
LinkedPeers: A Distributed System for Interlinking
Multidimensional Data

Athanasia Asiki, Dimitrios Tsoumakos, and Nectarios Koziris

School of Electrical and Computer Engineering
National Technical University of Athens, Greece

{aassiki,dtsouma,nkoziris}@cslab.ece.ntua.gr

Abstract. In this paper we present LinkedPeers, a distributed system designed
for efficient distribution and processing of multidimensional hierarchical data
over a Peer-to-Peer overlay. he system design aims at incorporating two impor-
tant features, namely large-scale support for partially-structured data and high-
performance, distributed query processing including multiple aggregates. To
achieve that, LinkedPeers utilizes a conceptual chain of DHT rings that stores
data in a hierarchy-preserving manner and is able to adjust both the granularity
of indexing and the amount of pre-computation according to the incoming work-
load. Extensive experiments prove that our system is very efficient achieving over
85% precision in answering queries while minimizing communication cost and
adapting its indexing to the incoming queries.

1 Introduction

Our era can be characterized by an astonishing explosion in the amount of produced
data, at a rate even bigger than Moore’s law [1]. Market globalization, business process
automation, new regulations, the increasing use of sensors, all mandate even more data
retention from companies and organizations as a brute force method to reduce risk and
increase profits. In most applications, data are described by multiple characteristics (or
dimensions) such as time, customer, location, etc. Dimensions can be further annotated
at different levels of granularity through the use of concept hierarchies (e.g., Year→
Quarter → Month→ Day). Concept hierarchies are important because they allow
the structuring of information into categories, thus enabling its search and reuse.

Besides the well-documented need for efficient analytics, web-scale data poses ex-
tra challenges: While size is the dominating factor, the lack of a centralized or strict
schema is another important aspect: Data without rigid structures as those found in
traditional database systems are provided by an increasing number of sources, for ex-
ample data produced among different sources in the Web [2]. The distribution of data
sources renders many centralized solutions useless in performing on-line processing.
Consequently, any modern analytics platform is required to be able to perform efficient
analytics tasks on distributed, multi-attribute structured data without strict schema.

In this paper, we present the LinkedPeers system that efficiently stores and processes
data described with multiple dimensions, while each dimension is organized by a con-
cept hierarchy. We choose a Distributed Hash Table (DHT) substrate to organize any
number of commodity nodes participating in LinkedPeers. Data producers can individ-
ually insert and update data to the system described by a predefined group of concept

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 527–543, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

528 A. Asiki, D. Tsoumakos, and N. Koziris

hierarchies, while the number of dimensions may vary for each data item. Queries are
processed in a fully distributed manner triggering adaptive, query-driven reindexing and
materialization mechanisms to minimize communication costs.

The motivation behind the design of LinkedPeers is to provide a large-scale dis-
tributed infrastructure to accommodate collections of partially-structured data. In con-
trast to approaches where both data and their relationships are pre-defined by rigid
schemas, we intend to support a higher degree of freedom: System objects are described
by d dimensions, each of which is further annotated through a corresponding concept
hierarchy. LinkedPeers does not require that each inserted fact be described by values
for all dimensions. On the contrary, it attempts to fully support it and not restrict the
ability to efficiently process it.

LinkedPeers manages to preserve all hierarchy-specific information for each dimen-
sion, using a tree-like data structure to store data and interlinking trees among different
dimensions. A natural ordering of the dimensions that stems from their importance,
query skew, etc, yields to a corresponding organization of the DHT layer: LinkedPeers
comprises of multiple ‘virtual’ overlays, one for each dimension. This strategy results
with each object being split into d parts and ending up in nodes of the primary and
secondary rings. Trees at secondary rings maintain information towards related trees of
the primary ring.

The purpose of this design is to couple the operational autonomy of the primary ring
with a powerful meta-indexing structure integrated at the secondary rings, allowing
our system to return fast aggregated results for the queried values by minimizing the
communication cost. By allowing adaptive result caching and precomputation of related
queries, this efficacy is further enhanced.

The proposed scheme enables the processing of complex aggregate queries for any
level of any dimension, such as: “Which Cities belong to Country ‘Greece’ ?” or
“What is the population of Country ‘Greece’ ?” or “Which Cities of Country
‘Greece’ have population above 1 million in Year ‘2000’?”, considering that the
Location and Time hierarchies describe a numerical fact for population. The en-
forced indexing allows to find the location of any value of any stored hierarchy without
requiring any knowledge, while aggregation functions can be calculated on the nodes
that a query ends up.

To summarize, this work presents the LinkedPeers system which offers the following
innovative features:

– A complete storage, indexing and query processing system for data described by an
arbitrary number of dimensions and annotated according to defined concept hierar-
chies. LinkedPeers is able to perform efficient and online incremental updates and
maintain data in a fault-tolerant and fully distributed manner.

– A query-based materialization engine that pro-actively precomputes relevant views
of a processed query for future reference.

– Query-based adaptation of the indexing granularity of its indexing according to in-
coming requests.

Finally , to support our analysis, we present a thorough performance evaluation in
order to identify the behavior of our scheme under a large range of data and query loads.

