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Abstract

Multi-criteria decision making has been made pos-
sible with the advent of skyline queries. However,
processing such queries for high dimensional datasets
remains a time consuming task. Real-time applica-
tions are thus infeasible, especially for non-indexed
skyline techniques where the datasets arrive online.
In this paper, we propose a caching mechanism that
uses the semantics of previous skyline queries to im-
prove the processing time of a new query. In addition
to exact queries, utilizing such special semantics al-
low accelerating related queries. We achieve this by
generating partial result sets guaranteed to be in the
skyline sets. We also propose an index structure for
efficient organization of the cached queries. Experi-
ments on synthetic and real datasets show the effec-
tiveness and scalability of our proposed methods.

1 Introduction

To address the problem of multi-criteria decision
making and user preference queries over attributes
in relations where there is no clear preference func-
tion, Börzsönyi et al. [1] introduced skyline queries.
The classic example of a skyline query involves choos-
ing hotels that are good in terms of two attributes,
price and distance to beach. The query discards ho-
tels that are both dearer and farther than a skyline
hotel. Formally, for every attribute, there is a pref-

erence function that states which values dominate.
Efficient indexes are difficult to built on relations

available only at run-time or on-the-fly [15]. Hence,
skyline queries suffer from large processing time and
I/O bottleneck. Caching techniques improve the situ-
ation to some extent. However, the use of traditional
tuple and page caching techniques do not promise sig-
nificant improvement for skyline queries as user inter-
ests are unpredictable and an inexact query with even
a slight modification where preferences are over a dif-
ferent subset of attributes, results in a cache miss.
For example, consider the following skyline queries:

select * from Airlines skyline of

Duration min, Cost min, Services max

select * from Airlines skyline of

Duration min, Cost min, Rating max

The new query

select * from Airlines skyline of

Duration min, Cost min

can be answered completely from the cache if the
results of the previous one are stored and intelligent
semantic caching techniques are applied.

The special semantics of the skyline queries al-
low such similar or related queries to be processed
mostly from the cache using the results of the pre-
vious queries, without accessing the database. Al-
though not all skyline queries can be handled so effi-
ciently, the use of cache does significantly accelerate
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them by producing at least partial results, which is
not possible using traditional caching mechanisms.

Our contributions in this paper are as follows:

1. We introduce the concept of semantic caching
for skyline queries.

2. We categorize a new skyline query into four types
according to the content in the cache and design
efficient algorithms to process each of them.

3. We design an index structure for organizing the
past skyline queries in the cache and show how
this index helps in searching the cache for pro-
cessing the new query.

The rest of the paper is organized as follows. Sec-
tion 2 reviews previous research on semantic caching
and skyline queries. In Section 3, a cache model is
designed for reusing result sets of previous skyline
queries. Section 4 describes an index structure to
organize and access the semantic descriptions of past
queries efficiently. It also describes the cache replace-
ment policy. In Section 5, the performance of skyline
caching is examined through experiments. Finally,
we summarize our work and discuss future research
in Section 6.

2 Background and related work

Consider a relation R with preferences specified for k
attributes. A tuple ri = (ri1, ri2, . . . , rik) dominates
another tuple rj = (rj1, rj2, . . . , rjk) (denoted by ri �
rj) if for all k attributes, ric is preferred or equal to
rjc, and for at least one attribute d, rid is strictly
preferred to rjd. The preference functions for each
attribute are specified as part of the skyline query. A
tuple r is said to be in the skyline set of R if there
does not exist any tuple s ∈ R that dominates r.

Skyline queries have been imported to databases
from the maximum vector problem or Pareto
curve [10] in computational geometry. The first algo-
rithm was proposed by Kung et al. [10]. BNL [1] uses
a nested loop approach by repeatedly reading the set
of tuples. SFS [3] improves it by sorting the data
based on a monotone function. LESS [7] combines

the best features of these external algorithms; how-
ever, its performance depends on the availability of
pre-sorted data. A divide-and-conquer approach to
partition the data so as to fit into the main memory
was proposed in [3]. Using index structures, algo-
rithms such as NN [9] and BBS [12] have been pro-
posed.

The idea of caching query results to optimize sub-
sequent query processing was first studied in [5, 11].
Several algorithms have been proposed in [4, 13, 4, 8]
that uses semantic caching efficiently and effectively
for general applications. Also dynamic caching poli-
cies have been studied [14].

