δ is the ideal number of neighbors that a cluster head can

40

handle. Unfortunately, how to choose δ is not discussed [Yu, 2005].

∑
=

=

+++∆=

4

1

4321

4321

1

,,,

,****

i

i

vvvvv

fand

factorsweightingarefandfffwhere

PfMfDffW

The values of f1, f2, f3 and f4 are varied based on different applications. Those nodes

having the lowest weights are elected as cluster heads. For each of the remaining nodes,

if it has one or more neighboring cluster heads, it joins the one with the lowest weight as

a cluster member; otherwise, it declares itself as a cluster head. However, how to

normalize these parameters is not addressed explicitly. The global positioning system

(GPS), the accuracy of which is not ideal for fine computing and the operations of which

would drain the limited energy of the node quickly, has to be applied to obtain the

coordinates of each node for computing the running speed. The cumulative time of a

node already serving as a cluster head cannot accurately reflect the current energy level

because a busy node may almost run out of energy even though it may have never been a

cluster head.

 In Liu’s Group Management (GM) [Liu, 2005], the resource (R) richness and

elapsed time of a node being a cluster head (leader) are integrated to evaluate a node’s

suitability for being a cluster head. The resources are CPU load (L), memory (M),

battery (B) and bandwidth (BW). The elapsed time (ET) is the time between now and the

last time a node is a cluster head. The weight of a node v is calculated by the following

formulas, and nodes with the highest weights are elected as cluster heads. For each of

the remaining nodes, if it has one or more neighboring cluster heads, it joins the one with

the highest weight as a cluster member; otherwise, it declares itself as a cluster head.

41

 fffffin which,

,*BWf*Bf*Mf*Lf*Rf

,andf, where f*ETf*R f W

vvvvv

vvv

141312111

141312111

2121 1

+++=

+++=

=++=

However, how to normalize these parameters is not addressed explicitly either. The use

of elapsed time in cluster head determination has the same disadvantage as the use of

cumulative time in WCA [Chatterjee, 2002]. In addition, re-clustering may be frequently

triggered since the mobility of nodes is not considered in the election.

2.3.4 Summaries of reviewed clustering algorithms

 Table 2.2 summarizes the characteristics of some weighted clustering algorithms,

which have been proposed to elect cluster heads, form clusters and maintain clusters in a

MANET.

 In those algorithms, when calculating the weight utilized to determine whether a

node is eligible to be a cluster head, they either consider only one metric (like mobility or

energy of nodes) [Basu, 2001; Kim, 2006; Sheu, 2006] or rely on some metrics collected

from extra devices (such as locations of nodes read from Global Positioning Systems)

[Chatterjee, 2002]. This often leads to a higher possibility of re-clustering and,

consequently, quality of service cannot be provided.

42

Table 2.2 Summary of the reviewed clustering algorithms

Techniques/Issues
System Parameters Used in the

Weight Calculation
Relying on Any Metrics

Collected from Extra Devices

ACT [Kim, 2006]
Mobility-only: average
connection time

No

DCA [Basagni, 1999]
Each node is assumed to have a
different weight, but how to
compute it is unspecified.

Unspecified

GM [Liu, 2005]
Combination: elapsed time of
being a cluster head and system
resources (CPU load, memory,
energy and bandwidth)

No

MOBIC [Basu, 2001] Mobility-only: aggregate local
mobility

No

SCA [Sheu, 2006]
Energy-only: number of
neighbors with low energy level

No

WCA [Chatterjee, 2002] Combination: sum of distance
with all neighbors, average
running speed, cumulative time
of serving as a cluster head and
degree difference of nodes

Yes. Global positioning system
(GPS)

2.4 Conclusions

 In this chapter, we discussed the general issues and application-dependent issues

that need to be addressed in the design of CC algorithms for mobile databases, and then

we reviewed the CC techniques proposed for cellular mobile databases and MANET

databases according to these issues. The review shows that SESAMO is the only

algorithm proposed for MANET databases, but it does not take energy efficiency into

account. All other techniques designed for cellular mobile databases are not suitable for

MANET databases either because in those algorithms, servers are static and broadcast is

heavily used to disseminate data from servers to clients.

 We also reviewed clustering algorithms developed to elect cluster heads and form

43

clusters in MANETs. In those clustering algorithms, when calculating nodes’ weights

utilized to elect cluster heads, they either consider only one metric like mobility or

energy of nodes, or rely on some metrics collected from extra devices such as GPS. This

often leads to a higher possibility of cluster head change and re-affiliation. New CC

techniques and node clustering algorithms need to be developed to address MANET

characteristics including energy limitation, mobility, and frequent disconnection.

44

CHAPTER 3

MANET DATABASE ARCHITECTURE

USED IN THE PROPOSED ALGORITHM

 In this chapter, we introduce our clustered MANET architecture which is built by

applying our robust weighted clustering algorithm called MEW (Mobility, Energy, and

Workload) [Xing, 2010] to group nodes into groups (or clusters). MEW takes mobile

nodes’ mobility, energy and workload into consideration when clustering mobile nodes

in a MANET. In this architecture as shown in Figure 3.1, mobile nodes are divided into

clusters, each of which has one cluster head working as the coordinating server

responsible for the transaction processing of the mobile nodes, called cluster members,

within the cluster. Cluster heads can communicate with each other through some mobile

nodes that work as gateways. Similarly, mobile nodes within the same cluster as well as

from different clusters can also communicate with each other, but they have to go

through their cluster heads to get the destination addresses first. In order to guarantee

global serializability and reduce communication overhead, among cluster heads the one

with the highest remaining energy is further elected as the primary cluster head to

maintain the information of committed global transactions and validate transactions

globally.

 We choose this architecture for three reasons. First, users are logically grouped

in many MANET applications in the literature, such as disaster response and recovery

systems [Catarci, 2008; Lu, 2007] and military operations [Viswacheda, 2007]. Second,

because every node is mobile in a MANET, the network topology may change rapidly

and unpredictably over time. According to [Chatterjee, 2002], clustered architectures are

45

proper to keep the network topology stable as long as possible, so that the performance

of routing and resource relocation protocols is not compromised. Third, in order to

accommodate our optimistic CC algorithm SODA to guarantee the global serializability,

the information of committed global transactions is maintained by the cluster head with

the highest remaining energy.

Figure 3.1 Architecture of a clustered MANET database

 Figure 3.1 shows an example of a clustered MANET database architecture with

three clusters, each of which is represented by a large solid circle with mobile clients and

servers shown as PDA/iphone and laptop icons, respectively. The arrows between the

devices show the communication between them. In the rest of this chapter, we describe

46

the functionality of mobile nodes (Section 3.1), the MEW algorithm (Section 3.2), the

cluster formation (Section 3.3), the cluster maintenance (Section 3.4), and the analysis of

clustering overhead (Section 3.5).

3.1 Mobile Node Functionality

 Depending on the communication strength, computing power and storage size,

mobile nodes are classified into clients and servers [Pabmanabhan, 2006]. On clients,

only the query processing modules that allow them to submit transactions and receive

results are installed, while on servers, the complete database management systems are

installed to provide transaction processing services. Servers are further classified into

coordinating servers or participating servers. Coordinating servers are the ones which

receive global transactions from clients, divide them into sub-transactions, forward these

sub-transactions to appropriate participating servers, and maintain the ACID (Atomicity,

Consistency, Isolation, and Durability) properties of global transactions. Participating

servers are the ones that process sub-transactions transmitted from coordinating servers,

and preserve their ACID properties.

 The entire data in the database are partitioned into fragments and distributed to

different servers, and there is no caching or replication technique involved for simplicity.

Transactions are based on the simple flat model, which contains a set of read, write,

insert, and delete operations. Any subset of operations of a global transaction that access

the same server is submitted and executed as a single sub-transaction [Dirckze, 2000].

 With respect to the clustered MANET architecture shown in Figure 3.1, a mobile

node is either a cluster head when it is a coordinating server or is a cluster member when

47

it is either a participating server or a client. In order to guarantee global serializability

and reduce communication overhead, among cluster heads the one with the highest

remaining energy is further elected as the primary cluster head, which maintains the

information of committed global transactions and validates transactions globally.

3.2 The Basis of Our Clustering Algorithm - MEW

 Being inspired by MOBIC [Basu, 2001] and WCA [Chatterjee, 2002] and

considering a new system parameter, called “Energy Decreasing Rate (EDR)”, we

propose a weighted clustering algorithm, called MEW (Mobility, Energy, and

Workload), to build a stable backbone in MANETs. Although our proposed clustering

algorithm is also combination-based (based on a combination of parameters), it can

become mobility-only-based if we tune the weighting factors accordingly. In other

words, our approach can build a more stable backbone for MANETs by forming clusters.

 To capture the mobility of nodes, we do not consider their absolute roaming

speed, which is actually applied in WCA [Chatterjee, 2002]. This is because it is easy to

calculate the speed’s quantity but it is hard to predict the direction of movement. Without

the direction, the speed’s quantity alone is not appropriate to justify whether or not a

node is a good candidate for cluster head. For instance, given two nodes that have small

speeds, but both move in the opposite directions, as time goes, they will be out of each

other’s transmission range and get disconnected from each other. Also the utilization of

GPS is opted out due to the following reasons:

• When a GPS is utilized, every node must be equipped with one GPS, which

48

incurs high hardware costs. In addition, these GPSs consume the limited energy

of nodes.

• GPS does not work indoor because buildings shield the satellite signals [Basu,

2001; Bruning, 2007].

• The accuracy of a typical civilian GPS is in the range of 6-12 meters [Berrabah,

2009]; thus, the returned results could be the same when two GPSs are located

within 10 meters.

• If data cannot be read from the GPS and no substitution of the missing data can

be found, then the whole system has to wait or fail.

 Instead, in our algorithm, two mobility metrics, Relative Mobility (RM) [Basu,

2001] and Mobility Prediction (MP), are introduced to monitor the mobility of nodes and

applied to determine whether a node is suitable to be a cluster head as follows:

• For each node j (1 ≤ j ≤ N for N nodes in the network), after receiving two

successive HELLO messages from every 1- hop neighbor i (1 ≤ i ≤ n if there are

n neighbors), the RMij is calculated by the formula (3.1). RSSij1 and RSSij2 are the

received signal strength (RSS) that are read from the RSS indicator when the first

and second HELLO messages from the same neighbor are received, respectively.

Based on the value of RMij, we can say that if RMij is equal to 1, then the node j

and its neighbor i either do not move at all or move with the same speed in the

same direction; if RMij is less than 1, then they move close to each other;

otherwise, they move away from each other.

49

2

1

ij

ij

ij
RSS

RSS
RM =

(3.1)

• For each node j, to take into account the mobility of all n neighbors, MPj is

calculated as the standard deviation of RM1j, RM2j, …, RMnj shown in the formula

(3.2). However, for the stability of elected clusters, we prefer RMij to be equal to

or less than 1 because we want cluster heads not to move away from their

members. Thus, in the MPj calculation, the mean of RMij (1 ≤ i ≤ n) is 1 instead of

the actual mean. A node j with a lower MPj means that it stays closer to its

neighbors, thus, it is a better candidate for the cluster head among its neighbors.

1,

)(
1

2

=

−

=

∑
=

ij

n

i

ijij

j RMwhere
n

RMRM

MP (3.2)

 When dealing with the limited energy, we consider not only the Remaining

Energy (RE) of each node but also its Energy Decrease Rate (EDR) as the workload

because nodes with heavier workload consume more energy, so that we can balance the

energy usage and prevent cluster heads from running out of energy quickly. In other

words, for each node j, EDRj is considered because REj represents only the current state

of energy level and the energy will run out soon if this node usually has a heavy

workload (for instance, it provides service as a server and relays packets for many

neighbors). The EDRj at time interval [t1, t2] is calculated by using the formula (3.3),

where REj1 and REj2 are the remaining energy at time t1 and t2, respectively.

12

21

tt

RERE
EDR

jj

j
−

−
= (3.3)

 A node with a lower EDR indicates that it was not busy at least during the

50

interval [t1, t2]. However, when a node had a busy work history, it most likely would be

busy in the future as well. Since the larger the time interval is, the more accurate the EDR

is in indicating a node’s workload history, during the initial election, each node saves a

copy of its initial remaining energy and initial time as REj1 and t1, such that a more

accurate EDR can be calculated in the future cluster head re-election.

 Based on the above analysis about energy, mobility and workload, it is obvious

that a node j is the best candidate for a cluster head among all its neighbors if its REj is

the highest, its MPj is the lowest and its EDRj is the lowest. In other words, a node with

the highest weight is the best candidate for a cluster head when we combine these three

metrics together as the weight, which is calculated in formula (3.4). Since these metrics

have different units, we apply the inversed exponential function to normalize MPj and

EDRj and bound their values between 0 and 1. REj is left out because it is the remaining

energy level in percentage and its value is already between 0 and 1.

jj EDR

j

MP

j efREfefW
−−

++= *** 321
(3.4)

In formula (3.4), REj = REj2, the weighting factors f1, f2 and f3 are set according to the

different scenarios in the applications, and f1 + f2 + f3 = 1. When we let f2 = f3 = 0, that is,

we take away the effect of energy and workload, our algorithm turns into a mobility-

only-based approach just like MOBIC [Basu, 2001].

3.3 Cluster Formation

 Cluster formation involves the following four steps, where the messages used in

cluster formation and maintenance are summarized in Table 3.1.

51

 Step 1: Each node j periodically broadcasts (this broadcast interval is predefined

[Basu, 2001]) a HELLO message with the same transmission power. In the mean time,

the remaining energy level REj1 is recorded at the initial election time t1; for each

HELLO message received from neighbor i, RSSij is recorded. If only one HELLO

message from a neighbor is received after j broadcasts three successive HELLO

messages, then this neighbor is excluded from the weight calculation [Basu, 2001].

Table 3.1 Messages used in MEW

Message Description

HELLO(my_ID, my_W, CH_ID,
my_RE, other_CH)

To notify neighbors about my ID, my weight, my cluster head’s
ID, my remaining energy and any other neighboring cluster
heads.

WEIGHT(my_ID, my_W) To notify neighbors about the value of my weight.

CLUSTERHEAD(my_ID,
CH_ID)

To notify neighbors about my role: I am a cluster head, that is,
my ID is the same as my cluster head’s ID.

JOIN(my_ID, CH_ID)

To notify neighbors that I am going to join the cluster whose
cluster head’s ID is CH_ID. If a cluster head broadcasts a JOIN
message, then it informs its members about its resignation and
joins a cluster at the same time.

 Step 2: Immediately after each node j receives two successive HELLO messages

from all the neighbors, it records the remaining energy level REj2 and the time t2, and

then node j calculates the values of RMj, MPj, EDRj and Wj using the formulas 3.1, 3.2,

3.3 and 3.4 defined above, respectively. When the weight is re-calculated, the saved

remaining energy REj1 at time t1 is applied in the calculation of EDRj.

 Step 3: Each node j broadcasts the value of Wj to all its neighbors in a WEIGHT

message, and waits for their WEIGHT messages.

 Step 4: Upon receiving the weights from all neighbors, the nodes with the highest

52

weight declare themselves as cluster heads among their neighbors by broadcasting a

CLUSTERHEAD message, but, no two cluster heads should be neighbors. All neighbors

of elected cluster heads just join them as their members by broadcasting JOIN messages.

If two nodes have the same weight, then the node with a smaller ID becomes the cluster

head [Basu, 2001]. If it happens that a node is neighbor of two or more cluster heads,

then it joins the cluster head with the highest weight and works as a gateway for these

cluster heads.