LinkedPeers: A Distributed System for Multidimensional Data 529

2 LinkedPeers System Description

2.1 Notation and Definitions

Data items are described by tuples containing values from a data space domain D. These
tuples are defined by a set of d dimensions {d0, ..,dd−1} and the actual fact(s). Each di-
mension di is associated with a concept hierarchy organized along Li levels of aggrega-
tion �i j, where j (j ∈ [0,Li−1]) represents the j-th level of the i-th dimension. We define
that �ik lies higher (lower) than �il and denote it as �ik < �il (�ik > �il) iff k < l (k > l),
i.e., if �ik corresponds to a less (more) detailed level than �il (e.g., Month < Day).Tuples
are shown in the form:

〈v0,0, . . . ,v0,L0−1, . . . ,vd−1,0, . . . ,vd−1,Ld−1−1, f0, ...〉

where vi, j represents the value of the j-th level of the i-th dimension. Note also that any
value-set (vi,0, . . . ,vi,Li−1) for the i-th dimension may be absent from a tuple and that
f act j may be of any type (e.g., numerical, text, vector, etc). Level �i0 is called the root
level for the i-th dimension and its hashed value vi0 is called root key. The values of the
�iLi−1 are also referred to as leaf values.

The values of the hierarchy levels in each dimension are organized in tree structures,
one per root key. Without loss of generality, we assume that each value of �i j has at
most one parent in �i(j−1). To insert tuples in the multiple overlays, one level from each
dimension hierarchy is chosen; its hashed value serves as its key in the underlying DHT
overlay. We refer to this level as pivot level and to its hashed value as pivot key. The
pivot key that corresponds to the primary dimension (or primary ring) is called the
primary key. The highest and lowest pivot levels of each hierarchy for a specific root
key are called MinPivotLevel and MaxPivotLevel respectively.

The value-set of a dimension along the aggregated fact are organized as nodes of a
tree structure, which contributes to the preservation of semantic relations and search.
Figure 1 describes our running example. The shown tuples adhere to a 3-dimensional
schema. The primary dimension is described by a 4-level hierarchy, while the other two
are described by a 3-level and a 2-level hierarchy respectively. Note that the last two
tuples do not contain values in d1 and d2 respectively. The selected pivot level for the
primary dimension is �02 and thus all the shown tuples have the same pivot key in the
primary dimension. All the value-sets in each dimension are organized in tree-structures
with common root keys.

The basic type of query supported in LinkedPeers is of the form:
q = (q0k, ...,qi j, ...,q(d−1)m)

over the fact(s) using an appropriate aggregate function. By qi j we denote the value for
the j-th hierarchy level of the i-th dimension which can also be the special ‘*’ (or ALL)
value.

2.2 Data Insertion

Our system handles both bulk insertions and incremental updates in a unified manner.
As our design implies one virtual overlay per dimension, one key (using the SHA1 hash
function for instance) for a selected pivot value of each dimension is generated.

530 A. Asiki, D. Tsoumakos, and N. Koziris

Tuples in a local database:
Primary Dim Dim1 Dim2 Fact
(a0,a1,a2,a3) (b0,b1,b2) (c0,c1) f1
(a0,a1,a2,a3) (b0,b1,b'2) (c0,c'1) f2
(a0,a1,a2,a'3) null (c0,c'1) f3
(a0,a1,a2,a''3) (b0,b'1,b''2) null f4

a0

a1

a2

a3 a'3 a''3

pivot
level

pivot
key

root
key

Fig. 1. A group of tuples with various value combinations among dimensions and the resulted
tree structure for the primary dimension

During data insertions, the information about the pivot value is vital (only for initial
insertions the pivot level can be selected according to the needs of the application).
The design of LinkedPeers assumes if a value vi j is selected as a pivot key during the
insertion of a tuple, every other tuple that contains vi j must also select it as its pivot key
for dimension i. To comply with this assumption, a node should be aware of the existing
pivot keys during the insertion of a new tuple. Thus, a fully decentralized catalogue
storing information about root keys and their respective pivot keys in the network is
implemented in LinkedPeers. Each root key is stored at the node with ID closest to its
value. Every time that a new pivot key corresponding to this root key is inserted in the
system, the root key node is informed about it and adds it in a list of known pivot keys.
The root key node is also aware of the MaxPivotLevel used during the insertion of its
values in the specific dimension.

The procedure for inserting the values of a tuple appropriately in all dimensions
constitutes of the following basic steps:

– Inform each root key of every dimension about the corresponding value-set
(vi,0, . . . ,vi,Li−1) of the tuple, so as to decide for the appropriate pivot level.

– Insert each value-set (vi,0, . . . ,vi,Li−1) to the corresponding ith-ring.
– Create or update links among the trees of secondary dimensions towards the pri-

mary dimension.

Primary dim

dim1

dim2

a0 a1 a2 a3

a''3

a2 b0 b1 b2
c0

Nod2

b0

Nod4 Nod1

Linked Table

a2 c1

Linked Table

No
NodNoNo

a0root key of
primary dim

root key of
dim1

Fig. 2. The created data structures after the insertion of the first tuple of Figure 1

LinkedPeers: A Distributed System for Multidimensional Data 531

Initially, the initiator contacts the root key of the primary dimension’s value-set. The
root key of the primary dimension is informed about the new tuple and indicates the
appropriate pivot level (if the same pivot key already exists, then its pivot level is used,
otherwise the MaxPivotLevel). Afterwards, the DHT operation for the insertion of the
tuple in the primary dimension starts and the tuple ends up to the node responsible for
the decided pivot key. The node responsible for the pivot key of the primary dimension
stores its value set in a tree structure and the whole tuple in a store defined as its local
database. Moreover, it stores the result(s) of the aggregate function(s) over all these
tuples (i.e., the results for a (pivot key, ∗, . . . ,*) query). Figure 2 demonstrates the inser-
tion of the value-set (a0,a1,a2,a3) in the primary ring of an overlay consisting of nodes
referred to as Nodi. The root key a0 does not exist in the overlay and �02 is selected
randomly as pivot level. The root index is created from a0 towards a2 and the tuple is
inserted to the node Nod1, which is responsible for the pivot key a2 according to the
DHT protocol. Nod1 inserts all the values of the tuple in its local database as well.

he next step is to store the value-sets for the remaining dimensions in the correspond-
ing ring. The node responsible for the primary key contacts each node responsible for
the root keys and is informed about the appropriate pivot level in di. Since the pivot
levels for the secondary dimensions are determined, the value-set of each dimension is
stored in the node responsible for its pivot key. Again, the respective aggregates are also
maintained in the nodes of the trees. The values of the secondary dimensions are associ-
ated to the primary dimension through the primary key. Each leaf value of a secondary
tree structure maintains a list of the primary keys that is linked to. The structure storing
the mappings among the leaf values and the primary keys is referred to as Linked Table.
In case of an update taking place, the existing indices for any value of the tuple are also
updated.

In Figure 2, the tree structures comprising of only one branch for the secondary
dimensions are shown as well. During the insertion of value-set (b0,b1,b2), the root
index b0 is created (the pivot level for c0 is the root level and no further indexing is
needed). Figure 3 shows the final placement of the values of the tuples of Figure 1
among the nodes of the overlay.

Primary dim

dim1

dim2

a0 a1 a2

a3

a''3

a'3

a2
b0 b1

b2

b'2b0 b'1 c0

Nod2

d
b0

a2

Nod3

Nod4 Nod1

Linked Table

a2 b''2

Linked Table

a2 c1

c'1 a2

Linked Table

NNoNodNo 3

NNoN odNodod

a0

Fig. 3. Final placement and indexing of the tuples of Figure 1 in LinkedPeers

532 A. Asiki, D. Tsoumakos, and N. Koziris

3 Query Processing

The queries posed to the system are expressed by conjunctions of multiple values. When
a query includes a pivot value, then the node responsible for this value can be found
with a simple DHT lookup. Otherwise, the native DHT mechanisms are not adequate
to query the rest of the stored values. The proposed techniques can be further utilized
to enable the search for any stored value.

The idea behind the approach followed for the insertion of tuples in the DHT overlay
is the maintenance of the linking among the multiple dimensions, which can be searched
either independently from each other or in conjunction with others. When the query
does not define a specific value for a dimension (a ‘*’-value), then any possible value is
acceptable for the query. A query is assumed to include up to d-1 ‘*’ for d dimensions.

LinkedPeers allows adaptive change of pivot levels according to the query skew.
Therefore, query initiators are not aware if any of the queried values correspond to a
pivot value, forcing them to issue consecutive lookups for any value contained in the
query according to the dimension priority, until they receive a result. Initially, a lookup
operation is initiated for the value of the dimension with the highest priority. If the node
holding the queried value cannot be located by the DHT lookup, then a lookup for the
next non-‘*’ value follows. If no results are returned for all the values in the query, then
the query is flooded among the nodes of the overlay.

3.1 Exact Match Queries

Queries concerning a pivot value of any ring are called exact match queries and can
be answered by the DHT lookup mechanism. The are two categories of an exact match
query:

Category 1: Query is q = (q0pivotlevel , . . .), where a pivot value of the primary dimen-
sion is defined in the query. Other values may be included as well. The DHT lookup
ends up at the node responsible for the pivot key of the primary dimension. If this is
the only value asked, the corresponding tree structure is searched for the aggregate fact.
Otherwise, the local database is scanned and the results are filtered according to the
remaining values locally.

Category 2: Query is q = (q0 j, . . . ,qipivotlevel , . . .), where j �= pivotlevel. In this case,
a queried value in one of the secondary dimensions is a pivot value. The strategy fol-
lowed to resolve this query is that consecutive queries are issued until the node responsi-
ble for qipivotlevel is reached. If the query contains no other values, then the tree structure
of this node is adequate to answer it, otherwise the query is forwarded to all the nodes of
the primary dimension that store tuples containing qipivotlevel . These nodes query their
local databases to retrieve the relative tuples and send back the results to the initiator. If
more than one pivot values are present, then the query is resolved by the dimension with
the highest priority. In the example of Figure 3, a query for value b1 can be resolved by
the aggregated fact stored in Nod3. On the other hand, a query for the combination of
values (a3,b1,∗) reaches Nod2, which does not store adequate information to answer it
and (using its Linked Table) forwards it to Nod1, which queries its local database.

LinkedPeers: A Distributed System for Multidimensional Data 533

3.2 Flood Queries

Queries not containing any pivot value cannot be resolved by the native DHT lookup.
The only alternative is to circulate the query among all nodes and process it individually.
The hierarchical structure of data together with the imposed indexing scheme enable a
controlled flooding strategy that significantly reduces the communication cost.

Initially, a flood query is forwarded from a node to its closest neighbour in the DHT
substrate. Each visited node searches its tree structures for any of the values included in
the query. The visited nodes without any relative data are avoided for future forwarding
of the query during the rest of the procedure for the flood resolution.

Query forwarding continues until any of the queried values is found in the stored
trees. This node becomes the coordinator of the flood procedure. If more than one of
the queried values are found in the same node, then the query is resolved in the ‘virtual’
ring of the dimension with the highest priority.