Several intelligent structures, e.g., SkyCube [17]
and compressed skycubes [16], have been proposed to
efficiently compute the varying skyline queries based
on approximate correlated user queries by using the
computational dependencies among related queries.
However, complete construction of these structures
are inefficient in real-time applications. Further, in
caching scenarios, the entire cube may not fit in the
limited cache size. In this paper, we revisit the con-
cept of semantic caching for skyline queries and pro-
pose novel and intelligent algorithms along with an
indexing scheme.

3 Capturing semantics of sky-
line queries

In this section, we characterize a skyline query in
terms of previous skyline queries, which help relate
the new query to those in the cache.

3.1 Characterization of queries

We assume that all the skyline queries are for a sin-
gle relation.1 We also assume the distinct value con-
dition [17] which states that if no two data points
have the same values for all the dimensions, then the
skyline result for dimension set A is a subset of the
skyline result for dimension set B when A ⊂ B. Each
query is represented as the set of attributes of sky-
line preferences, which we assume is not altered for

1For different relations, separate (logical) caches can be
maintained.
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a particular dimension. This assumption holds since
the preferences of users are generally the same.2

Given a cache modeled as a set of queries: C =
{S1, S2, . . . , Sn} where each cached query Sj is again
a set of attributes, a new query Q = {a1, a2, . . . , aq}
can be characterized into at least one of the following
groups:

1. Exact Query: Q is an exact query if it matches
exactly with a cached query, i.e., ∃Sj , Q = Sj ,
indicating the re-occurrence of a previous query.

2. Subset Query: Q is a subset query if all its
attributes are completely contained in a cached
query, i.e., ∃Sj , Q ⊂ Sj .

3. Partial Query: Q is a partial query if some of
its attributes are subsets of a cached query, i.e.,
∃Q′ ⊂ Q,∃Sj , Q

′ ⊆ Sj .

4. Novel Query: Q is a novel query if none of its
attributes are cached, i.e., if ∀ai ∈ Q,∀Sj , ai /∈
Sj .

The hierarchy of categorization is important for
query processing (details in Section 3.3). The most
restrictive category determines the type of the query.
For example, if a query is both an exact and a subset
query, it is treated as an exact query and a query is
categorized as a novel query if and only if it cannot
be characterized as an exact, subset or partial query.
Table 1 describes an example in detail. When a new
skyline is queried, all the semantic segments stored
in the cache are scanned to determine the type of the
new query.

Table 1 describes an example in detail. The con-
tents of the cache are shown in the top row. The
main rows of the table depict how each query can be
categorized into the different query types. For exam-
ple, query Q1 is an exact query because it matches
with S2. It is also a subset query as its attributes
are completely contained within S1. Similarly, it can
be categorized as a partial query since some of its at-
tributes are contained in the cached queries S1 and

2The case where preferences may vary can be handled by
considering each (attribute, preference) pair as a separate at-
tribute.

S2. However, it will be treated as an exact query
since that is the most restrictive category. Query Q2

is similarly classified as a subset query even though
it is also a partial query. Query Q3 is a simple par-
tial query. Query Q4 will also be treated as a partial
query even though some of its attributes (attribute
7) is not cached at all. Query Q5 is a novel query as
it cannot be categorized into any of the three other
types.

3.2 Semantic segments

While a cached semantic query is simply a set of at-
tributes, certain other descriptors are also encapsu-
lated in a data structure called the semantic segment
for each query. The semantic segment for a query
contains the following fields:

• Attributes and preferences: Attributes on which
the skyline preferences are applied.

• Result : A link to a table of records that consti-
tute the answer to this query.

• Replacement value: It is used for cache replace-
ment methods (see Section 4.5).

3.3 Query processing algorithms

Based on the type of the new query, different query
processing strategies are followed as described in this
section.

3.3.1 Exact queries

If the query is an exact query, the result set of the
cached query is directly returned as the result set of
the new query.

3.3.2 Subset queries

If the new query Q is a subset of a cached query Sj ,
then the following lemma shows that the result set of
Q is a subset of the result set of Sj .

Lemma 1. If a skyline query Q is a subset of another
skyline query S, then the result set of Q is completely
contained in the result set of S.

3



Cache S1 = {1, 2, 3}, S2 = {1, 2}, S3 = {3, 4}, S4 = {5, 6}
Query Exact Subset Partial Type

Q1 = {1, 2} S2 S1 S1, S2 Exact
Q2 = {2, 3} - S1 S1, S2, S3 Subset
Q3 = {4, 5} - - S3, S4 Partial
Q4 = {6, 7} - - S4 Partial
Q5 = {7, 8} - - - Novel

Table 1: Characterization of queries.