 Note that because clients have less communication strength, less computing

power and smaller storage size than servers, clients cannot be elected as cluster heads

and cannot work as coordinating servers.

3.4 Cluster Maintenance

 Because every node can roam and has limited energy in a MANET, the links

between members and cluster heads can be broken, and the links between two cluster

heads can be generated [Xue, 2006]. Consequently, clusters need be re-clustered. In other

words, leaving clusters, joining clusters, merging clusters, and re-electing cluster heads

are normal re-clustering operations in a clustered MANET. However, these operations

should be performed only on demand to reduce the overhead of computation and

communication, and to provide consistent quality of service.

 In order to detect the link breaks and new link establishments, each node

periodically broadcasts a HELLO message, which contains the ID and weight of itself, its

cluster head’s ID, its remaining energy and any other neighbor which is a cluster head (a

53

Boolean variable). Being a cluster head, it has to periodically monitor its remaining

energy level so that it will resign when the remaining energy drops below a predefined

threshold. Also each node keeps recording the values of RSS from the last two HELLO

messages and re-calculating its weight in case of future re-elections.

 Relying on these two periodical operations, cluster maintenance can be done by

the following recovery:

• From the link break between a member and its cluster head: after three

successive broadcast intervals (BI) [Wang, 2007a], if no HELLO message is

received from a member, the cluster head will just remove this member from its

neighbor and member lists. On the other hand, if a member does not receive a

HELLO message from the cluster head after three successive BIs, it removes the

cluster head from its neighbor list, and joins another cluster head with the highest

weight if any. If no other cluster head is available from its neighbor list, this

member declares itself as a cluster head.

• From the link establishment when two cluster heads become neighbors: if a

cluster head has become a neighbor of another cluster head for a predefined

Cluster Contention Interval (CCI) [Basu, 2001], then the cluster head with the

smaller weight resigns and joins the cluster head with the larger weight. The

members of the resigned cluster head cannot join the new cluster head because

they are not neighbors. They have to join other cluster heads with the highest

weight or declare themselves as cluster heads instead.

• From the link break when a cluster head resigns: if the current remaining energy

of a cluster head becomes less than the Low Energy Threshold (LET), and if there

54

exists a member whose energy is higher than LPT, and this member has no other

neighbor that is a cluster head, then the cluster head resigns and triggers a cluster

head re-election; but this re-election is limited to inside the old cluster instead of

the whole network, that is, the resigned cluster head goes through each member’s

profile, which is periodically updated after receiving a HELLO message, and

finds a replacement that has the highest weight. After the new cluster head is

elected, the resigned cluster head joins its cluster. If a member cannot join the

new cluster head because they are not neighbors, it has to join other cluster heads

or declare itself as a cluster head.

3.5 Analysis of Clustering Overhead

 In this section, we analyze MEW with respect to the message overhead per time

step per node and time complexity per network topology change. These terms are

defined below. The approach used is inspired by the theoretical analysis in [ER, 2005].

 The price of clustering is that extra time is consumed and additional messages are

incurred to form and maintain clusters. The consequence of these additional messages is

called message overhead (the more messages are transmitted, the more traffic is in the

network and the more energy of nodes is consumed). Since bandwidth and energy of

each node are limited in MANETs, message overhead is an important metric for

evaluating the performance of a clustering algorithm. We analyze the message overhead

by analyzing the overhead due to the HELLO protocol and the overheads due to cluster

formation and maintenance. In the mean time, the time complexity per network topology

change is also computed.

55

 To simplify the analysis, the continuous runtime is divided into discrete time

steps, which are the duration between the time when a message is sent and the time when

the message is received and processed by a receiver [Bettstetter, 2002]. The random

waypoint mobility model with zero pause time is assumed. The following definitions are

used in the analysis [ER, 2005]:

• N: the number of nodes in the MANET;

• m: the average number of cluster members in a cluster; m = Θ(1) because all

clusters should have a maximum size constrain to avoid overburdening cluster

heads [Banerjee, 2001].

• fhello: the number of HELLO messages broadcast by a node per time step; fhello =

Θ(1) because fhello is proportional to average node speed s and inversely

proportional to the transmission radius R, and both s and R are less than or equal

to some constants [Sucec, 2004].

• flink: the average frequency of network topology changes occurred per time step;

flink = Θ(N) [Sucec, 2004].

• T: the number of time steps taken by the algorithm after a network topology

change to re-establish a valid cluster structure (or called re-clustering);

• M: the number of messages (or called packets) exchanged between nodes after a

network topology change to re-establish a valid cluster structure;

• L: the total evaluation time in terms of time steps.

 In terms of the average number of messages transmitted by MEW per time step

per node, and the number of time steps needed to re-establish a valid cluster structure

56

after a topology change, the following claims are made:

Claim 1: the message overhead of MEW is O(1) packet transmissions per time step per

node.

Claim 2: the time complexity of MEW is T ≤ 2 per network topology change.

 Both claims are proved in the following subsections.

3.5.1 Hello protocol overhead

 In order to discover its neighborhood and compute its weight, each node

broadcasts HELLO messages periodically. Thus, the HELLO protocol introduces an

overhead of fhello*N packets per time step for all nodes.

3.5.2 Cluster formation overhead

 Immediately after each node calculates its weight, it broadcasts a WEIGHT

message in one time step. After receiving WEIGHT messages from all its neighbours,

each node either becomes a cluster head by broadcasting a CLUSTERHEAD message or

joins some cluster by broadcasting a JOIN message in one time step. Thus, for all nodes,

they broadcast 2N messages in 2 time steps, that is, cluster formation overhead is N

messages per time step.

3.5.3 Cluster maintenance overhead

 From the discussion of cluster maintenance, it is obvious that every network

57

topology change is detected by relying on the periodical HELLO messages, and each

cluster head resignation is verified by periodically checking the remaining energy level.

Once a network topology change or a cluster head resignation occurs, relating nodes have

to take respective actions to re-establish a valid cluster structure. Because of these

actions, cluster formation and maintenance overheads incur, which are investigated in the

following four subsections.

3.5.3.1 Link break between a member and its cluster head

 Since the cluster structure is still valid when a link break occurs between nodes

from different clusters or nodes that are members from the same cluster, there is no

action. Only a link break between a member and its cluster head triggers the re-

clustering.

 The cluster head removes this member from its neighbor and member lists, so no

message is necessarily transmitted. On the other hand, this member removes this cluster

head from its neighbor list as well, and joins another cluster head with the highest weight

if any. This case is done by broadcasting a JOIN message in one time step. If no other

cluster head is available from its neighbor list, this member declares itself as a cluster

head, and broadcasts a CLUSTERHEAD message in one time step. Thus, we have: T = 1

and M = 1 for one of this kind of link breaks.

3.5.3.2 Link establishment because two cluster heads become neighbours

 When a cluster head becomes a neighbor of another cluster head for a predefined

58

duration of CCI interval, the cluster head with the smaller weight resigns and joins the

cluster head with the larger weight. The resigned cluster head has to broadcast a JOIN

message to inform all its members in one time step. After receiving the JOIN message

from their cluster head, each member of this resigned cluster head has to do re-clustering,

which is the same as the case in subsection “Link Break between a Member and Its

Cluster Head”. To summarize, T = 2 and M = m + 1 for one of this kind of link

establishments.

3.5.3.3 Link break because a cluster head resigns

 When the current remaining energy of a cluster head is less than the threshold

LPT, and there exists one of its members that can be a new cluster head, this cluster head

resigns and triggers a cluster head re-election.

 Once a new cluster head is elected, the resigned cluster head broadcasts a JOIN

message to inform all its members in one time step. After receiving the JOIN message

from its cluster head, each member of this resigned cluster head has to do re-clustering,

which is also the same as the case in subsection “Link Break between a Member and Its

Cluster Head”. In short, T = 2 and M = m + 1 for one of this kind of link breaks.

3.5.3.4 Total cluster maintenance overhead

 Since M = 1 in the case of “link break between a member and its cluster head”

and M = (m+1) in the case of “link establishment because two cluster heads become

neighbors”, the total number of messages transmitted per network topology change due

59

to link state changes is (m+2). As the average network topology changes occurred per

time step is flink, there are totally flink*(m+2) messages per time step due to link state

changes.

 Since a node cannot become a cluster head any more once it resigns due to its

lower remaining energy, there are at most N cluster head resignations in an evaluation.

An evaluation period consists of L time steps, thus, the average number of cluster head

resignations per time step is N/L. Therefore, the total number of messages is N(m+1)/L

per time step due to the cluster head resignation.

 In summary, the total cluster maintenance overhead is flink*(m+2) + N(m+1)/L

messages per time step.

3.5.4 Total message overhead

 To summarize, the message overhead of MEW (OMEW) is the sum of the overhead

due to the HELLO protocol, the overhead due to cluster formation and the overhead due

to cluster maintenance, that is,

/L m N m*fN*NfO linkhelloMEW)1()2(+++++=

Since fhello = Θ(1), flink = Θ(N), m = Θ(1), L is an integer and L > 1, given some constants

c1, c2 and c3, we have: fhello ≤ c1, flink ≤ c2*N, m ≤ c3 and (1/L) < 1. Therefore, OMEW can

be expressed as follows:

60

)(

*)22(

)1(*)2(***

)1()2(

)1()2(

32321

3321

NOO

NcccccO

cNcNcNNcO

m N m*fN*NfO

/Lm N m*fN*NfO

MEW

MEW

MEW

linkhelloMEW

linkhelloMEW

=⇒

++++≤⇒

+++++≤⇒

+++++≤⇒

+++++=

After dividing O(N) by the number of nodes N, the message overhead of MEW is O(1)

per time step per node and Claim 1 is proved.

 T = 1 for a link break between a member and its cluster head, and T = 2 for both a

link establishment and a link break due to the resignation of some cluster head, therefore,

the convergence time is at most 2 time steps per topology change as per Claim 2.

3.6 Conclusions

 In this chapter, our robust weighted clustering algorithm, called MEW (Mobility,

Energy, and Workload), was introduced to form and maintain stable clusters in

MANETs. Unlike the existing node clustering algorithm, MOBIC, that considers only

nodes’ mobility during electing cluster heads and forming clusters, MEW takes not only

nodes’ mobility but also nodes’ energy and workload into account when clustering nodes

in a MANET. We also analyzed MEW with respect to the message overhead per time

step per node and time complexity per network topology change. The message overhead

of MEW is O(1) packet transmissions per time step per node and the time complexity of

MEW is T ≤ 2 per network topology change.

61

CHAPTER 4

THE PROPOSED CONCURRENCY CONTROL ALGORITHM:

SEQUENTIAL ORDER WITH DYNAMIC ADJUSTMENT

 In this chapter, we describe our proposed CC technique, called Sequential Order

with Dynamic Adjustment (SODA). We first provide some preliminaries to help explain

our approach. Second, we describe how SODA works without the clustered MANET

database involved; in other words, how SODA works in a centralized MANET database.

Third, we provide the complexity analysis and correctness proof of SODA. Finally, we

discuss how SODA works in a clustered MANET database presented in Chapter 3.

4.1 Preliminaries

 Two operations (or transactions) are called conflict operations (or transactions)

if they access the same data item and at least one of them is a write operation (or

transaction) [Bernstein, 1987].

 Let S = {T1, …, Tn} be a set of transactions. A History (also called Schedule or

Log) over S is an execution of S where the operations of the transactions are interleaved,

but the order of operations within the same transaction is preserved [Bernstein, 1987].

Two histories are conflict equivalent if they involve the same set of transactions, and

every pair of conflict operations is ordered in the same way in both histories [Bernstein,

1987].

 A history is serial if each transaction is executed from the beginning to the end

before the next one can start [Bernstein, 1987].

62

 A history is serializable if it is conflict equivalent to a serial history [Bernstein,

1987].

 The serialization graph (SG) of a history is a directed graph where the nodes are

the transactions executed in the history. In the SG, there is an edge Ti → Tj (i ≠ j) if and

only if at least one of Ti’s operations precedes and conflicts with one of Tj’s operations in

the execution history [Bernstein, 1987].

 The Serializability Theorem [Bernstein, 1987]: A history H is serializable if and

only if there is no cycle in the serialization graph of H.

 Timestamp Ordering (TO) [Bernstein, 1987]: a unique timestamp is assigned to

each transaction, and conflict operations between every two transactions are executed in

their timestamp order. The timestamp may be assigned at the beginning, middle or end of

the execution of a transaction.

 Backward validation: a validating transaction is validated against only

committed transactions, and the currently active transactions are not involved.

 Given a transaction T, Optimistic Concurrency Control (OCC) [Kung, 1981]

has three phases to go through:

• Read and Compute Phase (Phase 1): T reads the values of a set of data items

(called read set, and denoted by RS(T)) and saves them into local variables. When

T reads a data item d, a timestamp is assigned (denoted by TS(d)). T also

computes the values for a set of data items (called write set, and denoted by

WS(T)) and saves them in local variables.

• Validation Phase (Phase 2): the read set and write set of T are validated against a

63

set of committed transactions. If T passes the validation test, then a timestamp is

assigned to T (denoted by TS(T)), and used as the commit time of T and the

timestamp of the write set (denoted by WS_TS(T)). WS_TS(T) is +∞ if T is a

validating transaction.

• Commit and Write Phase (Phase 3): if T succeeds in the Validation Phase, then it

can write the values of the write set into the database and commit; otherwise, T

has to be aborted.

 Definition 4.1: Given a validating (or committed) transaction T1, a committed

transaction T2 and a commonly accessed data item d, T1 must-be-serialized-before T2 if

any one of the following conditions is satisfied (Note: Ti→TS(d) stands for Ti getting the

read timestamp of data d):

• Read-Write (RW) conflict: RS(T1) ∩ WS(T2) ≠ ∅ and T1→TS(d) < WS_TS(T2).

• Write-Write (WW) conflict: WS(T1) ∩ WS(T2) ≠ ∅ and WS_TS(T1) <

WS_TS(T2).

• Write-Read (WR) conflict: WS(T1) ∩ RS(T2) ≠ ∅ and WS_TS(T1) < T2→TS(d).

 Definition 4.2: Given a validating (or committed) transaction T1, a committed

transaction T2 and a commonly accessed data item d, T1 must-be-serialized-after T2 if

any one of the following conditions is satisfied:

• Read-Write (RW) conflict: RS(T1) ∩ WS(T2) ≠ ∅ and T1→TS(d) > WS_TS(T2).

• Write-Write (WW) conflict: WS(T1) ∩ WS(T2) ≠ ∅ and WS_TS(T1) >

WS_TS(T2).

• Write-Read (WR) conflict: WS(T1) ∩ RS(T2) ≠ ∅ and WS_TS(T1) > T2→TS(d).

64

4.2 Proposed Concurrency Control Algorithm - SODA

 Inspired by the dynamic adjustment technique proposed in MTC-SG/SQ [Hwang,

2000], and based on the combination of Timestamp ordering (TO), OCC, and backward

validation, we propose an optimistic CC algorithm, called Sequential Order with

Dynamic Adjustment (SODA).

4.2.1 Algorithm description and examples

 Assume that Ti’s (i = 1, …, n) are committed transactions, and T is a

validating/committing transaction. If we simply let the validation/commit order be the

serialization order like OCC [Kung, 1981], and if there is a RW conflict between T and

Ti, i.e. RS(T) ∩ WS(Ti) ≠ ∅ and T→TS(d) < WS_TS(Ti) for some data item d, then T is

aborted because two orders are different. Such aborts should be avoided if possible. The

following sections describe how SODA avoids such unnecessary aborts.