The found value may belong to a level either below the pivot level or above the pivot
level. In the first case, there are no other trees with the specific value. The node either
sends the aggregated fact to the initiator of the query or forwards it to the nodes of the
primary dimension following the same strategy described for the second category of
the exact match queries. Otherwise, there may exist other trees with the same value. For
example, if a flood message for value a1 in Figure 3 reaches Nod1, other nodes with
the value a1 and different pivot keys may also exist. Yet, it is certain that this value is
not stored at a node corresponding to a different root key. Thus, the flood message is
forwarded to the node with the corresponding root key, which becomes the coordinator
of the procedure from now on. This node forwards the queries to the nodes whose pivot
keys it knows of, with each of them either returning the aggregated fact (when the value
belongs to the primary dimension or only a single dimension is queried) or a set of
candidate nodes that are linked in the primary dimension.

3.3 Materialized Views

In many high-dimensional storage systems, it is a common practice to pre-compute
different views (GROUP-BYs) to improve the response time. For a given data set R de-
scribed by d (dimensions) annotated by single-level hierarchies, a view is constructed
by an aggregation of R along a subset of the given attributes resulting in 2d different
possible views (i.e., exponential time and space complexity). The number of levels in
each dimension adds to the exponent of the previous formula. In LinkedPeers, we con-
sider a query-based approach to tackle the view selection problem: The selection of
which views to pre-compute is query-driven, as we take advantage of the evaluation
process to calculate parts of various views that we anticipate to need in the future.

Figure 4 depicts all the possible combinations of the query values (a1,b2,c1), rela-
tive to Figure 3. The attributes participating correspond to levels {�01, �12, �31} respec-
tively. Each combination (or view identifier) consists of a subset of attribute values in
{d0,d1,d2} ordered according to the priorities of dimensions in decreasing order. More-
over, each view identifier in the i-th level of the tree structure in Figure 4 is deduced by
its successor view identifier in (i-1)-th level by omitting the participation of one dimen-
sion each time. When a value of a dimension is omitted in a view identifier, then it is

534 A. Asiki, D. Tsoumakos, and N. Koziris

considered that its value is a ‘*’-value. The identifiers that have already registered on
the left-side of this tree are omitted.

Let Si ⊂ S be the subset of view identifiers that start with the attribute value defined
in dimension di. We call the subset of the specific view identifiers as Partitiondi and
the dimension that participates in all identifiers of the dimension as Rootdi . In Figure 4,
Partition0 comprises of all view identifiers that contain a1, which is the Root0, while a1

does not appear in any identifier of the remaining partitions.

(a1 ,b2 ,c1)

(a1, b2) (a1, c1)

(a1)

(b2 ,c1)

(b2) (c1)

Partition0

Partition1

Partition2

Root0 Root1 Root2

Query:(a1 ,b2 ,c1)
refference value

Fig. 4. All possible view identifiers for a query combining values in 3 dimensions

According to the strategy followed during flooding, all the nodes with trees contain-
ing the found value used for the resolution of the query (hence reference value) are
definitely contacted. Thus, we conclude with certainty that there exist no extra nodes
with tuples containing the reference value. This assumption is not valid for the rest of
the values included in the query. This observation is significant for determining which
views can be materialized and stored for future queries in a distributed manner:

Let S be the set of all the 2d identifiers. We deduce that only a subset Spartial ⊂
S of the view identifiers can be fully materialized, namely only the identifiers of the
combinations including the reference value. In the example of Figure 4, let us assume
that the flooded query for the combination (a1,b2,c1) reaches Nod2 and the reference
value is b2. The query will be forwarded to Nod1 and it will be resolved. Nevertheless,
it is not ensured that there are no other nodes storing tuples with a1 or c1. Thus, Spartial

comprises of the view identifiers in the non-grey boxes.
In more detail, the calculation of the views occurs among the nodes of LinkedPeers

as follows: each peer that returns a found aggregated fact in a flooded query, also cal-
culates the available view identifiers in Spartial stored in its local database. Due to the
flooding strategy, every peer with trees containing the reference value will be definitely
contacted. According to this procedure, the following conclusions are made:

– The Spartial may comprise only of identifiers belonging to Partitiond0,Partitiond1, ..,
Partitiondre f , where the Rootdre f of Partitiondre f is the reference value used for the
resolution of the flooded query.

– The upper bound of view identifiers that can be materialized is 2d −1 (‘ALL’ is not
materialized), if the query does not contain any ‘*’-value and without the restriction
of the flood strategy. In case of ‘*’-values, the number of view identifiers is 2d−n−1,

LinkedPeers: A Distributed System for Multidimensional Data 535

where n is the number of ‘*’-values. According to the type of the inserted dataset
(number of dimensions, number of tuples), the type of the query workload (average
number of ‘*’-values per query) and the specifications of the system, various policies
can be defined to limit the number of calculated aggregated results.

Upon the reception of all the results, the coordinator merges the returned aggregated
facts for each view identifier. Afterwards, it calculates the hash value of each Rootd j

and inserts each Partitiond j (j ∈ [0,dre f]) to the overlay. The node responsible for the
Rootdre f also creates indices towards the locations of its tree structures to forward any
query that cannot be resolved by the stored materialized views. The idea behind the
splitting of the partitions is that the stored combinations need to be located with the
minimum message cost, namely with the primitive DHT lookup. Since a query is dis-
sembled in its elements and the queries are issued according to the priority of the dimen-
sions, each identifier is stored to the dimension with the highest priority of its values.