Proof. Suppose Q = {a1, a2, . . . , aq}. Since
it is a subset of S, S can be written as
{a1, a2, . . . , aq, s1, s2, . . . , sn}. Consider a tuple v
which is a skyline record for Q. Given the distinct
value condition, this implies that there does not ex-
ist any tuple u � v such that u dominates v in all
the attributes {a1, a2, . . . , aq}. Therefore, u cannot
dominate v when more attributes {s1, s2, . . . , sn} are
added. Thus, v is a skyline record for S as well.

However, there can exist a tuple u which is a sky-
line record for S but not for Q. Assume that t � u
in {a1, a2, . . . , aq} but u � t in {s1, s2, . . . , sn}. Since
u is dominated in all attributes of Q by t, u is not a
skyline record for Q.

The next lemma shows that to determine whether
a tuple from the result set of Sj ⊃ Q is in the result
set of Q, only the tuples in Sj need to be checked for
dominance.

Lemma 2. If a tuple v in the result set of S is
not a skyline for Q ⊂ S, then there must exist
u ∈ result(S) such that u � v.

Proof. Suppose v ∈ result(S) is dominated in the
attributes of Q by a tuple t /∈ result(S). Since t is
not in the result set of S, there must exist a tuple
u ∈ result(S) that dominates t in all the attributes
of S including that of Q. Thus, u � t and t � v which
together imply u � v, which is a contradiction.

Hence, if none of the tuples in the result set of Sj

dominate a tuple u in all the attributes of Q, there
cannot exist any other tuple in the relation that can
dominate u. Then, u will be in the result set of Q.
Otherwise, it will not be.

If a new query Q is a subset of many cached queries
Si, Sj , etc., the processing becomes even faster. Any
tuple which is in the result set of Q must be in the
result set of all of Si, Sj , etc. Thus, only the tuples
that are in the intersection of the result sets of these
subset queries need to be examined.

While subset and exact queries can be processed
from the cache itself without accessing the database
at all, the advantage cannot be retained for the other
two types of queries as explained next.

3.3.3 Partial queries

Suppose the new query Q is partial to a cached query
Sj . The attributes Q′ ⊂ Q are contained in Sj , and
is equal to S′

j ⊆ Sj . Using Lemma 1, the skyline
corresponding to the attributes Q′ = S′

j is a subset
of the skyline set maintained for Sj . This subset is
computed and it serves as the base set. A special case
of partial queries allows the base set to be directly
available – when the query is a superset of Sj , i.e.,
Q′ = Sj . The entire skyline set of Sj then serves as
the base set for Q.

Unlike the case for subset queries, the computation
of the base set does not complete the processing. The
following lemma shows there may exist a tuple not in
the base set (i.e., the skyline set for Q′), but is part
of the skyline set of Q.

Lemma 3. A tuple in the skyline set of Q need not
be in the skyline set of its subset Q′.

Proof. Suppose Q = {q′1, q′2, . . . , q′n, q1, q2, . . . , qm}
and its subset Q′ = {q′1, q′2, . . . , q′n}. Consider a tu-
ple v that is in the skyline set of Q, i.e., there is no
tuple u that dominates v in all the n+m attributes.

4



However, it may well be the case that u � v in the
attributes q′1, q

′
2, . . . , q

′
n while v � u in the other at-

tributes q1, q2, . . . , qm. Then, v will not be a skyline
tuple for Q′.

Thus, the base set alone is not sufficient; it is neces-
sary to look for tuples that satisfy the skyline criteria
from the database. Computing the base set may then
seem as a useless exercise as scanning the database
cannot be avoided anyway. However, the base set
helps in two important ways.

First, since the tuples in the base set are guaran-
teed to be in the skyline set of Q, they can be output
immediately. For real-time applications, the implica-
tions of this concept of incremental results are enor-
mous. Without accessing the database at all, some
skyline records are output; while the user is busy ex-
amining them, the other skyline tuples can be com-
puted and fetched from the database.

The second important advantage is the fact that
the use of a base set can speed up most of the generic
skyline algorithms, such as BNL [1], SFS [3], and
LESS [7]. These algorithms maintain a window of
possible skyline tuples at all times found by scanning
the database in order. Since the base set fits in the
memory (as it is in the cache) and is guaranteed to
contain only skyline tuples, it can significantly im-
prove the query processing time by serving as the
initial window. For other non-indexed algorithms,
the base set may or may not help, but will never de-
teriorate the performance.