 In SODA, a dynamic order instead of the validation order among committed

transactions is used, that is, a Sequential Order (SO) of committed transactions is

maintained as {T1, T2, …, Ti, ..., Tn} (also called a history list, which is ordered from left

to right) and can be dynamically adjusted. The dynamic adjustment consists of simple

and complex cases. In the simple case, the validating transaction T can be directly

inserted into the maintained sequential order without adjustment, and the final sequential

order will be: {T1, T2, …, low, … T, up, ..., Tn}, such that T must-be-serialized-after low

but before up. On the other hand, in the complex case, the sequential order must be

65

adjusted before the insertion of T.

 The simple case: Our goal is to find the transactions low and up, such that

SO(low) < SO(T) < SO(up). If we do, then T passes the validation test (lines 2 to 19 in

Figure 4.3). SO(Ti) is the function to get the sequential order number of Ti in the history

list. For instance, SO(T2) = 2 and SO(Ti) = i if the sequential order is {T1, T2, …, Ti, ...,

Tn}.

 Without loss of generality, we should find two transactions low and up where,

SO(low)=max{SO(Ti)|T must-be-serialized-after Ti, 1≤ i ≤ n},

SO(up)=min{SO(Ti)|T must-be-serialized-before Ti, 1≤ i ≤ n}.

If low (up) is not found, then we can conclude that T is not serialized after (before) any

other transactions, and we say that SO(low) = 0 (SO(up)= n + 1) (line 1 in Figure 4.3).

However, if SO(low) = SO(up), then it is impossible for T to be serialized before and

after Ti at the same time, thus, T is aborted. If SO(low) > SO(up), T should be aborted

because it cannot be inserted anywhere in the list. However, T passes the validation test

if the serialization graph testing is applied instead. Thus, this kind of aborts should be

avoided too if possible. The details are given in the complex case below.

 To illustrate how SODA works for the easy case, let’s see an example: T can be

directly inserted in the maintained sequential order.

 Example 1 (for the simple case): Let {T1, T2, T3} be the sequential order of

committed transactions, and T be a validating transaction at a server. The read sets, write

sets and the timestamps are shown in Table 4.1.

 Since WS(T1) ∩ WS(T)≠ ∅ and WS_TS(T) > WS_TS(T1), T must-be-serialized-

66

after T1 and low = T1. Since WS(T2) ∩ RS(T) ≠ ∅ and WS_TS(T2) > T→TS(x), T must-

be-serialized-before T2 and up = T2. Since SO(low) < SO(up), this is the simple case and

T passes the validation test. T is inserted immediately before T2, and the final sequential

order is {T1, T, T2, T3} as shown in Figure 4.1, where the arrow (�) in the graph

indicates the serialization order between two transactions such as T1 � T2 means that T1

must-be-serialized-before T2.

Table 4.1 Transaction information used in Example 1

 T1 T2 T3 T

Read Set (RS) {x} {y} {x, y} {x}

Write Set (WS) {z} {x} ∅ {z}

Read Timestamp of Data d (TS(d)) 5 15 25, 30 18

Timestamp of Write Set (WS_TS) 10 20 +∞

Figure 4.1 Validating transaction T in Example 1

 To better understand why a validating transaction should be aborted due to

SO(low) > SO(up), let us explain by example.

 Example 2: Let {T1, T2} be the sequential order of committed transactions, and T

67

be a validating transaction at a server. The read sets, write sets and the timestamps are

shown in Table 4.2.

Table 4.2 Transaction information used in Example 2

Transactions T1 T2 T

Read set (RS) {x} {y} {x}

Write set (WS) {x} ∅ {y}

TS (d) 5 20 8

Timestamp of WS 10 +∞

 Since RS(T2) ∩ WS(T) ≠ ∅ and T2→TS(y) < WS_TS(T), T must-be-serialized-

after T2. Since WS(T1) ∩ RS(T) ≠ ∅ and WS_TS(T1) > T→TS(x), T must-be-serialized-

before T1. Thus, low = T2, up = T1, and the final sequential order should be {T2, T, T1} or

SO(T2) < SO(T) < SO(T1); but this is impossible because the given sequential order is

SO(T1) < SO(T2). So, T has to be aborted because it cannot be inserted in the given

sequential order. However, if the serialization graph testing is applied instead, T passes

the validation because there is no cycle in the serialization graph as shown in Figure 4.2.

To further reduce the abort rate, we need resolve this complex case too.

Figure 4.2 The serialization graph in Example 2

T1 T2

T

68

Boolean SODA(T, History) {

1: low_index = 0; up_index = History→length() + 1;
2: counter = 1; // Find transaction up
3: for (Ti = History→begin(); Ti != History→end(); Ti++) {
4: if (must-be-serialized-before(T, Ti)) {
5: up = Ti; up_index = counter;
6: break;
7: }
8: counter++;
9: }
10: counter = History→length(); // Find transaction low
11: for (Ti =--(History→end());Ti >=History→begin();Ti--) {
12: if (must-be-serialized-after(T, Ti)) {
13: low = Ti; low_index = counter;
14: break;
15: }
16: counter--;
17: }
18: if (low_index < up_index) // The simple case
19: return true;
20: range = History→subset(up, low); // The complex case
21: T_SB→push_back(T);
22: for (Ti = range→begin(); Ti != range→end(); Ti++) {
23: for (Tj = T_SB→begin(); Tj != T_SB→end(); Tj++) {
24: if (must-be-serialized-before(Tj, Ti)) {
25: if (must-be-serialized-after(T, Ti)
26: return false; // A cycle is detected
27: T_SB→push_back(Ti);
28: break;
29: }
30: }
31: }
32: return true; // Got here. T passes the validation test
}

Figure 4.3 SODA - validation and preparation

 The complex case: We have SO(Ti) < SO(Tj) from the maintained sequential

order {T1, T2, T3, …, Ti, …, Tj, …, Tn}, but we conclude that SO(Ti) > SO(T) > SO(Tj)

after finding low and up where low = Tj and up = Ti. Since T is just stuck between Ti and

Tj, if we can find all transactions between Ti and Tj that T must-be-serialized-before

69

directly and indirectly (called T_SB), and if there are no transactions in T_SB that T

must-be-serialized-after, then T passes the validation test; otherwise, a cycle is detected

and T has to be aborted (lines 20 to 32 in Figure 4.3).

 After T passes the validation test, the sequential order has to be updated to reflect

the changes. In the simple case, T is directly inserted in the position just before up (lines

1 to 2 in Figure 4.4). In the complex case, by looping through all transactions between up

and low, all the transactions in T_SB constructed in the first part of SODA are removed

first (lines 3 to 11 in Figure 4.4). To construct SO(low) < SO(T) < SO(up), T and all

transactions in T_SB are inserted in the position immediately after low (lines 12 to 18 in

Figure 4.4).

void update_SO(low, up, T, History, T_SB) {

1: if (SO(low) < SO(up)) // The simple case
2: History→insert(up, T);
3: range = History→subset(up, low); // The complex case
4: Tm = T_SB→begin();
5: for (Ti = range→begin(); Ti != range→end(); Ti++) {
6: if (Ti == Tm) {
7: History→erase(Ti); Tm++;
8: if (Tm == T_SB→end())
9: break;
10: }
11: }
12: low++; // Insert T immediately after low
13: History→insert(low, T);
14: // Insert all the transactions in T_SB
15: while (!T_SB→empty()) {
16: History→insert(low, T_SB→front());
17: T_SB→pop_front();
18: }
}

Figure 4.4 SODA - update the sequential order

 Now, let us see an example of T passing the validation in a complex case.

70

 Example 3: Let {T1, T2, T3, T4, T5, T6, T7} be a set of committed transactions and

the sequential order, and T be a validating transaction at a server. The read sets, write

sets and the timestamps are shown in Table 4.3.

 Since WS(T3) ∩ RS(T) ≠ ∅ and WS_TS(T3) > T→TS(a), T must-be-serialized-

before T3 and up = T3. Similarly, low = T6. Since SO(low) > SO(up), this is the complex

case. T_SB = {T3, T4}, and none of T3 and T4 must-be-serialized-before either T5 or T6,

thus, T passes the validation test. T3 and T4 are removed first and then T, T3 and T4 are

inserted immediately after T6, the final sequential order is {T1, T2, T5, T6, T, T3, T4, T7}

as shown in Figure 4.5, where the arrow (�) in the graph indicates the serialization order

between two transactions such as T1 � T3 (T1 is serialized before T3).

Table 4.3 Transaction information used in Example 3

 T1 T2 T3 T4 T5 T6 T7 T

RS {x} {y} {z} {a} ∅ {b} {c} {a}

WS {z} {x} {a} ∅ {b, c} ∅ ∅ {b}

TS (d) 5 15 25 35 45 50 28

TS_WS 10 20 30 40 +∞

71

Figure 4.5 Validating transaction T in Example 3

 It is time to give another example in which the sequential order is not adjustable

because of the existence of a cycle.

 Example 4: Let {T1, T2, T3, T4, T5, T6, T7, T8} be a set of committed transactions

and their sequential order. T is a validating transaction. Their read sets, write sets and

their timestamps are shown in Table 4.4.

Table 4.4 Transaction information used in Example 4

Transactions T1 T2 T3 T4 T5 T6 T7 T8 T

Read set (RS) {x} ∅ {a} {a} ∅ {b} ∅ {c} {y, a}

Write set (WS) {y} {x} {a} ∅ {b} ∅ {b, c, w} ∅ {w}

TS (d) 5 ∅ 20 30 ∅ 40 ∅ 50 8, 18

Timestamp of WS 10 15 25 35 45 +∞

 Since WS(T1) ∩ RS(T) ≠ ∅ and WS_TS(T1) > T→TS(y), T must-be-serialized-

before T1 and and up = T1. Since WS(T7) ∩ WS(T) ≠ ∅ and WS_TS(T7) < WS_TS(T), T

72

must-be-serialized-after T7 and low = T7. Because SO(low) > SO(up), T

must_be_serializes_after T7, T_SB = {T1, T2, T3, T4}, and T_SB conflicts with T7; thus, a

cycle is detected, the sequential order is not adjustable and T cannot pass the validation.

As shown in Figure 4.6, it is easy to see that there is a cycle: T→T3→T4→T7→T.

Actually, T3 and T4 are part of T_SB; therefore, the cycle can be simplified as

T→T_SB→T7→T.

Figure 4.6 Validating transaction T in Example 4

4.2.2 Proof of correctness

 To prove the correctness of SODA, we must show that any schedule produced by

SODA is serializable. To fulfil this goal, we utilize the Serializability Theorem “A

schedule S is serializable iff SG(S) is acyclic” [Bernstein, 1987], that is, we must prove

that the new serialization graph is still acyclic after the addition of a newly committed

transaction that has passed the validation test.

 Lemma 1: Given a sequential order {T1, T2, T3, …, Tn} produced by SODA,

SODA either does not create any cycle or detects every cycle, if any, in SG({T1, T2, T3,

…, Tn}+{T}) during the validation of any committing transaction T.

T3 T5

T

T1 T7 T4 T2 T6

SO(up) = 1
SO(low) = 6

T8

73

 Proof: Since the sequential order of transactions complies with their serialization

order, every edge (Ti, Tj), if any, must have the same direction. In other words, the edge

(Ti, Tj) goes from left to right because SO(Ti) < SO(Tj), where 1 ≤ i, j ≤ n.

 In the simple case, SODA does not create any cycle in SG({T1, T2, T3, …,

Tn}+{T}): Since low and up are found and SO(low) < SO(T) < SO(up), all newly added

edges are either (Ti, T) or (T, Tj) where SO(Ti) ≤ SO(low) and SO(up) ≤ SO(Tj).

Therefore, all existing edges and newly added edges must have the same direction, i.e.

going from left to right, and thus it is impossible for T to involve any cycle.

 In the complex case, SODA captures every cycle in SG({T1, T2, T3, …, Tn}+{T}):

Since low and up are found, but SO(low) ≥ SO(up) in the sequential order and,

consequently, T may be involved in cycles, such as, T → [up] →… Ti … → [low] → T,

where SO(up) < SO(Ti) < SO(low), and [up] and [low] are optional.

 Without loss of generality, let the cycle be T → Ti1 →… Tim → T, where SO(up)

≤ SO(Tik) ≤ SO(low), i1 ≤ ik < im, and im equals to the number of nodes/transactions in the

cycle and between up and low in the sequential order. Now, we prove that SODA

captures every cycle during the validation for T by the induction on im.

 The basic step, for im = 1: that is, the cycle is T → Ti1 → T. Since T → Ti1, the

function must-be-serialized-before(T, Ti1) returns true (line 24 in Figure 4.3). Since Ti1

→ T, the function must-be-serialized-after(T, Ti1) returns true (line 25 in Figure 4.3).

Thus, SODA returns false because a cycle is detected (line 26 in Figure 4.3).

 The induction step for im = k: Suppose every cycle is detected for im ≤ k, that is,

the cycle T → Ti1 → … Tik-1 → Tik → T is detected because T_SB = {Ti1, Ti2, …, Tik-1},

74

Tik-1 → Tik and Tik → T (lines 22 to 26 in Figure 4.3). Actually, this cycle is equivalent to

T → T_SB → Tik → T. Now, we show that every cycle is detected for im = k+1. Since

Tik-1 → Tik, and T is not serialized after Tik directly, Tik is also added into T_SB (lines 24

to 29 in Figure 4.3). Since Tik → Tik+1 and Tik is part of the T_SB and Tik+1 → T, the

cycle T → Ti1 → … → Tik → Tik+1 → T (or T → T_SB → Tik+1 → T) is detected as well.

Thus, SODA returns false for im = k+1 (lines 22 to 26 in Figure 4.3).

 Therefore, SODA either captures every cycle, if any, or does not create any cycle

in SG({T1, T2, T3, …, Tn}+{T}) during the validation of any committing transaction T.

 Theorem 1: If S is a schedule produced by SODA, then S is serializable.

 Proof: By Lemma 1, SODA either detects every cycle in SG(S) or does not create

any cycle when it validates any committing transaction, so SG(S) is acyclic. Thus, S is

serializable according to the Serializability Theorem [Bernstein, 1987].

4.2.3 Complexity analysis

 Theorem 2: The time complexity of SODA is (p*n
2 + n) = O(n2), where n is the

number of committed transactions in the sequential order, and p is the probability of a

committing transaction conflicting with both low and up and SO(low) > SO(up).

 Proof: Assume that the number of operations in a transaction is constant and the

time to check if two transactions conflict is also constant [Hwang, 2000]. In the simple

case (case 1): SODA runs one FOR loop after another to find low and up, and the

maximum number of iterations in each loop is n (lines 2 to 17 in Figure 4.3). In the

complex case (case 2): SODA runs two nested FOR loops to test the possibility of

75

dynamic adjustment, the maximum number of iterations in each loop is n, and the

probability of the complex case to happen is p (lines 18 to 32 in Figure 4.3). In update

sequential order (case 3): SODA runs one FOR loop and one WHILE loop to update the

sequential order, and the maximum number of iterations in each loop is n (lines 3 to 18 in

Figure 4.4). By combining the three cases above, the complexity of SODA is:

 If we assume the conflict probability between two transactions is x, then the value

of x will be very small (0 < x < 1) as most of transactions in MANET are read-only, and

thus, x
2 will be even smaller. Since p is the probability of a committing transaction

conflicting with both low and up and SO(low) ≥ SO(up), p < x2. For instance, if x = 0.01,

then p < x2 = 0.0001. Therefore, we can safely claim that SODA mostly runs in the linear

time. In contrast, the complexity of a serialization graph testing algorithm is always

O(n2) [Hwang, 2000].