Although any approach of existing relational schemas for storing views could be
utilized to store the aggregated facts, we maintain simple ‘linked-listed’ structures. As
shown in Figure 5, the view identifiers of Figure 4 are stored to the nodes responsible
for the values appearing in the ‘dark grey’ boxes. All the queries arriving at the node
responsible for Root0 (namely a1) should also include the Rootdre f , which is b2. The
combination of value(s) that a query should include so as to be resolved by the existing
view identifiers are marked with red boxes.

The created indices and views are soft-state and they expire after a predefined period
of time, which is renewed each time that an existing index is used. The indices are
bidirectional to ensure data consistency during re-indexing operations. Finally, we pose
a limit to the maximum number of indices held by each node. Overall, the system tends
to preserve the most “useful” indices towards the most frequently queried data items.

Primary dim

dim1

dim2

a0 a1 a2

a3

a''3

a'3

a2
b0 b1

b2

b'2b2 c1 c0

Nod2

d
b0

a2

Nod4 Nod1

Linked Table

a2 c1

c'1 a2

Linked Table

NNoN dNodod

a0

 a1 b2
Pri

 c1
Partition0

Partition1

Fig. 5. Distribution of materialized view identifiers among the nodes of LinkedPeers

3.4 Indexed Queries

When a query reaches a node holding an index, then the stored views (if any) are
searched for the combination of values included in the query. If the combination is
found, the aggregated value is returned to the initiator. In the case that the combination
does not exist, but the index is aware of the nodes with the pivot keys for the specific
value, the query is forwarded to the respective pivot keys. If the query is simple or the

536 A. Asiki, D. Tsoumakos, and N. Koziris

found value belongs to the primary dimension, then the aggregated facts for the query
are returned. Otherwise, the reached nodes return the locations of the primary ring that
are correlated with the indexed value. The query is forwarded to these nodes contacting
their local database. After an indexed query which has not been resolved with the use of
a stored view identifier, the procedure for materializing all the possible view identifiers
described in the Section above is followed.

4 Adaptive Query-Driven Re-indexing

A significant feature of our system is that it dynamically adapts its indexing level on
a per node basis to incoming queries. To achieve this, we introduce two re-indexing
operations regarding the selection of pivot level: Roll-up towards more general levels of
the hierarchy and drill-down to levels lower than the pivot level.

The idea behind individual re-indexing of stored tuples is based on the fact that each
node has a global view of the queries regarding each level �i j < pivotlevel, but only
a partial view of the queries for each level �i j > pivotlevel of a tree. Therefore, it has
sufficient information to decide if a drill-down will be favorable for the values of this
tree. On the other hand, a node has to cooperate with other peers that store a value of a
level �i j < pivotlevel in order to decide if this level is more appropriate. The decision
for a possible re-indexing operation is made according to statistics collected by the in-
coming queries in the trees responsible for the specific value used during the resolution
of a query. The goal is to increase the number of queries answered as exact matches
in each dimension. The decision process for a possible re-index is triggered only after
an indexed or flooded query only for the reference value, following the procedure de-
scribed in our previous work [3]. Nevertheless, major enhancements have been made
for the customization of the re-indexing operations in multiple dimensions due to the
requirements arisen from the interconnection among the rings.

Roll-up: In general, if a node detects that the demand on a value above the pivot level
relatively exceeds the demand for the other levels, it initiates the procedure to decide if a
roll-up towards this level would be beneficial (communicating with the other interested
nodes). A positive decision leads to the re-insertion of all trees containing the specific
value with the new hash value in the overlay and the trees with the old pivot value are
deleted. During a roll-up, one or more nodes re-insert their trees (or the whole tuples in
the case of the primary dimension), which end up in one node responsible for the new
pivot key. Each node also informs the root key about the new location and the new pivot
key and erases all the soft-state indices towards any value of the re-indexed trees. The
views containing any of these values in other rings are not affected, since the relocation
of the trees does not affect the stored aggregated facts. The final step is the update of the
links among the primary and the secondary rings: Each participating node signals the
nodes that is linked to so as to replace the old pivot levels of the secondary ring with the
new ones in their local databases (roll-up is performed in a secondary ring) or the links
in all trees of the secondary rings related to the rolled-up trees, since the links need to
be valid for the resolution of future queries.

Drill-down: The drill-down procedure is less complex, due to the fact that only one
node holds the unique tree with values for this level. Thus, the node can locally decide

LinkedPeers: A Distributed System for Multidimensional Data 537

if the drill-down is needed. In this case, it splits the tree to tuples grouped by the new
pivot key and re-inserts them in LinkedPeers. The root key is also informed about the
new situation and all existing indices towards these trees are erased. Finally, the node
that decided the drill-down updates the links among itself and the rest of the rings as
described for the roll-up procedure.

5 Experimental Results

5.1 Simulation Setup

We now present a comprehensive evaluation of LinkedPeers. Our performance results
are based on a heavily modified version of the FreePastry [4] using its simulator for the
network overlay, although any DHT implementation could be used as a substrate. The
network size is 256 nodes, all of which are randomly chosen to initiate queries.