If there are two or more queries Si, Sj , etc. that
are partial to Q, base sets can be computed from
all of them. The union of these sets serve as the
consolidated base set which can then be used. Since
this combined base set is larger than any of the base
sets, the advantages are more pronounced.

3.3.4 Novel queries

Since the novel queries contain attributes on which
no previous skyline operator has been applied, the
cache does not contain any information that can be
used to expedite the processing. Consequently, such
queries are completely processed from the database.

3.4 Need for an index structure

Processing a new query first involves searching all the
semantic segments in the cache to determine its type.
This is a tedious task when the number of semantic
segments is large. As the number of semantic seg-
ments is exponential in number of dimensions, it can
be very large for high dimensional datasets.

However, there is an even bigger concern when the
semantic segments are not organized. Consider two
cached queries S1 and S2 where S2 ⊂ S1. The tuples
that form the result of S2 are already stored in the
result of S1. However, when the semantic segments
are stored näıvely, these tuples are maintained twice
in the cache, thereby wasting precious cache memory.
The problem is compounded when more queries that
are subsets of S2 are stored.

An efficient organization of the semantic segments
in the cache that can avoid storing redundant records
and can retrieve the result set by comparing with
lesser number of cached queries instead of comparing
with all of them is, thus, required.

4 Index structure

The index structure that we design is a directed
acyclic graph (DAG) linking the different semantic
segments. The semantic segment for a query S1 is
made a child of the semantic segment for a query S2 if
S1 ⊂ S2. Clearly, a semantic segment can have multi-
ple parents, but there cannot be any cycle. Note that
the graph may be a forest, hence a pseudo root node
is added that acts as the parent of all root nodes to
make it connected. In comparison to SkyCube based
structures, it does not contain the entire gamut of
the user query space and is based only on the queries
previously encountered, thereby befitting cache space
requirements.

4.1 Modified semantic segments

To maintain this index structure, in addition to the
fields described in Section 3.2, two more fields are
added to each semantic segment for efficient manage-
ment of links among semantic segments:
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• Child pointers

• Bit vectors

The child pointers link a semantic segment to its
children. For each attribute of the query, a bit vector
is maintained. The size of the bit vector is equal to
the number of children. The children of a node are
ordered according to their arrival. The ith bit in the
jth bit vector is set to 1 if and only if the ith child
contains the jth attribute. The bit vectors help to
retrieve the required children for an attribute quickly.

The size of the bit vector is not constant; rather, it
grows or shrinks with the number of children. How-
ever, since the order of the children is fixed, there is
no ambiguity about which bit refers to which child.

4.2 Eliminating redundancy of result
sets

The query processing algorithms use the index struc-
ture to eliminate the redundancy of result sets be-
tween a cached query and its subsets. If a query
has a child (i.e., a subset), then all the skyline tu-
ples are not stored in the result set; rather, they are
distributed between itself and the child. For exam-
ple, suppose query S1 has a child S2, which is a leaf
node. The skyline tuples for S2 are stored in its re-
sult set, i.e., r(S2) = s(S2). However, since these
records are a subset of the skyline tuples for S1, re-
dundancy is removed by not storing them again in
S1. Instead, only the difference of the skyline set for
S1 with S2 are stored, i.e., r(S1) = s(S1)−s(S2). The
complete skyline records for S1 can be retrieved by
combining the result set of S1 with that of S2, i.e.,
s(S1) = r(S1) ∪ r(S2). In general, when there are
multiple children, the skyline records of all of them
need to be combined to retrieve the result set for the
parent.

We next explain how a semantic segment is inserted
into the index of the cache. Note that a semantic
segment is inserted only when it is queried.

4.3 Query processing and insertion
using index

We illustrate the index search operation for query
processing and subsequent insertion using the series
of query examples as shown in Fig. 1. In the figures,
only the attributes and the node ids are shown for
simplification.

Initially, the cache is empty and the index simply
contains the pseudo root node. When the first query
{1, 2} arrives, it is classified as a novel query, and is
inserted as semantic segment S1 (Fig. 1a).

The next query is {1, 2, 3}. All the root nodes are
searched, and it is found out that this new query is
a superset of a cached query. Hence, it is classified
as a partial query, and the entire skyline set of S1 is
used as the base set. The new query now becomes
the root and the old root its child (Fig. 1b).

Then, query {3, 4} arrives. Scanning the root
nodes, it is found to be partial to S2. The base set is
computed which consists of the skyline tuples for the
common attributes, i.e., {3}. This semantic segment
(S4) is a subset of both S2 and the new query S3 and
is, therefore, maintained as a child of both (Fig. 1c).

The next query {5, 6} is a novel query as it does
not match with any of the root nodes. Consequently,
it is processed from the database and is inserted as a
new root node in the index (Fig. 1d).

Next is an exact query {1, 2}. The roots are
scanned, and is found to be a subset query of the first
root S2. The children of this root are then searched
to see if the categorization can be improved (as in
this case). The skyline set of S1 is returned as the
answer and no change is made to the index (Fig. 1e).

Query {2, 3} then arrives. Being a subset of S2,
only the children of S2 are searched, but no exact
match is found. The skyline set of {2, 3} is computed
from that of {1, 2, 3} and is inserted as a child of S2.
Since the skyline set of {3} is already maintained as
a semantic segment (S4), and it is a subset of this
new query as well, the child pointers and bit vectors
are appropriately modified in S2 and S6 to reflect the
fact that S4 now is only a descendant of S2 and not
a direct child (Fig. 1f).

Queries {4, 5}, {6, 7} and {8, 9} are similarly han-
dled (Figs. 1g, 1h and 1i).
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(a)
{1,2}

(b)
{1,2,3}

(c) {3,4} (d) {5,6} (e) {1,2} (f) {2,3}

(g) {4,5} (h) {6, 7} (i) {8,9}

Figure 1: Querying and insertion of semantic segments in the index.

4.4 Deletion from index

When the cache is full and a new query arrives, an
effective replacement policy must be chosen to select
the replacement candidate. Further, since the cache
is very dynamic, efficient update operations on the
index need to be designed.

The skyline set of a parent in the index is shared
among itself and its children, and the union of these
sets are computed for the result. Therefore, if a child
is deleted from the cache, for correctness, its skyline
set has to merged back with that of its parent. Since
the size of the skyline set is the largest factor for the
size of a semantic segment, deleting a child does not
produce much advantage. Thus, for our index struc-
ture, we only delete the root nodes and the children
become the new roots if they have no parent.

4.5 Cache replacement

Due to limited cache size, not all semantic segments
encountered can be stored. This is the main draw-

back of SkyCube-based techniques. For efficient use
of cache, the most useful semantic segments need to
be preserved and the rest should be replaced.

The first important parameter is the usage fac-
tor (α). When the semantic segment is first intro-
duced into the index, its replacement factor is set to
1. Every time its result set is used, the value is in-
cremented. The one with a lower replacement factor
should be replaced, as it is being less used.

The second important factor is the size (β) of the
skyline set, i.e., the number of tuples in it. Since the
available memory in the cache is a premium asset, a
semantic segment that stores a large number of tu-
ples as its skyline set does not allow other semantic
segments to be stored. Hence, it should be removed.

The third parameter that determines the useful-
ness of a semantic segment is dimensionality (d).
When the number of dimensions is more, there is
more chance of a new query to become a subset of
it or to have more overlap in case it is a partial query
and, therefore, should not be replaced.

A replacement value (δ) for each semantic seg-

7



Parameter Values

Cardinality (N) 1 × 104, 3 × 104, 1 × 105, 3 × 105, 1 × 106

Dimensionality (d) 3, 4, 5, 6, 7
Cache size (|C|) 0.1%, 1%, 3%, 5%, 7%, 10%
Number of queries (|Q|) 1, 5, 10, 25, 50, 100

Table 2: Experimental parameters and their default values (in bold).

ment is computed by combining the three, i.e., δ =
f(α, β, d). The semantic segment with the lowest δ is
the least useful and should be chosen for replacement.
The function f , therefore, should be monotonic with
α and d and anti-monotonic with β. While differ-
ent functions fit the condition, the following simple
function empirically produces good results:

δ = (α× d)/β

5 Experimental results

In this section, we evaluate the performance of the
caching techniques. The techniques were imple-
mented using Java on an Intel Core 2 Duo 2GHz ma-
chine with 2GB RAM in Ubuntu Linux environment.
For skyline computation, we used the non-indexed
sort-filter-skyline (SFS) [3] algorithm. We analyzed
and compared the execution times of three different
skyline processing techniques: (i) without using cache
(NC), (ii) using cache without using the index (NI),
and (iii) using cache with index (Index).