4.3 How SODA Works in a Clustered MANET Database

 In order to make SODA work effectively in a clustered MANET database, the

coordinating server functionality is combined with the cluster head’s functionality

because a cluster head is elected by our MEW algorithm [Xing, 2010] as described in

Chapter 3 and is the nearest server with the highest energy in clients’ neighborhood.

This would enable clients to save time, limited battery energy and bandwidth that they

must spend on identifying suitable servers to which they send their transactions.

Therefore, only three major functionalities are required: the primary cluster head

) O(n n p*n
22

=+

76

functionality, cluster head functionality, and participating server functionality as shown

in Figure 4.7. Note that one server can have all the three functionalities at the same time.

4.3.1 The transaction execution model

 As shown in Figure 4.7, a transaction T issued by a client is distributed to its

cluster head; the cluster head divides T into sub-transactions and transmits them to the

appropriate participating servers according to the global database schema. Each

participating server processes the sub-transactions locally and sends the results back to

the cluster head. The cluster head runs the 2-Phase Commit (2PC), and gathers all results

from the participating servers. Note that we adopt 2PC here due to its simplicity as our

research goal is to develop a concurrency control algorithm, not a commit algorithm;

however, we do plan to include a more suitable commit protocol for MANET databases

in our future work. If running 2PC successfully, the cluster head sends T to the primary

cluster head to validate T globally based on the SO of committed global transactions;

otherwise, the cluster head sends an abort message directly to the client. After receiving

the global validation result, the cluster head sends the final results to the client.

Figure 4.7 Workflow of SODA

77

4.3.2 The primary cluster head functionality

 The primary cluster head has the following functionalities:

• It maintains the sequential order (SO) of committed global transactions.

• It receives global transaction validation requests from non-primary cluster heads.

• It validates global transactions using SODA. After validation, it sends the

validation results to the non-primary cluster head.

• It updates the SO after a global transaction commits and adds this global

transaction’s read set, write set and the timestamp of both sets to the data

structure of the maintained SO.

• It removes the old committed transactions that are not serialized after any

active/committed global transaction from the maintained SO after a global

transaction commits.

• It periodically checks (after a global transaction commits) its remaining energy

level. If its level is below a predefined threshold LET and another cluster head’s

remaining level is above the threshold, it resigns its cluster head status and elects

a new primary cluster head that has the highest remaining energy from all cluster

heads. It then transfers the information of all the transactions it stores to the new

primary cluster head. Note that since the primary cluster head is also a non-

primary one, if the primary one resigns, the non-primary one also resigns if there

is a candidate in the neighborhood.

78

4.3.3 The cluster head functionality

 The cluster head has the following functionalities:

• It receives a global transaction from a client, divides them into sub-

transactions, and sends the sub-transactions to appropriate participating

servers.

• It runs 2PC to request the status of the sub-transactions and requests the

timestamps of the global transaction’s read set.

• It propagates the global transaction to the primary cluster head after it receives

all successful messages of the sub-transactions. After receiving the validation

result, it sends the final results to the client.

• It periodically checks (after a global transaction commits) its remaining energy

level. If the level is below a predefined threshold and there is a candidate for

cluster head in the neighborhood, it resigns its cluster head status and elects a

new cluster head in the neighborhood. It then transfers the information of all

the transactions it stores to the new cluster head. Note that if the old cluster

head is also the primary cluster head, then the new cluster head can be the new

primary cluster head as well if this new one has the highest remaining energy

among all cluster heads.

4.3.4 The participating server functionality

 A participating server has the following functionalities:

79

• It receives and processes sub-transactions, and maintains the SO of committed

sub-transactions.

• It runs SODA locally based on the local SO of committed sub-transactions

when it receives the request about the status of the sub-transactions.

• It sends the final status of the sub-transactions to the requesting cluster head. It

also sends the timestamps of the read sets of the sub-transactions to the cluster

head if the sub-transactions pass the validation.

• It updates the local SO of committed sub-transactions if a sub-transaction

commits and adds this sub-transaction’s read set, write set and timestamps of

both sets to the data structure of the maintained SO. It removes the old

committed sub-transactions that are not serialized after any active/committed

sub-transaction from the maintained SO after a sub-transaction commits.

4.4 Conclusions

 In this chapter, we introduced and proved the correctness of our energy-efficient

CC algorithm, called Sequential Order with Dynamic Adjustment (SODA), for mission-

critical MANET databases in a clustered network architecture. In SODA, in order to

conserve energy and balance the energy consumption among servers so that the lifetime

of the network is prolonged, we elected cluster heads using our weighted clustering

algorithm MEW to work as coordinating servers. SODA is based on optimistic CC to

offer high concurrency and avoid unbounded blocking time. It utilizes the sequential

order of committed transactions to simplify the validation process, and dynamically

80

adjusts the sequential order of committed transactions to reduce transaction aborts. Its

complexity is O(n2), where n is the number of committed transactions in the sequential

order.

81

CHAPTER 5

PERFORMANCE EVALUATION OF MEW

USING THE NS-2 SIMULATOR

 In this chapter, we present the performance evaluation of our network clustering

algorithm MEW (Mobility, Energy, and Workload) using simulation. First, we describe

the simulation parameters and performance metrics. We then present and analyze the

simulation results.

5.1 Simulation Description and Parameters

 The performance of MEW and MOBIC [Basu, 2001] is evaluated using the NS-2

simulator with clustering framework [Basagni, 2006]. Table 5.1 lists the simulation

parameters, most of which are the same as the ones in [Basu, 2001]. Since mobility is

the major cause of re-clustering, the weighting factor of mobility f1 = 0.8, the weighting

factor of energy f2 = 0.15 and the weighting factor of workload f3 = 0.05 are used. The

initial energy level of each node is randomly distributed between 20% and 100%.

 To measure the stability of a clustered MANET, we consider the following

metrics:

• The lifetime of the network: the duration from the beginning of the simulation

until a node runs out of its energy [Choi, 2006; Sheu, 2006].

• The cluster head change rate (per second): the total number of cluster heads is

divided by the total simulation time [Basu, 2001].

82

• The re-affiliation (joining a cluster and becoming a member) rate (per second):

the total number of cluster members is divided by the total simulation time [Choi,

2006].

Table 5.1 Simulation parameters

Parameter Value Reference

Number of nodes (N) 50 [Basu, 2001]

Simulation area 670 * 670 meters2 [Basu, 2001]

Maximum speed of node movement 1, 10, 20, 30 meters/second (or m/s) [Basu, 2001]

Transmission range (TR) 10 meters – 250 meters [Basu, 2001]

Pause time (PT) 0 second, 30 seconds [Basu, 2001]

Broadcast interval (BI) 1 second

Cluster contention interval (CCI) 3 seconds

Low energy threshold (LET) 30%

Mobility weighting factor (f1) 0.8

Energy weighting factor (f2) 0.15

Workload weighting factor (f3) 0.05

Initial energy level 20% - 100%

Simulation time 200 seconds [Viswacheda, 2007]

5.2 Simulation Results

 This section presents the results of the experiments performed by varying

maximum speed and transmission range. All metrics in the following figures are

collected from an average value of 50 simulation runs in 50 different scenarios, which

are randomly generated using the random waypoint model (built-in in NS-2). To better

mimic a real wireless network, 25 constant bit rate (CBR) connections are randomly

generated by the traffic-scenario generator. Each source sends a 512-byte packet through

83

UDP (User Datagram Protocol) [Wang, 2007b] at a rate of one packet per second.

5.2.1 Effect of maximum speed

 In this experiment, the maximum node moving speed is varied to study the effect

on the performance. The maximum speed of a node is varied from 1 m/s to 30 m/s. The

experiment results are shown in Figures 5.1 - 5.3.

 In Figure 5.1, the lifetime of the network decreases as the maximum node moving

speed increases in both MOBIC and MEW. This is expected because nodes with higher

speed are more likely to become neighbors or get disconnected. This will trigger more

cluster head changes and more re-affiliations, thus, more energy are consumed to

maintain clusters. Regardless of the pause time PT = 0s or 30s, MEW prolongs the

lifetime of the network by 9% to 42% (or 23% on average) better than that of MOBIC.

Since mobility is dealt with in the same way in both MOBIC and MEW, how to address

mobility is not the main cause of longer lifetime of the network. In other words, these

promising results confirm affirmatively the effects of taking into consideration the

energy and workload in the weight calculation and the forced resignation of a cluster

head when its remaining energy becomes too low.

84

Figure 5.1 Lifetime of network by varying maximum speed

 Figure 5.2 shows that the cluster head change rate of MEW and MOBIC

increases as the node speed increases no matter PT = 0s or PT = 30s. This is because

cluster heads with higher speed are more likely to become neighbors and, consequently,

the one with a lower weight has to resign. MEW produces 5 to 12 (or 7 on average)

fewer cluster heads than MOBIC when PT = 0s and PT = 30s, respectively. Given that

both MOBIC and MEW deal with mobility using the relative mobility, MEW still

produces fewer cluster heads mainly because nodes with higher energy are likely to get

elected as cluster heads and, hence, they can function as cluster heads for a longer time.

85

Figure 5.2 Rate of cluster head changes by varying maximum speed

 Figure 5.3 shows that the re-affiliation rate of MEW and MOBIC increases as the

node speed increases. This is because cluster members with higher speeds are likely to

get disconnected from their original cluster heads and join other cluster heads. MEW

produces 34 to 66 (or 44 on average) fewer cluster members than MOBIC for both PT =

0s and PT = 30s. The advantage of MEW having a lower re-affiliation rate is mainly

attributed to the less likelihood of the resignation of a cluster head due to energy

exhaustion.

86

Figure 5.3 Rate of re-affiliation by varying maximum speed

5.2.2 Effect of transmission range

 In this experiment, the transmission range is varied to study the effect on the

performance. The transmission range of a node is varied from 10 meters to 250 meters.

The experiment results are shown in Figures 5.4 - 5.6.

 In Figure 5.4, the lifetime of the network decreases as the transmission range

increase in both MOBIC and MEW. This is expected because the larger the transmission

range is, the more energy is required to transmit packets, and thus, the more energy is

consumed. MEW outperforms MOBIC by 2% to 27% (or 15% on average) when the

transmission range is larger than 50 meters. These promising results confirm that

MOBIC is mobility-only-based algorithm. In other words, MOBIC does not consider

energy during cluster head election, so some nodes with low remaining energy become

cluster heads and, consequently, these cluster heads run out of energy soon.

87

Figure 5.4 Lifetime of network by varying transmission range

 In Figure 5.5, the cluster head change rate of both algorithms increases when the

transmission range is less than 50 meters, this is expected because more nodes appear

within range of each other for shorter periods of time as the transmission range increases,

so that more cluster heads have to give up their roles and join others as cluster members.

However, when the transmission range becomes larger than 50 meters, the cluster head

change rate decreases as more nodes are within range of other nodes and stay together for

longer periods of time. MEW produces 5 to 13 (or 10 on average) fewer cluster heads

than MOBIC. Given that both MOBIC and MEW deal with mobility using the same

way, MEW still produces fewer cluster heads mainly because nodes with higher energy

are likely to get elected as cluster heads and, hence, they can function as cluster heads for

a longer time.

88

Figure 5.5 Rate of cluster head changes by varying transmission range

 In Figure 5.6, the re-affiliation rates of MEW and MOBIC increase as the

transmission range is less than 100 meters and increases. This is expected because more

nodes appear within range of more than one cluster heads and join the one with largest

weight. However, when the transmission range becomes larger than 100 meters, the re-

affiliation rates of both algorithms decrease because cluster members are within range of

their cluster heads and stay together for longer periods of time. MEW produces 34 to 43

(or 40 on average) fewer re-affiliations than MOBIC when the transmission range is

greater than or equal to 100 meters. Due to the same solution of addressing mobility, the

advantage of MEW having a lower re-affiliation rate is mainly attributed to the less

likelihood of the resignation of a cluster head due to energy exhaustion.

89

Figure 5.6 Rate of re-affiliation by varying transmission range

5.3 Conclusions

 In this chapter, we presented the performance evaluation of our weighted

clustering algorithm MEW using NS-2 simulation by varying the maximum node moving

speed and the transmission range. MEW is compared with MOBIC. The simulation

results show that MEW prolongs the lifetime of MANETs and has a lower cluster head

change rate and re-affiliation rate than the existing algorithm MOBIC.

90

CHAPTER 6

PERFORMANCE EVALUATION OF SODA

USING THE SIMULATIONS

 The simulation experiments are conducted to compare the performance of our

proposed SODA with those of SESAMO [Brayner, 2005] and the most widely used CC

protocol - S2PL (Strict 2-Phase Locking) [Bernstein, 1987]. As we discussed in Chapter

2, SESAMO relaxes atomicity and global serializability due to its assumption. However,

global serializability is guaranteed by S2PL when S2PL is combined with 2PC [Abdouli,

2005].

 Our simulation model consists of a transaction generator, a real-time scheduler

that schedules transactions using early deadline first [Pabmanabhan, 2006], participating

servers, coordinating servers or cluster heads for SODA only, and a deadlock manager

for SESAMO and S2PL. In the SODA model shown in Figure 4.7, a transaction T issued

by a client is transmitted to its cluster head CHc; CHc divides T into several sub-

transactions, and transmits them to the appropriate participating servers through their

cluster heads according to the global schema. Each participating server processes the

sub-transactions locally, and sends the results back to CHc. CHc runs the 2PC and

gathers all results from the participating servers. If running 2PC successfully, CHc sends

T to the primary cluster head to validate T globally based on the SO of committed global

transactions; otherwise, CHc sends an abort message directly to the client. After

receiving the global validation result, CHc sends the final results to the client.

91

 The simulation models for SESAMO and S2PL are similar to that of SODA

except for a couple of points. One is that SODA is applied locally and globally to

validate transactions, while in SESAMO, strict 2PL is applied globally [Brayner 2005]

and locally [Holanda, 2008], and in S2PL, strict 2PL is run only locally. The other point

is that SESAMO and S2PL have no any cluster head and use coordinating servers

instead.

 Three simulation models are built to compare SODA with S2PL and SESAMO.

All three simulation models are implemented using the AweSim simulation language

[Pritsker, 1999]. Each simulation model is defined in the following three aspects: mobile

hosts, transactions and mobility model [Li, 2004]. The static parameters and dynamic

parameters about the database and system settings are shown in Tables 6.1 and 6.2.

These values are chosen in order to create scenarios with high utilization of data and

more data contention. Since transactions in mission-critical applications must be

executed not only correctly but also within their deadlines where,

 factor ime)*slacknnection tated discome + estimecution titimated extime + (es creation Deadline =

In other words, we use real-time firm transactions to evaluate the performance.

Therefore, in our simulation, a transaction will be aborted if either it missed its deadline

or the system could not complete it successfully (e.g. when it is aborted by the CC

technique).

1. Mobile nodes: In the simulation model, 10 servers and 40 clients are system

resources, randomly deployed in 3 areas initially, and the radius of each area is

about 100 meters. Each mobile node is assigned with a unique id, x and y

coordinates as location, moving direction and initial energy level between 80%

92

and 100%. Each of the servers stores a portion of the whole database, and the data

stored on one server are not replicated on other servers. The transmission range of

a server is 250 meters and of a client is 100 meters. The bandwidth is fixed at 11

Mbps according to the current wireless technology such as the Intel Wireless

WiFi Link 5300 wireless card [Intel, 2008]. The server is modelled from the

Lenovo Thinkpad T400s notebook [Notebookcheck, 2009], which has Intel Core

2 Duo SP 9600 2.53 GHz CPU, a 4 GB DDR3 RAM and 23240 MIPS (Million

Instructions per Second). The client is modelled from the HP iPAQ 210, which

has Marvell PXA310 624MHz Processor with the 128MB SDRAM [HP, 2008]

and 800 MIPS.

2. Transactions: Global transactions are entities, request and release system

resources during the execution. Transaction start time, transaction id, transaction

type (read-only or write), deadline, and number of sub-transactions are assigned

when they are generated. The inter-arrival time, proportion of read-only

transactions, number of sub-transactions, and number of participating servers are

defined in Table 6.1 and Table 6.2.

3. Mobility Model: Mission-critical (or tactical) applications are strictly structured

(e.g., platoons in military operation) and their actions are strictly organized. There

is a leader or a group of leaders who tells everybody where and how to move or

in which area to work. In general, their movements are driven by tactical reasons.

Due to this, the units normally use the optimal path to a destination. The

destinations depend on the work area that is based on tactical issues. The tactics

as well as the scene are usually hierarchically organized. Typically, the site is

93

divided into different tactical areas. Each unit belongs to one of these areas. For

example, in a disaster rescue scenario, firefighters belong to an incident site and

medical workers are in the casualty’s treatment area. Once the units are sent to a

specific location, they stay close to this location. Thus, the area in which a unit

moves depends on tactical issues but is restricted to one specific area

[Aschenbruck, 2008]. The simulation area is fixed in a 1000x1000 meters2

region. All the nodes are divided into groups, and in each group, nodes are

moving within a relative direction angle being in the range (-30o, 30o) [Lu, 2008]

and the moving direction is random from a set of eight possible directions (�, �,

, �, , �, �, �) [Li, 2004]. By placing 10 servers and 40 clients onto the

region with the size of 1000x1000 meters2, the MANET is assumed to remain

good connectivity, implying the network partitions occur rarely.

6.1 Simulation Parameters and Performance Metrics

 The simulation static parameters and their values are shown in Table 6.1. Note

that in a clustered MANET, cluster heads are more stable than non-cluster head nodes; so

cluster heads should have lower disconnection probability than non-cluster head nodes.

In order to include this observation, the percentage of disconnection that cluster heads

can have is set to 10%. For example, if the default disconnection probability is 0.3, then

the disconnection probability of cluster heads is 0.27 = 0.3 – 10% * 0.3.

94

Table 6.1 Static parameters

Parameter Values Reference
Server energy consumption rate in active
mode 30.3 Watts

[Notebookcheck,
2009]

Server energy consumption rate in idle mode 12.5 Watts
[Notebookcheck,
2009]

Client energy consumption rate in active
mode 0.99 Watts [HP, 2008]

Server transmission range 250 meters [Zhang, 2010]

Client transmission range 100 meters [HP, 2008]

Speed of server processor 2.53GHZ(23240 MIPS)
[Notebookcheck,
2009]

Speed of client processor 624MHZ(800 MIPS) [HP, 2008]

Packet size 512 bytes [Zhang, 2010]

Bandwidth 2 Mbps [Zhang, 2010]

No. of sites in global transaction Triangular(3,4,5) [Li, 2004]

No. of operations or sub-transactions Uniform(5, 10) [Lei, 2009]

CPU computation time 10 ms [Lei, 2009]

Low energy threshold 50%
Percentage off disconnection probability due
to being a stable cluster head 10%

No. of clients 40 [Li, 2004]

No. of servers 10

Slack factor 4 [Lei, 2009]

Simulation area 1000x1000 meters2 [Li, 2004]

Table 6.2 Dynamic parameters

Parameter Value Range Default Value Reference

Mean inter-arrival time
1 to 10 seconds
(exponentially distributed) 5

[Leu, 2007; Lei,
2009]

Proportion of read-only
transactions 0.1 to 0.85 0.8

[Li, 2004; Nouali,
2010]

Disconnection probability 0.1 to 0.9 0.3 [Li, 2004]

Mean disconnection time 1 to 10 seconds 5
[Guo, 2008; Lei,
2009]

Node moving speed 1 to 10 m/s 3
[Denko, 2009; Li,
2007]

95

 The dynamic parameters, their value ranges and their default values are listed in

Table 6.2. We use these five dynamic parameters to study their effects on the

performance of the concurrency control algorithms.

• Inter-arrival time is the mean of an exponentially distributed time between the

arrivals of two consecutive transactions; it varies over the range from 1 to 10

seconds in order to vary the system load [Gruenwald, 2007] and create a scenario

with high data contention.

• Proportion of read-only transactions is the percentage of read-only transactions

among the total simulated transactions. More read-only transactions mean fewer

conflicts among transactions. In other words, proportion of read-only transactions

can also create a scenario with high or low data contention.

• One of the major characteristics of MANET is frequent disconnections due to the

mobility and energy limitation of nodes and unreliable wireless communication

between nodes; so two disconnection parameters are studied: disconnection

probability and mean disconnection time. Disconnection probability is the

probability of communication that is disconnected when a node tries to

communicate with another node. Disconnection time is the time interval during

which a node is unavailable to communicate with.

• Node moving speed varies from 1 to 10 m/s to study the effect of node mobility

on the performance.

96

 Eight performance metrics are used and they are defined in Equations (6.1), (6.2),

(6.3), (6.4), (6.5), (6.6),(6.7) and (6.8), respectively: total time when servers are in active

mode, abort rate, system throughput, average validation time that the primary cluster

head spends on a global transaction, response time, total number of cluster head

reelections, total energy consumed by all servers, and average difference in remaining

energy between two servers. Among these metrics, total time when servers are in active

mode, average validation time that the primary cluster head spends on a global

transaction, and total number of cluster head reelections are utilized to support other

performance metrics.

 The first performance metric is the total time when servers are in active mode. A

server is in active mode only if it is processing transactions; otherwise, it is in doze mode

to save energy. This metric evaluates whether servers are busy to process transactions

most of time, where m is the total number of servers and Ta,i is the total time when server

Si is in active mode.

1

,∑
=

=

m

i
iaT tive mode are in acverse when serTotal tim

(6.1)

 The second performance metric is the abort rate to measure the percentage of

aborted transactions, and can be computed as below:

%*
nstransactiogenerated of#Total

nstransactioabortedof#Total
ratetAbor 100=

(6.2)

 The third performance metric is the system throughput to measure the

performance of a database system in terms of the number of transactions completed in a

minute. Note that the time unit is not second because transaction response time is larger

97

than a second.

60/timesimulationTotal

nstransactiocommittedof#Total
throughputSystem =

(6.3)

 The fourth performance metric is the average validation time that the primary

cluster head spends on a global transaction. It is the elapsed time between submitting a

global transaction to the primary cluster head for validation and receiving the validation

result. It is used to verify how long the primary cluster head prolongs the transaction

response time, where ts is the time at which a global transaction is submitted by the

client’s cluster head (or called coordinating server), and te is the time at which the

validation result is received by the same coordinating server.

 - se t ttime validationAverage = (6.4)

 The fifth performance metric is the transaction response time that is the elapsed

time between submitting a database transaction for execution and receiving a response. It

is used to evaluate how an application is performing in the measurement of time, where ts

is the time at which a transaction is submitted by a client, and te is the time at which a

response is received by the same client. The major influences on transaction response

time are communication delays and the database access time for data items accessed by

the transaction.

 - se t ttime responsenTransactio = (6.5)

 The sixth performance metric is the total number of cluster head (primary and

non-primary) reelections to evaluate whether an algorithm takes balancing energy among

servers into consideration, where Nprimay (Nnon-primay) is the number of primary (non-

primary) cluster head reelections. However, more reelections do not guarantee more

98

balanced energy among servers because there is an overhead of transferring the

information from the old cluster head to the new one.

 primarynonprimay N Ntions ad reelecluster heber of cTotal num
−

+= (6.6)

 The seventh performance metric is the total amount of energy consumed by all

servers in both active mode and doze mode. This metric evaluates how energy-efficient

each technique is, where m is the total number of servers, ECRa (ECRd) is the energy

consumption rate when a server is in active (doze) mode, and Ta,i (Td,i) is the total time

when server Si is in active (doze) mode.

)**(
1

,,∑
=

+=

m

i

iddiaa TECRTECR rsd by servegy consumeTotal ener

(6.7)

 The eighth performance metric is the average difference in remaining energy

between two servers to evaluate how balanced the system is in terms of energy

consumption. The more balanced the system is, the longer lifetime the system has. This

metric is computed using the following formula, where m is the total number of servers,

and REi and REj are the remaining energy of servers Si and Sj, respectively.

)*m(m

|-RE|RE

 serverstween two energy begn remaininfference iAverage di

m

i

m

j

ji

1
1 1

−
=

∑∑
= = (6.8)

6.2 Simulation Results

 This section presents the results of the experiments performed. In each

simulation run, 1000 transactions are simulated and results are collected at the end of

each run. When one dynamic parameter is studied, all other dynamic parameters are

99

fixed with their default values specified in Table 6.2. The three compared algorithms are

labelled as S2PL, SESAMO and SODA in the result figures.

6.2.1 Effect of inter-arrival time

 In this experiment, the inter-arrival time between two consecutive transactions is

varied to test the system load and create scenarios with low or high data contention. The

inter-arrival time is generated using the exponential distribution with mean from 1

second to 10 seconds. The experiment results are shown in Figures 6.1 - 6.8.

 Figure 6.1 shows that the total time when servers are in active mode of S2PL,

SESAMO and SODA increases as the transaction inter-arrival time increases. When

transactions enter into the database system at a slow inter-arrival rate, which is the

reciprocal of inter-arrival time, system has low workload. Thus, transactions have less

waiting time for resources and have more chances to complete before their deadlines.

Since the more transactions are committed, the more time servers spend on processing

these committed transactions. It is obvious that SESAMO performs the worst, SODA

performs the best and S2PL is in the middle. Furthermore, the increasing rate of

SEASAMO and S2PL is much higher than that of SODA. This happens because S2PL

and SESAMO are pessimistic and utilize locks to hold limited system resources to

prevent conflicting transactions from accessing them. In other words, servers in S2PL

and SESAMO have to be in active mode most of time to keep processing transactions.

SESAMO performs the worst because it takes SESAMO more time to run strict 2PL

locally and globally.

100

Figure 6.1 Total time when servers are in active mode vs. inter-arrival time

 In Figure 6.2, the abort rates of S2PL, SESAMO and SODA decrease when the

transaction inter-arrival time increases. This is expected because when fewer

transactions are in the system, fewer conflicts among transactions, so that servers are not

overloaded, and transactions have less waiting time for resources and have more chances

to commit before their deadlines. The abort rate of SODA is much lower than those of

SESAMO and S2PL right after the inter-arrival time is longer than 1 second. This is

mainly because transactions arrive at the system with a slow rate, and conflicts among

transactions become rare, so that optimistic algorithms perform better than pessimistic

algorithm due to no prevention of conflicts overhead. SESAMO’s abort rate is lower

than S2PL’s except after the inter-arrival time = 9 seconds. Although SESAMO does not

enforce global serializability, it still blocks many conflicting transactions due to running

strict 2PL both locally and globally. S2PL runs strict 2PL locally only, but it enforces

101

global serializability using 2PC. In other words, in S2PL, all locks of sub-transactions

are held until global transactions commit, which also increases significant waiting time

of conflicting transactions. When the inter-arrival time is getting shorter, it is easy to see

that the abort rate of SODA is close to SESAMO’s and S2PL’s because conflicts among

transactions increase; in addition, this confirms the fact that optimistic CC techniques

work well only if conflicts among transactions are rare.

Figure 6.2 Abort rate vs. inter-arrival time

 Figure 6.3 shows that the system throughput of the three algorithms does not have

strict trends of increase or decrease as the inter-arrival time increases. This seems not

correct because the throughput should increase as the inter-arrival time increases due to

the facts demonstrated in Figure 6.2: fewer transactions are aborted as the inter-arrival

time increases. However, when the inter-arrival time increases, more transactions are

102

committed, but at same time, the total simulation time becomes longer as well. The

system throughput of SODA is as least two more transactions/minute than those of

SESAMO and S2PL right after the inter-arrival time is longer than 1 second. This is

mainly because SODA can commit more transactions than S2PL and SESAMO at each

inter-arrival time (based on the fact: the less abort rate an algorithm has as shown in

Figure 6.2, the more transactions it can commit), but the corresponding total simulation

time is about the same. SESAMO’s system throughput is higher than S2PL’s when the

transaction inter-arrival time is between 2 seconds and 8 seconds.

Figure 6.3 System throughput vs. inter-arrival time

 Figure 6.4 shows SODA’s average validation time that the primary cluster head

spends on a global transaction increases first and then decreases as the inter-arrival time

increases. However, the average validation time of S2PL and SESAMO is always zero

because their designs do not involve any cluster head. In other words, S2PL and

103

SESAMO do not prolong the response time due to the primary cluster head.

Figure 6.4 Average validation time that the primary cluster head spends on a

global transaction vs. inter-arrival time

 As shown in Figure 6.5, the response time of the S2PL, SESAMO and SODA

roughly decreases as the inter-arrival time increases after the inter-arrival time is longer

than 3 seconds. This trend is expected because servers are not overloaded due to low

transactions entry rate, so that servers can process transactions in time. The response

time of SODA is higher than those of S2PL and SESMO when the inter-arrival time is

between 1 second and 9 seconds. This happens because SODA utilizes the primary

cluster head to validate all global transactions and enforce the global serializability, thus,

the primary cluster head has the bottleneck problem and, consequently, the transaction

processing time is prolonged as shown in Figure 6.4. However, the prolonged response

time in SODA is reasonable (averagely 17 seconds longer) because it is still within the

transaction deadline; otherwise, SODA should not have the lowest abort rate shown in

104

Figure 6.2. SESAMO has shorter response time than S2PL right after the inter-arrival

time = 5 seconds. Although shorter response time is expected by every algorithm, but the

trade off has to be done among all performance metrics. In other words, SODA trades off

the response time for lower abort rate, higher throughput, lower energy consumed by all

servers and balancing energy better among all servers.

Figure 6.5 Average of response time vs. inter-arrival time

 Figure 6.6 shows the total number of cluster head reelections of SODA increases

as the inter-arrival time increases. When the inter-arrival time reaches 10 seconds, the

total simulation time is around 3 hours (1000 transactions * 10 seconds = 10,000

seconds). Consequently, more cluster heads have the remaining energy below the

predefined threshold LET, and more reelections are triggered to change roles for

preserving energy and balancing energy usage. However, the total number of reelections

105

of S2PL and SESAMO is always zero because their designs do not involve any cluster

head. In other words, S2PL and SESAMO do not rotate roles among servers to balance

energy.

Figure 6.6 Total number of cluster head reelections vs. inter-arrival time

Figure 6.7 shows that the total energy consumption of all servers increases with

the increase of the inter-arrival time. This is expected because more transactions are

committed as inter-arrival time increases as shown in Figure 6.2, so that each server has

to spend more time in active mode on processing these committed transactions as shown

in Figure 6.1. In other words, the more transactions are committed and the more time

servers are in active mode, the more energy is consumed, and Figure 6.7 confirms this

fact. SODA consumes at least 64,632 J and at most 563,676 J less than both S2PL and

SESAMO right after the inter-arrival time is longer than 2 seconds. This happens

because transactions arrive into the system with a slow rate, and conflicts among

106

transactions become much rarer, so that optimistic SODA performs better than

pessimistic S2PL and SESAMO due to no prevention of conflicts overhead.

Figure 6.7 Total energy consumed by all servers vs. inter-arrival time

The average difference in the remaining energy between two servers in the three

algorithms does not have strict trends of increase or decrease as the inter-arrival time

increases as shown in Figure 6.8. Through this metric, we want to check whether the

energy consumption is balanced among servers. If a technique does not balance energy

consumption among servers, some servers may run out of energy quickly and,

consequently, those servers without energy affect the whole database system. It is easy to

see that SODA is the best to balance energy consumption, and S2PL does the worst

except when the inter-arrival time = 2 seconds. This is because more non-primary cluster

heads and primary cluster heads with higher energy are reelected as shown in Figure 6.6.

However, in S2PL and SESAMO, there is no role rotation strategy and clients may keep

107

submitting transactions to the same servers so that these servers are overloaded.

Figure 6.8 Average difference in remaining energy between two servers vs. inter-

arrival time

6.2.2 Effect of proportion of read-only transactions

 In this experiment, the proportion of read-only transactions is varied to test the

system load and create scenarios with low or high data contention similar to the inter-

arrival time discussed in Section 6.2.1. The experiment results are shown in Figures 6.9-

6.16.

 When more read-only transactions are initiated, conflicts between transactions

become rare, thus more transactions have chances to complete before their deadlines.

The more transactions are committed, the more time servers spend on processing these

committed transactions. Figure 6.9 confirms that the total time when servers are in active

mode in S2PL and SESAMO roughly increases when the proportion of read-only

108

transactions increases. However, SODA does not follow the trend; instead, its total time

almost remains unchanged because it is not sensitive to the proportion of read-only

transactions. It is obvious that SESAMO performs the worst, SODA performs the best

and S2PL falls into the middle. This reflects the fact that S2PL and SESAMO are

pessimistic and utilize locks to hold data to prevent conflicting transactions from

accessing the common data even though most of transactions are read-only.

Figure 6.9 Total time when servers are in active mode vs. proportion of read-

only transactions

 In Figure 6.10, the abort rates of S2PL, SESAMO and SODA decrease when the

proportion of read-only transactions increases, but SODA does not decrease significantly

because it is not sensitive to this parameter once the proportion of read-only transactions

> 10%. The abort rate of SODA is much lower (at most 47%) than those of SESAMO

and S2PL. This is mainly because SODA is optimistic and conflicts among transactions

109

become rarer as the proportion of read-only transactions increases, so that SODA can

perform optimally due to the optimistic CC algorithm existence assumption: conflicts

among transactions are rare. SESAMO’s abort rate is lower than S2PL’s right after the

proportion is 30%. This implies that S2PL running the 2PC to guarantee global

serializability causes more aborts than SESAMO running the strict 2PL at the global

level because both S2PL and SESAMO run the strict 2PL at the local level.

Figure 6.10 Abort rate vs. proportion of read-only transactions

 Figure 6.11 shows that the system throughput of these three algorithms increases

as the proportion of read-only transactions increases. This happens because conflicts

between transactions become rarer when more read-only transactions are in the system,

so that transactions do not compete with each other for common data and commit before

their deadlines. The system throughput of SODA is as least two more transactions/minute

than those of SESAMO and S2PL when the proportion of read-only transactions <=

110

80%. This further confirms that SODA can perform optimally due to the assumption of

optimistic CC algorithm existence: conflicts among transactions are rare. SESAMO’s

system throughput is higher than S2PL’s when the proportion of read-only transactions >

20%, and this trend is consistent with the fact that SESAMO has less abort rate than

S2PL as shown in Figure 6.10.

Figure 6.11 System throughput vs. proportion of read-only transactions

 Figure 6.12 shows SODA’s average validation time that the primary cluster head

spends on a global transaction has no significant changes as the inter-arrival time

increases. However, the average validation time of S2PL and SESAMO is always zero

because their designs do not involve any cluster head. In other words, S2PL and

SESAMO do not prolong the response time due to the primary cluster head.

111

Figure 6.12 Average validation time that the primary cluster head spends on a

global transaction vs. proportion of read-only transactions

 As shown in Figure 6.13, the response time of S2PL and SESAMO roughly

increases when the proportion of read-only transactions increases. However, SODA does

not follow the trend; instead, it has almost the same response time because it is not

sensitive to this parameter once the proportion of read-only transactions > 10%. It is

obvious that the response time of SODA is higher than that of S2PL and SESMO. This

happens because SODA has the bottleneck problem due to primary cluster head and,

consequently, the transaction processing time is prolonged as shown in Figure 6.12.

However, the prolonged response time in SODA is still within the reasonable range

(averagely 32 seconds longer); otherwise, SODA should not have the lowest abort rate

shown in Figure 6.10. S2PL and SESAMO have shorter response time alternately.

Although shorter response time is expected by every algorithm, but the trade off has to be

done among all performance metrics. In other words, SODA trades off the response time

for lower abort rate, higher throughput, lower energy consumed by all servers and

112

balancing energy better among all servers.

Figure 6.13 Average of response time vs. proportion of read-only transactions

 Figure 6.14 shows the total number of cluster head reelections of SODA occurs

only once when the proportion of read-only transactions is 80%. This is because the

inter-arrival time is fixed with its default value 5 seconds when we study the effect of the

proportion of read-only transactions, thus, the total simulation time is around 1.5 hours

(1000 transactions * 5 seconds = 5,000 seconds) no matter how the proportion of read-

only transactions varies. After running 1.5 hours, most cluster heads’ remaining energy

is not below the predefined threshold LET yet, therefore, only one reelection is triggered

to change roles for preserving energy and balancing energy usage. However, the total

number of reelections of S2PL and SESAMO is always zero because their designs do not

involve any cluster heads. In other words, S2PL and SESAMO do not rotate roles among

servers to balance energy.

113

Figure 6.14 Total number of cluster head reelections vs. proportion of read-only

transactions

Figure 6.15 shows that the total energy consumption of all servers in S2PL and

SESAMO roughly increases with the increase of the proportion of read-only transactions.

This is expected because more transactions are committed as the proportion of read-only

transactions increases as shown in Figure 6.10, so that each server has to spend more time

in active mode on processing transactions as shown in Figure 6.9. In other words, the

more transactions are committed, the more energy is consumed, and Figure 6.15 confirms

this fact except for SODA. However, SODA does not follow the trend due to reaching its

transaction processing capacity or not being sensitive to this parameter. In addition,

SODA consumes at least 178,615 J and at most 311,750 J less than both S2PL and

SESAMO when the proportion of read-only transactions > 20%. This happens because

SODA is optimistic and is not in active mode most of the time as shown in Figure 6.9.

114

Figure 6.15 Total energy consumed by all servers vs. proportion of read-only

transactions

 In Figure 6.16, the average difference in remaining energy between two servers

does not have strict trends of increase or decrease as the proportion of read-only

transactions increases. It is obvious that SODA is the best to balance energy

consumption, and S2PL does the worst except when the proportion of read-only

transactions = 40%. This is because SODA elects nodes with higher remaining energy

and less workload to be cluster heads, and these cluster heads work as coordinating

servers and will be reelected when their remaining energy is low. However, in S2PL and

SESAMO, there is no clustering and role rotation strategy and clients may keep

submitting transactions to the same servers so that these servers are overloaded.

115

Figure 6.16 Average difference in remaining energy between two servers vs.

proportion of read-only transactions

6.2.3 Effect of disconnection probability

 In this experiment, the disconnection probability is varied to study the effect on

the performance due to frequent disconnections in a MANET. The experiment results

are shown in Figures 6.17-6.24.

 Figure 6.17 shows that in SODA, the total time when servers are in active mode

increases as the disconnection probability increases, but in S2PL and SESAMO, this

metric does not always increase or decrease as the disconnection probability increases. It

is obvious that SESAMO performs the worst, and SODA performs the best. This

confirms the fact that S2PL and SESAMO cannot work effectively in MANETs. In other

words, even though servers are disconnected in S2PL and SESAMO, their data are still

locked by some transactions, so that these servers have to be in active mode to keep

processing transactions.

116

Figure 6.17 Total time when servers are in active mode vs. disconnection

probability

 As shown in Figure 6.18, the abort rates of S2PL, SESAMO and SODA increase

when the disconnection probability increases. This reflects the fact that fewer servers are

available as more and more servers are disconnected. The abort rate of SODA is much

lower (at most 37%) than those of SESAMO and S2PL when the disconnection

probability < 70%. This is mainly because S2PL and SESAMO utilize locks to prevent

conflicting transactions from accessing common data and now servers are frequently

disconnected, so that lots of transactions are aborted because they could not access the

required data and thus missed their deadlines. SESAMO’s abort rate is lower than

S2PL’s because S2PL runs strict 2PL locally along with 2PC to enforce global

serializability, but 2PC does not work effectively when disconnections are frequent in the

network. In other words, since 2PC needs two rounds of communications between the

coordinating sever and participating servers to determine a commit or not, and now

117

servers are frequently disconnected, it takes significant waiting time for 2PC to finish,

and thus, more transactions are aborted due to missing their deadlines.

Figure 6.18 Abort rate vs. disconnection probability

 Figure 6.19 shows that the system throughput of these three algorithms decreases

as the disconnection probability increases. This happens because servers are frequently

disconnected and are not available to process transactions, so that lots of transactions are

aborted because they missed their deadlines as shown in Figure 6.18. The system

throughput of SODA is higher than that of SESAMO and S2PL until the disconnection

probability = 70%. This is still mainly because SODA is optimistic and non-blocking, so

that servers do not lock data and can process transactions in time. SESAMO’s system

throughput is higher than S2PL’s all the time because SESAMO does not enforce global

serializability and more transactions can complete before their deadlines.

118

Figure 6.19 System throughput vs. disconnection probability

 Figure 6.20 shows the average validation time that the primary cluster head

spends on a global transaction of SODA increases as the disconnection probability

increases. This happens because when the primary cluster head disconnects more

frequently, it is often unavailable to validate transactions. However, the average

validation time of S2PL and SESAMO is always zero because their designs do not

involve any cluster head. In other words, S2PL and SESAMO do not prolong the

response time due to the primary cluster head.

119

Figure 6.20 Average validation time that the primary cluster head spends on a

global transaction vs. disconnection probability

 As shown in Figure 6.21, the response time of S2PL, SESAMO and SODA

roughly increases when the disconnection probability increases. This happens because

servers are frequently disconnected and not available more often, so that transaction

execution time is prolonged. S2PL has shorter response time than both SESAMO and

SODA when the disconnection probability > 30%, but S2PL has higher abort rate than

both SESAMO and SODA as shown in Figure 6.18. Again, the response time of SODA

is higher than those of S2PL and SESMO because the primary cluster head is applied for

validating global transactions as shown in Figure 6.20. However, the prolonged response

time in SODA is reasonable (averagely 22 seconds longer) because it is still within the

transaction deadline; otherwise, SODA should not have the lowest abort rate shown in

Figure 6.18.

120

Figure 6.21 Average response time vs. disconnection probability

 Figure 6.22 shows that the total number of cluster head reelections of SODA

occurs only once when the disconnection probability is 50%. This is because the inter-

arrival time is fixed with its default value 5 seconds when we study the effect of the

disconnection probability, thus, the total simulation time is around 1.5 hours (1000

transactions * 5 seconds = 5,000 seconds). After running 1.5 hours, most cluster heads’

remaining energy is not below the predefined threshold LET yet, therefore, only one

reelection is triggered to change roles for preserving energy and balancing energy usage.

However, the total number of reelections of S2PL and SESAMO is always zero because

their designs do not involve any cluster heads. In other words, S2PL and SESAMO do

not rotate roles among servers to balance energy.

121

Figure 6.22 Total number of cluster head reelections vs. disconnection

probability

In Figure 6.23, the total energy consumed by all servers of SODA slightly

increases as the disconnection probability increases, but those of S2PL and SESAMO do

not always increase or decrease as the disconnection probability increases. It is easy to

observe that SESAMO has the highest total energy consumed by all servers, followed by

S2PL, and SODA has the lowest energy consumption. This happens because S2PL and

SESAMO utilize locks to hold limited system resources to prevent conflicting

transactions from accessing them. In other words, even though servers are disconnected

in S2PL and SESAMO, their data are still locked by some transactions, and these servers

have to be in active mode to keep processing transactions. SODA consumes at least

115,368 J and at most 271,638 J less than both S2PL and SESAMO. This happens

because SODA is optimistic and is not in active mode most of the time as shown in

Figure 6.15.

122

Figure 6.23 Total energy consumed by all servers vs. disconnection probability

 In Figure 6.24, the average difference in remaining energy between two servers of

S2PL roughly increases as the disconnection probability increases, but those of

SESAMO and SODA goes up or down slightly as the disconnection probability

increases. It is easy to see that SODA is the best to balance energy consumption, and

S2PL does the worst except when the disconnection probability <= 20%. This is because

SODA elects nodes with higher remaining energy and less workload to be cluster heads,

and these cluster heads work as coordinating servers and will be reelected when their

remaining energy is low. However, in S2PL and SESAMO, there is no clustering and

role rotation strategy and clients may keep submitting transactions to the same servers so

that these servers are overloaded.

123

Figure 6.24 Average difference in remaining energy between two servers vs.

disconnection probability

6.2.4 Effect of disconnection time

 In this experiment, the disconnection time is varied to study the effect on the

performance of the three algorithms because frequent disconnections are common in

MANETs. The experiment results are shown in Figures 6.25-6.32.

 Figure 6.25 shows that the total time when servers are in active mode of SODA

slightly increases as the disconnection time increases, but those of S2PL and SESAMO

goes up or down as the disconnection time increases. It is obvious that servers in

SESAMO spend the longest total time in active mode on processing transactions,

followed by S2PL, and SODA has the shortest total time. This happens because S2PL

and SESAMO are pessimistic and utilize locks to hold common data to prevent

conflicting transactions from accessing them. In other words, even though servers are

disconnected in S2PL and SESAMO, their data are still locked by some transactions, and

124

these servers have to be in active mode to keep processing transactions.

Figure 6.25 Total time when servers are in active mode vs. disconnection time

 In Figure 6.26, the abort rates of S2PL, SESAMO and SODA increase when the

disconnection time increases. This reflects the fact that fewer servers are available as

servers are disconnected from the network longer and longer. The abort rate of SODA is

much lower (at most 28%) than those of SESAMO and S2PL. This is mainly because

S2PL and SESAMO utilize locks to prevent conflicting transactions from accessing

common data and now servers are frequently disconnected, so that lots of transactions are

aborted due to not able to access data and missing deadlines. SESAMO’s abort rate is

lower than S2PL’s because SESAMO does not enforce global serializability.

125

Figure 6.26 Abort rate vs. disconnection time

 Figure 6.27 shows that the system throughput of these three algorithms decreases

as the disconnection time increases. This happens because servers are frequently

disconnected and are not available for a while to process transactions, so that lots of

transactions are aborted because they missed their deadlines as shown in Figure 6.26.