Our synthetic data are trees (one per dimension) with each value having a single
parent and a constant number of mul children. The tuples of the fact table to be stored
are created from combinations of the leaf values of each dimension tree plus a randomly
generated numerical fact. By default, our data comprise of 1M tuples, organized in
a 4-dimensional, 3-level hierarchy. The number of distinct values of the top level is
base = 100 with mul=10. The level of insertion is, by default, �1 in all dimensions. For
the query workloads, a 3-step approach is followed: We first identify which part of the
initial database (i.e., tuple) the query will target (TupleDist). Next, the probability of
a dimension d not being included (i.e., a ‘*’ in the respective query) is Pd∗. Finally,
for included dimensions, we choose the level that the query will target according to the
levelDist distribution. In our experiments, we express a different bias using the uniform,
80/20 and 90/10 distributions for TupleDist and levelDist, while Pd∗ increases gradually
from 0.1 for the primary dimension to 0.8 for the last utilized dimension. Generated
queries arrive at an average rate of 1 query

time unit , in a 50k time units total simulation time.
In this section, we intend to demonstrate the performance of our system for differ-

ent types of inserted data and query workloads. The experimental results focus on the
achieved precision (i.e., the percentage of queries which are answered without being
flooded) and cost in terms of messages per query.

5.2 Performance under Different Number of Dimensions and Levels

In the first set of experiments, we identify the behavior of our system under a variety of
data workloads for different number of dimensions and different number of levels. The
queries target uniformly any tuple of the dataset and the levels of the hierarchies in each
dimension. In the first set of the experiments, we vary the number of dimensions, while
each dimension is described by a 3-level concept hierarchy. Figure 6 demonstrates the
percentage of the queries of the query workload that include at least one pivot value
(Pivot Level Queries), the percentage of the queries resolved as exact match
queries in LinkedPeers (Exact Match) and the achieved precision. The precision for
non-flooded queries remains above 85% for all types of datasets, despite the number
of dimensions. Queries that are not directed towards the pivot level are answered with

538 A. Asiki, D. Tsoumakos, and N. Koziris

the use of an index or a materialized view assuring that the precision remains high. The
difference among the exact matches and the pivot level queries is due to the utilized
strategy that it is preferred for a query to be resolved as an indexed query in a dimension
with higher priority than as an exact match to a dimension with a lower priority.

In Figure 7, the results for 4-dimensional workloads with varying number of level
in the hierarchies are demonstrated. The decrease in the precision (from 99% to about
70%) is due to the fact that the increase of levels results to the decrease in the probability
of querying a value that it is already indexed. Since the probability of utilizing an index
decreases, all the queries targeting the initial pivot level (�1) even in the secondary rings
are resolved as exact matches.

2 4 6 8
Number of Dimensions

0
10
20
30
40
50
60
70
80
90

100

pe
rc

en
ta

ge

Pivot Level Queries
Exact Match
Precision

Fig. 6. Percentage of queries for different
number of dimensions with 3-level hierarchies

2 3 4 5
Number of Levels

0
10
20
30
40
50
60
70
80
90

100

pe
rc

en
ta

ge

Pivot Level Queries
Exact Match
Precision

Fig. 7. Precision for different number of levels
in 4-dimensional datasets

5.3 Query Resolution for Different Types of Datasets

In this experiment, the achieved precision of LinkedPeers for various types of datasets
is demonstrated in Figure 8. The number of distinct values in the top level base and
the number of children mul are altered changing the density of the dataset. Base and
mul influence the connections among primary and secondary rings and the number
of distinct values in each level. As shown in Figure 8, there is a small decrease in
the precision of non-flooded queries, while the base and the mul increases (this de-
creases the dataset density). Nevertheless, LinkedPeers achieves to resolve the majority
of queries without flooding. The percentage of exact match queries in the primary di-
mension (Exact PR) remains stable for all datasets as shown in Figure 9, since it
depends on the query workload. Nevertheless, the exact matches in the secondary rings
(Exact SR) increase as the indexed queries decrease, since the indices of the primary
dimension are used less, and more queries are resolved by the secondary rings.

5.4 Precision for Skewed Workloads

The adaptive behavior of LinkedPeers is identified in this set of experiments by testing
the system under a variety of query loads. Specifically, we vary the TupleDist and the
number of queries directed to each level by increasing the bias of levelDist. In Figure
10, data are skewed towards the higher levels of the hierarchy. The percentage of queries
including at least one value in �0 or �1 are denoted as Queries L0 and Queries L1

LinkedPeers: A Distributed System for Multidimensional Data 539

2 5 10 20 50
mul

0

20

40

60

80

100

pr
ec

is
io

n(
%

)
base=10
base=50
base=100
base=200

Fig. 8. Impact of mul and base in the
achieved precision

2 5 10 20 50
mul

0

20

40

60

80

100

pe
rc

en
ta

ge

Exact_PR(base=10)
Exact_SR(base=10)
Indexed(base=10)
Exact_PR(base=100)
Exact_SR(base=100)
Indexed(base=100)

Fig. 9. Percentage of each query category for
different data workloads

respectively. By making more bieased the levelDist, we observe remarkably high pre-
cision rates (close to 100%). Despite the fact that the percentage of queries towards
�1 (Queries L1) decreases significantly as the levelDist becomes more biased, the
reindexing operations that take place ensure that the majority of queries are resolved as
exact match queries by adjusting appropriately the pivot levels in each dimension.

Figure 11 depicts the results, when the query workload favors the lower levels of
the hierarchies.The decrease to the precision for more biased levelDist is due to the
fact that lower levels of the hierarchy have a considerably larger number of values. By
increasing the number of queries towards these values, we increase the probability of
queries targeting non-indexed values until the re-indexing mechanisms adapt the pivot
levels of the popular trees appropriately.

(UNI,UNI) (UNI,80/20) (80/20,80/20) (UNI,90/10) (90/10,90/10)

(TupleDist,LevelDist)
0

20

40

60

80

100

pe
rc

en
ta

ge

Queries_L0
Queries_L1
Exact Match
Precision

Fig. 10. Precision and exact match queries for
skew towards higher levels and various (Tu-
pleDist,levelDist) combinations

(UNI,UNI) (UNI,80/20) (80/20,80/20) (UNI,90/10) (90/10,90/10)

(TupleDist,LevelDist)
0

20

40

60

80

100

pe
rc

en
ta

ge

Queries_L1
Queries_L2
Exact Match
Precision

Fig. 11. Precision and exact match queries for
skew towards lower levels and various (Tu-
pleDist,levelDist) combinations

5.5 Testing against the Use of Materialized Views

Apart from the re-indexing operations, the materialized views can be also utilized to
minimize the query cost. In the next experiment, we test our method against query
workloads targeting the dataset either uniformly or biased (90/10) (TupleDist) with
uniform and biased (90/10) skew (levelDist) towards the higher levels (denoted as UP)

540 A. Asiki, D. Tsoumakos, and N. Koziris

and towards the lower levels (DOWN). As shown in Figure 12, the queries resolved with
the utilization of materialized views (ViewQ) increase in the query workloads targeting
a part of the dataset at most, since the probability also increases for querying a materi-
alized combination. More existing views are utilized, when the queries target uniformly
all the levels of the hierarchies in all dimensions. In this case, the reindexing mecha-
nisms cannot adjust the pivot levels to all the incoming queries and nearly the majority
of indexed queries (Indexed) are resolved with the use of a materialized view.

5.6 Cost of the Various Types of Query Resolution

The cost of a query is considered as the messages that need to be issued for its resolu-
tion. A query resolved as exact match in the primary dimension utilizes only the DHT
lookup mechanism. Figure 15 depicts the average number of messages only for exact
queries resolved by secondary dimensions (Exact SR), which number is significantly
smaller (less than 20% of all queries in all cases) and indexed queries (Indexed). The
average number of messages for Exact SR depends on the type of dataset, namely
the number of links among secondary pivot keys and primary pivot keys. When the
query workload is skewed towards the higher levels (UP), then the messages decrease
due to the fact that popular trees roll-up towards �0. Thus, the secondary keys are con-
nected to a smaller number of primary keys. The opposite observation is valid for the
(DOWN) query workloads. It is important to notice, that the majority of the indexed
queries (Indexed) in the workloads with higher cost for the indexed queries are re-
solved with views (see Figure 12), thus avoiding this cost.

(UNI,UP) (UNI,UNI) (UNI,DOWN) (90/10,UP) (90/10,UNI) (90/10,DOWN)

(TupleDist,LevelDist)
0

20

40

60

80

100

pe
rc

en
ta

ge

Indexed (base=100)
ViewQ (base=100)
Indexed (base=10)
ViewQ (base=10)

Fig. 12. Utilization of materialized views com-
pared to queries resolved as indexed

(UNI,UP) (UNI,UNI) (UNI,DOWN) (90/10,UP) (90/10,UNI) (90/10,DOWN)

(TupleDist,LevelDist)
0

50

100

150

200

A
vg

. M
sg

s

Exact_SR (base=100)
Indexed (base=100)
Exact_SR (base=10)
Indexed (base=10)

Fig. 13. Average number of messages for ex-
act matches in secondary rings and indexed
queries

5.7 Performance for Dataset of the APB Benchmark

The adaptiveness of the system is also tested using some realistic data. For this reason,
we generated query sets by the APB-1 benchmark [5]. APB-1 creates a database struc-
ture with multiple dimensions and generates a set of business operations reflecting basic
functionality of OLAP applications. The generated data are described by 4-dimensions.
The customer dimension (C) is 100 times the number of members in the channel di-
mension and comprises of 2 levels. The channel dimension (Ch) has one level and 10

LinkedPeers: A Distributed System for Multidimensional Data 541

members. The product (P) dimension is a steep hierarchy with 6 levels and 10.000 mem-
bers. Finally, the time dimension (T) is described by a 3-level dimension and made up
of two years. The dataset is sparse (0.1 density) and comprises of 1.3M tuples.

Figure 14 shows the percentage of exact match queries resolved in primary and sec-
ondary rings compared to all exact match queries of a 25K query workload and for
different combinations of ordering of dimensions. For all orderings, the precision of
non-flooded queries is over 98%. The selection of the primary dimension influences the
number of exact match queries in the primary ring. Figure 15 presents the average num-
ber of messages for exact matches resolved by a secondary ring and indexed queries,
since only a DHT lookup is performed for exact match queries in the primary ring. The
average number of messages is small for both exact and indexed queries, apart from
the case that the customer dimension has been selected as a primary dimension. In the
rest of the cases, the resolution of the queries occurs with a very low cost in terms of
additional nodes to visit, even though the majority of the exact queries are resolved
by a secondary dimension, as shown in Figure 14. The increase of messages for the
CPChT dataset is due to the large number of distinct values used as pivot keys and thus
each node responsible for a pivot key stores smaller portion of the total dataset in its
local database. For all combinations of datasets, the overhead of the additional index-
ing structures needed by LinkedPeers such as tree structures, root indices, links and
indices and statistical information is up to 1%. Thus, LinkedPeers can be considered as
a lightweight solution for indexing multidimensional hierarchical data.