5.1 Synthetic datasets

We used the standard data generator for sky-
line queries from http://www.pgfoundry.org/

projects/randdataset to generate synthetic
datasets; the dimensions were chosen to be inde-
pendent. The scalability and performance of the
techniques on synthetically generated data were
measured against four different parameters: (i) car-
dinality of the dataset, (ii) dimensionality of the
dataset, (iii) size of the cache, and (iv) number of
queries. The values of these parameters were varied
according to Table 2. To study the effect of one

parameter, the other parameters were held constant
at the default values shown in bold.

Fig. 2(a) shows the performance of the differ-
ent techniques with varying dimensionality. As di-
mensionality increases, the cardinality of the skyline
set increases roughly exponentially for independent
datasets [2, 6]. The running time of the non-caching
method more or less shows the same behavior. The
number of semantic segments need to be maintained
increases exponentially as well. Thus, when no in-
dex is used in the cache, the running time is more
than when index is used. After d = 5, the size of
the cache is not enough to hold all the semantic seg-
ments, and many new queries are classified as novel
queries or partial queries. Consequently, the running
time increases.

Fig. 2(b) shows the effect of the cardinality of the
dataset. For small datasets, the overhead of searching
through all the semantic segments makes the caching
method slower than simply processing the skylines
from the database. For larger datasets, the overhead
becomes negligible as compared to the gains of using
the cache; consequently, the non-caching technique
performs the worst. The indexing technique reduces
this search overhead and, hence, requires the least
amount of time for all datasets.

We next investigate the effect of cache size, mea-
sured as a percentage of the size of the dataset. Since
the non-caching method does not depend on the size,
it is omitted from this experiment. Fig. 3(a) shows
how the running time is affected by varying cache
size. When the size is very small, only a few semantic
segments can be stored. In such situations, indexing
helps only to a small extent. As the size increases,
indexing allows more semantic segments to be stored
because of the way a semantic segment shares its re-
sult set with its subsets. The non-indexing method,
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Figure 2: Effect of (a) dimensionality. (b) dataset cardinality.

on the other hand, suffers from processing too many
semantic segments without much gain. When the
cache becomes quite large, it allows most of the se-
mantic segments to be stored along with their result
sets. More queries can now be classified as exact
or subset queries and the performance of the non-
indexing method improves. The performance of the
indexing technique saturates and does not improve
after a point.

Ideally, when there is enough space in the cache,
and the system has “seen” all possible skyline queries,
any new query should be answered very fast. The
final set of experiments tries to understand this phe-
nomenon in more detail.

Figure 3(b) shows the average running time of a
query as more and more queries arrive. When no
caching is used, the number of queries do not have
any effect, and as expected, the average running time
of a query varies randomly. For the first few number
of queries, the cache is virtually empty, and process-
ing the cache yields no hits and no benefit at all.
In fact, the overhead of maintaining the cache wors-
ens the performance in comparison to the no-caching
technique. Subsequently, as more queries arrive, the
performance improves for the indexing method. How-
ever, when indexing is not used and the semantic seg-
ments are left unorganized in the cache, lesser number
of semantic segments are stored due to redundancy
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Figure 4: Progressive performance of different tech-
niques as more queries arrive.

of the result sets. This leads to less number of cache
hits, and the performance suffers.

5.2 Real datasets

We also tested the performance of the tech-
niques on a real dataset from http://www.

databasebasketball.com/. The database provides
the statistics of NBA players with different attributes
such as total points, assists, field goals made, free
throws made, etc. Among these, six different dimen-
sions were chosen where the data is not missing for
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Figure 3: Effect of (a) cache size. (b) query cardinality.

most of the players. The cardinality of the relation
was 19,980. The cache size was set to 5% of that of
the relation.

The average running time of a query for the differ-
ent techniques is plotted in Fig. 4 against the num-
ber of queries. While the time for the non-caching
technique stabilizes after a few queries, that for the
caching methods decreases. Due to the superior or-
ganization of the semantic segments by the indexing
technique, the improvement is more pronounced as
compared to the non-indexing technique.

6 Conclusions

In this paper, we have introduced the concept of se-
mantic caching to accelerate a skyline query by clas-
sifying it as one of the four types—exact, subset, par-
tial and novel. While the exact and subset queries are
processed directly from the cache, partial results for
partial queries can be output from the cache before
resorting to the database for the full skyline set. We
also proposed an index structure to effectively orga-
nize the past queries in the cache and improve the
efficiency of the methods. Experimental results on
synthetic and real datasets showed the effectiveness
and scalability of the methods. In future, we plan to
handle update-intensive databases.
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