The system throughput of SODA is at least two more transactions/minute than that of

SESAMO and S2PL. This is still mainly because SODA is optimistic and non-blocking,

so that servers can process transactions in time. SESAMO’s system throughput is higher

than S2PL’s all the time because SESAMO does not enforce global serializability and

more transactions can complete before their deadlines.

126

Figure 6.27 System throughput vs. disconnection time

 Figure 6.28 shows SODA’s average validation time that the primary cluster head

spends on a global transaction increases as the disconnection time increases. This

confirms that when the primary cluster’s disconnection time gets longer, transactions

have to wait longer for it to become available again before they can be validated.

However, the average validation time of S2PL and SESAMO is always zero because

their designs do not involve any cluster head. In other words, S2PL and SESAMO do

not prolong the response time due to the primary cluster head.

127

Figure 6.28 Average validation time that the primary cluster head spends on a

global transaction vs. disconnection time

 As shown in Figure 6.29, the response time of S2PL, SESAMO and SODA

roughly increases when the disconnection time increases. This happens because when

servers’ disconnection time gets longer, transactions have to wait longer for servers to

become available again before they can access their required data. S2PL has shorter

response time than both SESAMO and SODA when the disconnection time > 5 seconds,

but S2PL has higher abort rate than both SESAMO and SODA as shown in Figure 6.26.

Again, the response time of SODA is higher than those of S2PL and SESMO, and one of

the major causes of this is due to the primary cluster head as shown in Figure 6.28.

However, the prolonged response time in SODA is reasonable (averagely 25 seconds

longer) because it is still within the transaction deadline; otherwise, SODA would not

have the lowest abort rate shown in Figure 6.26.

128

Figure 6.29 Average response time vs. disconnection time

 Figure 6.30 shows the total number of cluster head reelections of SODA occurs

only 4 times when the disconnection times are 5s, 8s, 9s and 10s. This is because the

inter-arrival time is fixed with its default value 5 seconds when we study the effect of the

disconnection time, thus, the total simulation time is around 1.5 hours (1000 transactions

* 5 seconds = 5,000 seconds). After running 1.5 hours, most cluster heads’ remaining

energy is not below the predefined threshold LET yet, therefore, only 4 reelections are

triggered to change roles for preserving energy and balancing energy usage. However,

the total number of reelections of S2PL and SESAMO is always zero because their

designs do not involve any cluster heads. In other words, S2PL and SESAMO do not

rotate roles among servers to balance energy.

129

Figure 6.30 Total number of cluster head reelections vs. disconnection time

In Figure 6.31, it can be observed that the total energy consumed by all servers of

SODA slightly increases as the disconnection time increases, but those of S2PL and

SESAMO do not always increase or decrease as the disconnection time increases.

SESAMO has the highest total energy consumed by all servers, followed by S2PL, and

SODA has the lowest energy consumption. This happens because S2PL and SESAMO

utilize locks to hold limited system resources to prevent conflicting transactions from

accessing them. In other words, even though servers are disconnected in S2PL and

SESAMO, their data are still locked by some transactions, and these servers have to be in

active mode to keep processing transactions. SODA consumes at least 115,890 J and at

most 299,643 J less than both S2PL and SESAMO. This is expected because the more

time when servers are in active mode as shown in Figure 6.25, the more energy is

consumed by all servers.

130

Figure 6.31 Total energy consumed by all servers vs. disconnection time

 Figure 6.32 shows that the average difference in remaining energy between two

servers of the three algorithms does not always increase or decrease as the disconnection

time increases, and S2PL has a sudden increase at the disconnection time = 8 seconds

and 9 seconds. It is easy to observe that SODA is the best to balance energy

consumption, followed by SESAMO, and S2PL is the worst. This is expected because

SODA elects nodes with higher remaining energy and less workload to be cluster heads,

and these cluster heads work as coordinating servers and will be reelected when their

remaining energy is low as shown in Figure 6.30. However, in S2PL and SESAMO,

there is no clustering and role rotation strategy and clients may keep submitting

transactions to the same servers so that these servers are overloaded.

131

Figure 6.32 Average difference in remaining energy between two servers vs.

disconnection time

6.2.5 Effect of node moving speed

 The effect of the node mobility on the performances is studied in this section

since every node can move freely in a MANET. Unlike other MANET characteristics,

such as disconnection probability and disconnection time studied in Sections 6.2.3 and

6.2.4, respectively, the node moving speed has negligible effects on all seven

performance metrics. In other words, regardless of the node moving speed, the

performance metrics remain more or less the same. This is because even if all nodes

move with the maximum moving speed 10 m/s, they move along with their groups (due

to application semantics) and are limited within the area 1000*1000 meters2, thus, the

distances between nodes do not change significantly and the routine of transaction

processing is not heavily impacted. The experiment results are shown in Figures 6.33 -

6.40 to confirm this observation.

132

 In Figure 6.33 the total time when servers are in active mode of the three

algorithms shows no significant changes when the node moving speed increases except

for S2PL at the speed = 7 m/s. It is obvious that servers in SESAMO spend the longest

total time in active mode on processing transactions, followed by S2PL, and SODA has

the shortest total time. This happens because S2PL and SESAMO are pessimistic and

utilize locks to hold limited system resources to prevent conflicting transactions from

accessing them. In other words, even though servers are disconnected in S2PL and

SESAMO, their data are still locked by some transactions, and these servers have to be in

active mode to keep processing transactions.

Figure 6.33 Total time when servers are in active mode vs. node moving speed

 In Figure 6.34, the abort rates of S2PL, SESAMO and SODA show no significant

changes when the node moving speed increases. The abort rate of SODA is much lower

133

(at most 27%) than those of SESAMO and S2PL. This is mainly because SODA is

optimistic and non-blocking, and conflicts among transactions become rare, so that

servers are not in active mode most of time as shown in Figure 6.33, and can process

transactions in time. SESAMO’s abort rate is lower than S2PL’s because SESAMO does

not enforce global serializability and more transactions can complete before their

deadlines.

Figure 6.34 Abort rate vs. node moving speed

 In Figure 6.35, the system throughput of the three algorithms shows no

significant changes when the node moving speed increases, but it is easy to observe that

the system throughput of SODA is at least 2 more transactions/minute than those of

SESAMO and S2PL. This is still mainly because SODA is optimistic and non-blocking,

so that servers can process transactions in time. SESAMO’s system throughput is higher

134

than S2PL’s all the time because SESAMO does not enforce global serializability and

more transactions can complete before their deadlines.

Figure 6.35 System throughput vs. node moving speed

 In Figure 6.36, SODA’s average validation time that the primary cluster head

spends on a global transaction shows no significant changes as the node moving speed

increases. However, the average validation time of S2PL and SESAMO is always zero

because their designs do not involve any cluster head. In other words, S2PL and

SESAMO do not prolong the response time due to the primary cluster head.

135

Figure 6.36 Average validation time that the primary cluster head spends on a

global transaction vs. node moving speed

 As shown in Figure 6.37, the response time of S2PL, SESAMO and SODA show

no significant changes when the node moving speed increases. S2PL and SESAMO have

shorter response time alternately, but S2PL has higher abort rate than both SESAMO and

SODA as shown in Figure 6.34. Again, due to the bottleneck problem at the primary

cluster as shown in Figure 6.36, the response time of SODA is higher than those of S2PL

and SESMO. However, the prolonged response time in SODA is reasonable (averagely

19 seconds longer) because it is still within the transaction deadline; otherwise, SODA

should not have the lowest abort rate shown in Figure 6.34.

136

Figure 6.37 Average of response time vs. node moving speed

 Figure 6.38 shows the total number of cluster head reelections of SODA occurs

only once at 2 m/s as the node moving speed increases. This is because the inter-arrival

time is fixed with its default value 5 seconds when we study the effect of the node

moving speed, thus, the total simulation time is around 1.5 hours (1000 transactions * 5

seconds = 5,000 seconds). After running 1.5 hours, most cluster heads’ remaining

energy is not below the predefined threshold LET yet, therefore, only one reelection is

triggered to change roles for preserving energy and balancing energy usage. However,

the total number of reelections of S2PL and SESAMO is always zero because their

designs do not involve any cluster heads. In other words, S2PL and SESAMO do not

rotate roles among servers to balance energy.

137

Figure 6.38 Total number of cluster head reelections vs. node moving speed

Figure 6.39 shows that the total energy consumption of all servers does not

change significantly with the increase of the node moving speed, but it is easy to observe

that SESAMO has the highest total energy consumed by all servers, followed by S2PL,

and SODA has the lowest energy consumption. This happens because S2PL and

SESAMO utilize locks to hold limited system resources to prevent conflicting

transactions from accessing them and, consequently, servers have to be in active mode

longer to process transactions as shown in Figure 6.33. SODA consumes at least 199,388

J and at most 296,734 J less than both S2PL and SESAMO. This is expected because

SODA is optimistic and is not in active mode most of the time as shown in Figure 6.33.

138

Figure 6.39 Total energy consumed by all servers vs. node moving speed

 As shown in Figure 6.40, when varying the node moving speed, the

average difference in remaining energy between two servers in the three

algorithm does not change significantly except for S2PL at the speed = 2 m/s and

3 m/s. It is easy to observe that SODA is the best to balance energy consumption,

followed by SESAMO, and S2PL is the worst. This is because SODA elects

nodes with higher remaining energy and less workload to be cluster heads, and

these cluster heads work as coordinating servers and will be reelected when their

remaining energy is low as shown in Figure 6.38. However, in S2PL and

SESAMO, there is no node clustering and role rotation strategy and clients may

keep submitting transactions to the same servers so that these servers are

overloaded.

139

Figure 6.40 Total average difference in remaining energy between two servers

vs. node moving speed

6.3 Conclusions

 In this chapter, simulation experiments were conducted to compare the

performance of our proposed SODA algorithm with those of two existing algorithms,

SESAMO and S2PL, when varying the inter-arrival time, proportion of read-only

transactions, disconnection probability, disconnection time and node moving speed. The

simulation results show that SODA most of time performs better than both SESAMO and

S2PL in terms of transaction abort rate, system throughput, total energy consumption by

all servers, and average difference in remaining energy between two servers. However,

SODA has to tradeoff transaction response time for these superiorities.

140

CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH

7.1 Conclusions

 In this dissertation, we proposed an energy-efficient CC algorithm, called

Sequential Order with Dynamic Adjustment (SODA), for mission-critical MANET

databases in a clustered network architecture. In this architecture, nodes are divided into

clusters, each of which has a node, called cluster head, responsible for the processing of

all nodes in the cluster. In SODA, in order to conserve energy and balance the energy

consumption among servers so that the lifetime of the network is prolonged, we elected

cluster heads using our weighted clustering algorithm MEW (Mobility, Energy, and

Workload) to work as coordinating servers. SODA is based on optimistic CC to offer

high concurrency and avoid unbounded blocking time. It utilizes the sequential order of

committed transactions to simplify the validation process, and dynamically adjusts the

sequential order of committed transactions to reduce transaction aborts. The simulation

results show that MEW prolongs the lifetime of MANETs and has a lower cluster head

change rate and re-affiliation rate than the existing algorithm MOBIC. The simulation

results show the superiority of SODA over the existing techniques SESAMO and S2PL,

in terms of transaction abort rate, system throughput, total energy consumption by all

servers, and degree of balancing energy consumption among servers. However, SODA

has to prolong transaction response time for these achievements.

141

7.2 Summary of Simulation Results

Based on the simulation results presented in Chapter 6, we observed the following

trends:

• The abort rates of SODA, SESAMO and S2PL decrease as the transaction inter-

arrival time and proportion of read-only transactions increase, but they increase

with the increase of disconnection probability and disconnection time. The abort

rates of these three algorithms have no significant changes when the node moving

speed varies. S2PL has the highest abort rate, followed by SESAMO, and SODA

has the lowest abort rate, i.e., S2PL > SESAMO > SODA.

• The system throughput of SODA, SESAMO and S2PL increases as the proportion

of read-only transactions increases, but, it decreases with the increase of

disconnection probability and disconnection time. The system throughput of these

three algorithms follows no significant trend when the inter-arrival time and node

moving speed vary. SODA has the highest throughput, followed by SESAMO,

and S2PL has the lowest throughput, i.e., SODA > SESAMO > S2PL.

• The average response time of SODA, SESAMO and S2PL increases as the

disconnection probability and disconnection time increase, but it follows no

significant trend when the inter-arrival time, proportion of read-only transactions

and node moving speed vary. The average response time of SODA is higher than

that of S2PL and SESMO. However, the average response time of SODA is still

within the reasonable range. In other words, SODA has higher average response

time, but its transactions are not aborted due to missing deadlines, i.e., SODA >

142

SESAMO > S2PL.

• The total energy consumed by all servers of SODA, SESAMO and S2PL

increases as the inter-arrival time increases, but it does not follow a significant

trend when the proportion of read-only transactions, disconnection probability,

disconnection time and node moving speed vary. SESAMO has the highest

energy consumption, followed by S2PL, and SODA has the lowest energy

consumption most of time, i.e., SESAMO > S2PL > SODA.

• The average difference in remaining energy between two servers of SODA,

SESAMO and S2PL follows no significant trend with the increase of the inter-

arrival time, proportion of read-only transactions, disconnection probability,

disconnection time and node moving speed. Most of time, SODA has the lowest

difference, followed by SESAMO, and S2PL has the highest difference, i.e.,

S2PL > SESAMO > SODA.

From the above observations, we conclude that SODA is the first choice if the

prolonged transaction response time is not an issue; otherwise, S2PL is the best choice to

get the results back in time regardless of high transaction abort rate. If applications do

not require global serializability and transactions should be completed within short

deadlines, SESAMO is the right choice.

7.3 Future Research

 Since SODA has prolonged response time, a new version of SODA should be

explored to shorten the response time. To guarantee global serializability, a primary

143

cluster head is elected to validate global transactions and, consequently, it becomes the

bottleneck, thus, other solutions to enforce global serializability should be explored as

well.

In the simulation of S2PL and SODA, 2PC is simply applied to guarantee

transaction atomicity, but 2PC does not take MANET characteristics into consideration,

thus, a new commit protocol should be investigated to overcome the drawbacks of 2PC.

In order to deal with network partition and improve data access time and data

availability, a suitable data replication technique should be adopted into our simulation

model.

144

REFERENCES

[Abdouli, 2005] M. Abdouli, L. Amanton, B. Sadeg, and A. Alimi, "A System
Supporting Nested Transactions DRTDBSs," Proceedings of the 1st International High
Performance Computing and Communications, 2005, pp 888-897.

[Alampalayam, 2009] S. P. Alampalayam and S. Srinivasan, “Intrusion Recovery
Framework for Tactical Mobile Ad hoc Networks,” International Journal of Computer
Science and Network Security, Vol. 9, No. 9, 2009, pp. 1-10.

[Aschenbruck, 2008] N. Aschenbruck, E. Gerhards-Padilla, and P. Martini, "A Survey on
Mobility Models for Performance Analysis in Tactical Mobile Networks," Journal of
Telecommunications and Information Technology, Vol. 2, 2008, pp. 54-61.

[ATAC, 2005] http://www.atacwireless.com/adhoc.html. Last accessed – April 2011.

[Banerjee, 2001] S. Banerjee and S. Khuller, “A Clustering Scheme for Hierarchical
Control in Mult-hop Wireless Networks,” Proceedings of the 20th IEEE International
Conference on Computer Communications, 2001, pp.1028-1037.

[Basagni, 1999] S. Basagni, “Distributed Clustering for Ad Hoc Networks,” Proceedings
of the International Symposium on Parallel Architectures, Algorithms and Networks,
1999, pp. 310-315.

[Basagni, 2006] S. Basagni, M. Mastrogiovanni, A. Panconesi, and C. Petrioli,
“Localized Protocols for Ad Hoc Clustering and Backbone Formation: A Performance
Comparison,” IEEE Transactions on Parallel and Distributed Systems, Vol. 17, No. 4,
2006, pp. 292-306.

[Basu, 2001] P. Basu, N. Khan, and T. D. C. Little, “A Mobility Based Metric for
Clustering in Mobile Ad Hoc Networks,” Proceedings of the 21st International
Conference on Distributed Computing Systems, 2001, pp. 413-418.

[Bernstein, 1987] P. Bernstein, V. Hadzilacos and N. Goodman, Concurrency Control
and Recovery in Database Systems, Addison-Wesley, Reading, MA, 1987.

[Berrabah, 2009] S. A. Berrabah, “GPS data correction using encoders and INS sensors,”
the 3rd International Workshop on Robotics for risky interventions and Environmental
Surveillance-Maintenance, 2009.

[Bettstetter, 2002] C. Bettstetter and S. Konig, “On the Message and Time Complexity of
a Distributed Mobility-Adaptive Clustering Algorithm in Wireless Ad Hoc Networks,”
Proceedings of the 4th European Wireless, 2002, pp.128-134.

[Brayner, 2005] A. Brayner and F. S. Alencar, “A Semantic-serializability Based Fully-
Distributed Concurrency Control Mechanism for Mobile Multi-database Systems,”
Proceedings of the 16th International Workshop on Database and Expert Systems

145

Applications, 2005, pp. 1085-1089.

[Bruning, 2007] S. Bruning, J. Zapotoczky, P. Ibach, and V. Stantchev, “Cooperative
Positioning with MagicMap,” Workshop on Positioning, Navigation and Communication
2007, 2007, pp. 17-22.

[Catarci, 2008] T. Catarci, M. de Leoni, A. Marrella, M. Mecella, B. Salvatore, G.
Vetere, S. Dustdar, L. Juszczyk, A. Manzoor, and H. Truong, “Pervasive Software
Environments for Supporting Disaster Responses,” IEEE Internet Computing, Vol. 12,
No. 1, 2008, pp. 26-37.

[Chatterjee, 2002] M. Chatterjee, S. K. Das, and D. Turgut, “WCA: A Weighted
Clustering Algorithm for Mobile Ad Hoc Networks,” Cluster Computing, Vol. 5, No. 2,
2002, pp. 193-204.

[Chlamtac, 2003] I. Chlamtac, M. Conti, and J. Liu, “Mobile Ad Hoc Networking:
Imperatives and challenges,” Ad Hoc Networks Publication, Vol. 1, No. 1, 2003, pp. 13-
64.

[Choi, 2006] H. Choi and B. Jeong, “A Timestamp-based Optimistic Concurrency
Control for Handling Mobile Transactions,” International Conference on Computational
Science and its Application, Vol. 3981, 2006, pp. 796-805.

[Choi, 2009] M. Choi, W. Park, and Y. Kim, “Two-phase Mobile Transaction Validation
in Wireless Broadcast Environments,” Proceedings of the 3rd International Conference
on Ubiquitous Information Management and Communication, 2009, pp. 32-38.

[Denko, 2009] M.K. Denko, J. Tian, T. Nkwe, and M.S. Obaidat, “Cluster-Based Cross-
Layer Design for Cooperative Caching in Mobile Ad Hoc Networks,” IEEE Systems
Journal, Vol. 3, No. 4, 2009, pp. 499-508.

[Dirckze, 2000] R. Dirckze and L. Gruenwald, “A pre-serialization transaction
management technique for mobile multi-databases,” ACM Mobile Networks and
Applications, Vol. 5, No. 4, 2000, pp. 311-321.

[ER, 2005] I. ER, and W. Seah, “Clustering Overhead and Convergence Time Analysis
of the Mobility-based Multi-hop Clustering Algorithm for Mobile Ad Hoc Netorks,”
Proceedings of the 11th International Conference on Parallel and Distributed System,
2005, pp. 1144–1155.

[Fei, 2008] Y. Fei, L. Zhong, and N. K. Jha, “An energy-aware framework for dynamic
software management in mobile computing systems,” ACM Transactions on Embedded
Computing Systems, Vol. 7, No. 2, 2008, pp. 1-31.

[Fife, 2003] L. Fife and L. Gruenwald, "Research issues for Data Communication in
Mobile Ad-Hoc Network Database Systems," ACM SIGMOD RECORD, Vol. 32, No.2,
2003, pp. 42-47.

146

[Georgakopoulos, 1991] D. Georgakopoulos, M. Rusinkiewicz, and A. Sheth, "On
serializability of multidatabase transactions through forced local conflicts," Processing of
the 7th International Conference on Data Engineering, 1991, pp. 314-323.

[Gruenwald, 2007] L. Gruenwald, S. M. Banik, and C. N. Lau, "Managing real-time
database transactions in mobile ad-hoc networks," Distributed and Parallel Databases
Journal, Vol. 22, No. 1, 2007, pp. 27-54.

[Guo, 2008] S. Guo and O. Yang, “Maximizing multicast communication lifetime in
wireless mobile ad-hoc networks,” IEEE Transactions on Vehicular Technology, Vol. 57,
No. 4, 2008, pp. 2414–2425.

[Hofmann, 2006] P. Hofmann, K. Kuladinithi, A. Timm-Giel, C. Gorg, C. Bettstetter, F.
Capman, and C. Toulsaly, “Are IEEE 802 Wireless Technologies Suited for Fire
Fighters,” the 12th European Wireless Conference 2006 - Enabling Technologies for
Wireless Multimedia Communications, 2006.

[Holanda, 2008] M. Holanda, A. Brayner, and S. Fialho, “Introducing self-adaptability
into transaction processing,” Proceedings of the ACM Symposium on Applied
Computing, 2008, pp. 992-997.

[HP, 2008] http://h10010.www1.hp.com/wwpc/pscmisc/vac/us/product_pdfs/HP_iPAQ_
210_Enterprise_Handheld_Data_Sheet_02_08.pdf. Last accessed – April 2011.

[Hwang, 2000] S. Hwang, “On Optimistic Methods for Mobile Transactions,” Journal of
Information Science and Engineering, Vol. 16, 2000, pp. 535-554.

[Intel, 2008] http://www.intel.com/Assets/PDF/prodbrief/319982.pdf. Last accessed -
April 2011.

[Kim, 2006] K. Kim, “A Novel Factor for Robust Clustering in Mobile Ad Hoc
Networks,” IEICE Transactions on Communications, 2006, pp. 1436-1439.

[Kung, 1981] H. T. Kung and J. T. Robinson, “On optimistic methods for concurrency
control,” ACM Transactions on Database Systems, Vol. 6, No. 2, 1981, pp. 213-226.

[Lam, 2005] K. Lam, C. S. Wong and W. Leung, “Using Look-ahead Protocol for
Mobile Data Broadcast,” Proceedings of the 3rd International Conference on Information
Technology and Applications, 2005, pp. 342-345.

[Lee, 1993] J. Lee and S. H. Son, “Using Dynamic Adjustment of Serialization Order for
Real-time Database Systems,” Proceedings of 14th Real-Time Systems Symposium,
1993, pp. 66-75.

[Lee, 2002a] V. Lee, K. Lam, and S. H. Son, “Concurrency Control Using Timestamp
Ordering in Broadcast Environments,” The Computers Journal, Vol. 45, No.4, 2002, pp.
410-422.

147

[Lee, 2002b] V. Lee, K. Lam, S. H. Son, and E. Chan, “On Transaction Processing with
Partial Validation and Timestamp Ordering in Mobile Broadcast Environments,” IEEE
Transactions on Computers, Vol. 51, No.10, 2002, pp. 1196-1211.

[Lei, 2008] X. Lei, Y. Zhao, S. Chen and X. Yuan, “Scheduling Real-Time Nested
Transactions in Mobile Broadcast Environments,” Proceedings of the 9th International
Conference for Young Computer Scientists, 2008, pp. 1053-1058.

[Lei, 2009] X. Lei, Y. Zhao, S. Chen, and X. Yuan, "Concurrency control in mobile
distributed real-time database systems,” Journal of Parallel and Distributed Computing,
Vol. 69, No. 10, pp. 866-876.

[Leu, 2007] Y. Leu, J. Hung, and M. Lin, “A new cache invalidation and searching
policy for mobile ad hoc networks,” Proceedings of the 2007 annual Conference on
International Conference on Computer Engineering and Applications, 2007, pp. 337-343.

[Li, 2004] Y. Li, “A Caching Model in Managing Real-Time Transactions in Group-
based Mobile Ad-Hoc Network (GMANET),” Master Thesis, University of Oklahoma,
Norman, OK, 2004.

[Liu, 2005] J. Liu, F. Sailhan, D. Sacchetti, and V. Issarny, “Group Management for
Mobile Ad Hoc Networks: Design, Implementation and Experiment,” Proceedings of the
6th international conference on Mobile Data Management, 2005, pp. 192-199.

[Lu, 2007] W. Lu, W. K. G. Seah, E. W. C. Peh, and Y. Ge. “Communications Support
for Disaster Recovery Operations using Hybrid Mobile Ad-Hoc Networks,” Proceedings
of the 32nd IEEE Conference on Local Computer Networks, 2007, pp. 763-770.

[Lu, 2008] X. Lu, Y. C. Chen, I. Leung, X. Zhang, and P. Lio, “A novel mobility model
from a heterogeneous military manet trace,” Proceedings of the 7th international
conference on Ad-hoc, Mobile and Wireless Networks, 2008, pp. 463-474.

[Madria, 2007] S. K. Madria, V. Kumar, and S. Bhowmick, “A Transaction Model and
Multiversion Concurrency Control for Mobile Database Systems,” Distributed Parallel
Databases, Vol. 22, No. 2, 2007, pp.165-196.

[Moiz, 2007] S. A. Moiz and L. Rajamani, “Single Lock Manager Approach for
Achieving Concurrency Control in Mobile Environments,” International Conference on
High Performance Computing, Vol. 4873, 2007, pp. 650-660.

[Moiz, 2008] S. A. Moiz and Mo. K. Nizamuddin, “Concurrency Control without
Locking in Mobile Environments,” Proceedings of the 1st International Conference on
Emerging Trends in Engineering and Technology, 2008, pp.1336-1339.

[Moss, 1985] J. E. B. Moss, Nested Transactions: An Approach to Reliable Distributed
Computing, The MIT Press, Cambridge, MA, 1985.

[Notebookcheck, 2009] http://www.notebookcheck.net/Review-Lenovo-ThinkPad-

148

T400s-Notebook.21081.0.html. Last accessed - April 2011.

[Nouali, 2010] N. Nouali-Taboudjemat, F. Chehbour, and H. Drias, “On performance
evaluation and design of atomic commit protocols for mobile transactions,” Distributed
and Parallel Databases, Vol. 27, No. 1, 2010, pp. 53-94.

[Obermeier, 2009] S. Obermeier, S. Böttcher, M. Hett, P. K. Chrysanthis, and G.
Samaras, “Blocking reduction for distributed transaction processing within MANETs,”
Distributed and Parallel Databases Vol. 25, No. 3, 2009, pp. 165-192.

[Özsu, 1999] M. T. Özsu and P. Valduriez, Principles of Distributed Database Systems,
2nd edition, Prentice-Hall, 1999.

[Pabmanabhan, 2006] P. Pabmanabhan and L. Gruenwald, "DREAM: A Data
Replication Technique for Real-Time Mobile Ad-hoc Network Databases," Proceedings
of the 22nd International Conference on Data Engineering, 2006, pp. 134-137.

[Pritsker, 1999] A. Pritsker and J. O’Reilly, Simulation with Visual SLAM and AweSim,
2nd edition, New York: John Wiley & Sons, 1999.

[Serrano-Alvarado, 2004] P. Serrano-Alvarado, C. Roncancio, and M. Adiba, “A Survey
of Mobile Transactions,” Distributed and Parallel Databases, Vol. 16, No. 2, 2004, pp.
193-230.

[Sheu, 2006] P. Sheu and C. Wang, “A Stable Clustering Algorithm Based on Battery
Power for Mobile Ad Hoc Networks,” Tamkang Journal of Science and Engineering,
Vol. 9, No. 3, 2006, pp. 233-242.

[Silberschatz, 2005] A. Silberschatz, H. F. Korth, and S. Sudarshan, Database Systems
Concepts, McGraw-Hill College, 2005.

[Sklavos, 2007] N. Sklavos and K. Touliou, “Power Consumption in Wireless Networks:
Techniques & Optimizations,” Proceedings of the IEEE Region 8 EUROCON 2007
International Conference on Computer as a Tool, 2007.

[StarTech, 2011] http://us.startech.com/product/ST1000BT32-10100-1000-Mbps-32-bit-
PCI-Gigabit-Ethernet-Card. Last accessed - April 2011.

[Sucec, 2004] J. Sucec and I. Marsic, “Hierarchical Routing Overhead in Mobile Ad Hoc
Netorks,” IEEE Transactions on Mobile Computing, Vol. 3, No. 1, pp. 46-56.

[Viswacheda, 2007] D. V. Viswacheda, M. S. Arifianto and L. Barukang, “Architectural
Infrastructural Issues of Mobile Ad hoc Network Communications for Mobile
Telemedicine System,” Proceedings of 4th International Conference on Sciences of
Electronic, Technologies of Information and Telecommunications, 2007.

[Wang, 2007a] H. Wang, B. Crilly, W. Zhao, C. Autry, and S. Swank, “Implementing
Mobile Ad hoc Networking (MANET) over Legacy Tactical Radio Links,” Proceedings

149

of Military Communications Conference, 2007, pp. 1-7.

[Wang, 2007b] Y. Wang and M. S. Kim, “Bandwidth-adaptive Clustering for Mobile Ad
Hoc Networks,” International Conference on Computer Communications and Networks,
2007, pp. 103-108.

[Xing, 2008] Z. Xing, L. Gruenwald, and K. K. Phang, "SODA: an Algorithm to
Guarantee Correctness of Concurrent Transaction Execution in Mobile P2P Databases,"
Proceedings of the 19th International Conference on Database and Expert Systems
Application Workshop, 2008, pp. 337-341.

[Xing, 2010] Z. Xing, L. Gruenwald, and K. K. Phang, “A Robust Clustering Algorithm
for Mobile Ad-hoc Networks,” In a chapter on the Handbook of Research on Next
Generation Mobile Networks and Ubiquitous Computing, ISBN: 160566250X, Editor
Samuel Pierre, IGI Global, 2010, pp. 187-200.

[Xue, 2006] M. Xue, I. ER, and W. K. G. Seah, “Analysis of Clustering and Routing
Overhead for Clustered Mobile Ad Hoc Networks,” Proceedings of the 26th IEEE
international Conference on Distributed Computing Systems, 2006, pp. 46-53.

[Yu, 2005] J. Y. Yu and P. H. J. Chong, “A Survey of Clustering Schemes for Mobile Ad
Hoc Networks,” IEEE Communications Survey & Tutorials, Vol. 7, No. 1, 2005, pp. 32-
48.

[Zhang, 2010] X. Zhang, T. Kunz, L. Li, and O. Yang, “An Energy efficient Broadcast
Protocol in MANETs,” Proceedings of the 8th Annual Communication Networks and
Services Research Conference, 2010, pp. 199-206.