ChCPT PCChT TPCCh CPChT
0

20

40

60

80

100

pe
rc

en
ta

ge

Exact_PR
Exact_SR
Precision

Fig. 14. Precision for APB query workload in
LinkedPeers

ChCPT PCChT TPCCh CPChT
0

50

100

150

200

A
vg

. M
sg

s

Exact_SR
Indexed

Fig. 15. Average number of messages for exact
match and indexed queries

6 Related Work

P2P systems based on Distributed Hash Tables (DHTs), for example [6], appear greatly
effective for storing and locating key− value pairs. Nevertheless, complex queries can-
not be supported without the implementation of additional indexing mechanisms. An
approach to enable advanced search facilities in DHTs is the replacement of the hash
function and the respective modification of the structure and behavior of the overlay
to serve multi-attribute queries. Space Filling Curves [7], [8] are usually used as a re-
placement of the cryptographic hash function of the DHT protocols to produce a lo-
cality preserving mapping of multiple attribute values to a single key. In [8], an SFC

542 A. Asiki, D. Tsoumakos, and N. Koziris

hash function is utilized over hierarchical attributes. Nevertheless, it is assumed that
the full path from the root level towards the searched level is known and the values
for all attributes in a query are given. Afterwards, the queries are transformed to range
queries resolved by consecutive DHT lookups, usually resulting in flooding among all
nodes. Our implementation does not pose any requirement for querying all the dimen-
sions and allows the querying of any level of the hierarchy separately. There has been
also significant work in the area of databases over P2P networks. PIER [9] proposes a
distributed architecture for relational databases supporting operators such as join and
aggregation of stored tuples. The Chatty Web [10] considers P2P systems that share
(semi)-structured information but deals with the degradation, in terms of syntax and se-
mantics, of a query propagated along a network path. In GrouPeer [11], SPJ queries are
sent over an unstructured overlay in order to discover peers with similar schemas. Peers
are gradually clustered according to their schema similarity. PeerDB [12] also features
relational data sharing without schema knowledge. All these approaches offer signifi-
cant and efficient solutions to the problem of sharing structured and heterogeneous data
over P2P networks. Nevertheless, they do not deal with the special case of hierarchies
over multidimensional datasets.

7 Conclusions

In this work, we described LinkedPeers, a distributed infrastructure for storing and pro-
cessing multi-dimensional hierarchical data. Our scheme distributes large amount of
partially-structured data over a DHT overlay in a way that hierarchy semantics and
correlations among dimensions are preserved. Each data item can be described by an
arbitrary number of dimensions and aggregate queries are resolved in a fully distributed
manner. Re-indexing and pre-computation mechanisms are triggered dynamically dur-
ing the resolution of queries. Our experimental evaluation over multiple and challenging
workloads confirmed our premise: Our system manages to efficiently answer the large
majority of queries using very few messages. It adds small overhead in storing hierar-
chical data and provides a lightweight indexing scheme, resolves efficiently aggregated
queries and adapts to sudden shifts in skew by enabling re-indexing operations.

References

1. MacManus, R.: The coming data explosion (2010),
http://www.readwriteweb.com/archives/

2. Linked Data - Connect Distributed Data across the Web,
http://linkeddata.org/

3. Asiki, A., Tsoumakos, D., Koziris, N.: Distributing and searching concept hierarchies: an
adaptive dht-based system. Cluster Computing 13, 257–276 (2010)

4. FreePastry,
http://freepastry.rice.edu/FreePastry

5. OLAP Council APB-1 OLAP Benchmark,
http://www.olapcouncil.org/research/resrchly.htm

6. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A Scalable Peer-
To-Peer Lookup Service for Internet Applications. In: Proc. of the ACM SIGCOMM (2001)

http://www.readwriteweb.com/archives/
http://linkeddata.org/
http://freepastry.rice.edu/FreePastry
http://www.olapcouncil.org/research/resrchly.htm

LinkedPeers: A Distributed System for Multidimensional Data 543

7. Schmidt, C., Parashar, M.: Squid: Enabling search in dht-based systems. Journal of Parallel
and Distributed Computing 68(7), 962–975 (2008)

8. Lee, J., Lee, H., Kang, S., Kim, S.M., Song, J.: CISS: An efficient object clustering frame-
work for DHT-based peer-to-peer applications. Computer Networks 51(4)

9. Huebsch, R., Hellerstein, J., Boon, N.L., Loo, T., Shenker, S., Stoica, I.: Querying the Internet
with PIER. In: VLDB (2003)

10. Aberer, K., Cudre-Mauroux, P., Hauswirth, M.: The Chatty Web: Emergent Semantics
Through Gossiping. In: WWW Conference (2003)

11. Kantere, V., Tsoumakos, D., Sellis, T., Roussopoulos, N.: GrouPeer: Dynamic clustering of
P2P databases. Inf. Syst. 34(1), 62–86 (2009)

12. Ooi, B., Shu, Y., Tan, K., Zhou, A.: PeerDB: A P2P-based System for Distributed Data
Sharing. In: ICDE (2003)

	LinkedPeers: A Distributed System for Interlinking Multidimensional Data

	Introduction
	LinkedPeers System Description
	Notation and Definitions
	Data Insertion

	Query Processing
	Exact Match Queries
	Flood Queries
	Materialized Views
	Indexed Queries

	Adaptive Query-Driven Re-indexing
	Experimental Results
	Simulation Setup
	Performance under Different Number of Dimensions and Levels
	Query Resolution for Different Types of Datasets
	Precision for Skewed Workloads
	Testing against the Use of Materialized Views
	Cost of the Various Types of Query Resolution
	Performance for Dataset of the APB Benchmark

	Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

