Skip to main content

Using Landmarks as a Deformation Prior for Hybrid Image Registration

  • Conference paper
Pattern Recognition (DAGM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6835))

Included in the following conference series:

Abstract

Hybrid registration schemes are a powerful alternative to fully automatic registration algorithms. Current methods for hybrid registration either include the landmark information as a hard constraint, which is too rigid and leads to difficult optimization problems, or as a soft-constraint, which introduces a difficult to tune parameter for the landmark accuracy. In this paper we model the deformations as a Gaussian process and regard the landmarks as additional information on the admissible deformations. Using Gaussian process regression, we integrate the landmarks directly into the deformation prior. This leads to a new, probabilistic regularization term that penalizes deformations that do not agree with the modeled landmark uncertainty. It thus provides a middle ground between the two aforementioned approaches, without sharing their disadvantages. Our approach works for a large class of different deformation priors and leads to a known optimization problem in a Reproducing Kernel Hilbert Space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Christensen, G.E., Miller, M.I., Vannier, M.W., Grenander, U.: Individualizing neuro-anatomical atlases using a massively parallel computer. Computer 29(1), 32–38 (1996)

    Article  Google Scholar 

  2. Fischer, B., Modersitzki, J.: Combination of automatic non-rigid and landmark based registration: the best of both worlds. Medical Imaging, 1037–1048 (2003)

    Google Scholar 

  3. Haber, E., Heldmann, S., Modersitzki, J.: A Scale-Space approach to landmark constrained image registration. Scale Space and Variational Methods in Computer Vision, 612–623 (2009)

    Google Scholar 

  4. Hein, M., Bousquet, O.: Kernels, associated structures and generalizations. Max-Planck-Institut fuer biologische Kybernetik, Technical Report (2004)

    Google Scholar 

  5. Johnson, H.J., Christensen, G.E.: Consistent landmark and intensity-based image registration. IEEE Transactions on Medical Imaging 21(5), 450–461 (2002)

    Article  Google Scholar 

  6. Lu, H., Cattin, P., Reyes, M.: A hybrid multimodal non-rigid registration of MR images based on diffeomorphic demons. In: International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5951–5954 (2010)

    Google Scholar 

  7. Micchelli, C.A., Pontil, M.: On learning vector-valued functions. Neural Computation 17(1), 177–204 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Papademetris, X., Jackowski, A.P., Schultz, R.T., Staib, L.H., Duncan, J.S.: Integrated intensity and point-feature nonrigid registration. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 763–770. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Papenberg, N., Olesch, J., Lange, T., Schlag, P.M., Fischer, B.: Landmark constrained non-parametric image registration with isotropic tolerances. Bildverarbeitung für die Medizin 2009, 122–126 (2009)

    Google Scholar 

  10. Rasmussen, C.E., Williams, C.K.: Gaussian processes for machine learning. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  11. Schaback, R.: Creating surfaces from scattered data using radial basis functions. Mathematical Methods for Curves and Surfaces, 477–496 (1995)

    Google Scholar 

  12. Schölkopf, B., Herbrich, R., Smola, A.: A generalized representer theorem. In: Computational Learning Theory, pp. 416–426 (2001)

    Google Scholar 

  13. Schölkopf, B., Steinke, F., Blanz, V.: Object correspondence as a machine learning problem. In: ICML 2005: Proceedings of the 22nd International Conference on Machine Learning, pp. 776–783. ACM Press, New York (2005)

    Chapter  Google Scholar 

  14. Sorzano, C.O.S., Thevenaz, P., Unser, M.: Elastic registration of biological images using vector-spline regularization. IEEE Transactions on Biomedical Engineering 52(4), 652–663 (2005)

    Article  Google Scholar 

  15. Unser, M.: Splines: A perfect fit for signal and image processing. IEEE Signal Processing Magazine 16(6), 22–38 (1999)

    Article  Google Scholar 

  16. Wahba, G.: Spline models for observational data. Society for Industrial Mathematics (1990)

    Google Scholar 

  17. Wörz, S., Rohr, K.: Hybrid spline-based elastic image registration using analytic solutions of the navier equation. Bildverarbeitung für die Medizin 2007, 151–155 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lüthi, M., Jud, C., Vetter, T. (2011). Using Landmarks as a Deformation Prior for Hybrid Image Registration. In: Mester, R., Felsberg, M. (eds) Pattern Recognition. DAGM 2011. Lecture Notes in Computer Science, vol 6835. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23123-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23123-0_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23122-3

  • Online ISBN: 978-3-642-23123-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics