Skip to main content

Illumination-Robust Dense Optical Flow Using Census Signatures

  • Conference paper
Book cover Pattern Recognition (DAGM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6835))

Included in the following conference series:

Abstract

Vision-based motion perception builds primarily on the concept of optical flow. Modern optical flow approaches suffer from several shortcomings, especially in real, non-ideal scenarios such as traffic scenes. Non-constant illumination conditions in consecutive frames of the input image sequence are among these shortcomings. We propose and evaluate the application of intrinsically illumination-invariant census transforms within a dense state-of-the-art variational optical flow computation scheme. Our technique improves robustness against illumination changes, caused either by altering physical illumination or camera parameter adjustments. Since census signatures can be implemented quite efficiently, the resulting optical flow fields can be computed in real-time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M., Szeliski, R.: A database and evaluation methodology for optical flow. International Journal of Computer Vision 92(1), 1–31 (2011)

    Article  Google Scholar 

  2. Brox, T., Bregler, C., Malik, J.: Large displacement optical flow. In: IEEE International Conference on Computer Vision and Pattern Recognition, Miami Beach, Florida, USA (2009)

    Google Scholar 

  3. Bruhn, A., Weickert, J., Schnörr, C.: Lucas/Kanade meets Horn/Schunck: Combining local and global optic flow methods. International Journal of Computer Vision 61(3), 211–231 (2005)

    Article  Google Scholar 

  4. Chambolle, A.: An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision 20(1-2), 89–97 (2004)

    MathSciNet  Google Scholar 

  5. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging (2010), http://hal.archives-ouvertes.fr/hal-00490826/en/

  6. Friedrich, H., Rabe, C., Mester, R.: DAGM 2011 AVCC website (2011), http://www.dagm2011.org/adverse-vision-conditions-challenge.html

  7. Hirschmüller, H., Gehrig, S.: Stereo matching in the presence of sub-pixel calibration errors. In: IEEE Conference on Computer Vision and Pattern Recognition (2009)

    Google Scholar 

  8. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)

    Article  Google Scholar 

  9. Mileva, Y., Bruhn, A., Weickert, J.: Illumination-robust variational optical flow with photometric invariants. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 152–162. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  11. Stein, F.J.: Efficient computation of optical flow using the census transform. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 79–86. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Steinbrücker, F., Pock, T., Cremers, D.: Advanced data terms for variational optic flow estimation. In: Vision, Modelling, and Visualization Workshop, Braunschweig, Germany (2009)

    Google Scholar 

  13. Wedel, A., Meissner, A., Rabe, C., Franke, U., Cremers, D.: Detection and segmentation of independently moving objects from dense scene flow. In: Energy Minimization Methods in Computer Vision and Pattern Recognition (2009)

    Google Scholar 

  14. Wedel, A., Pock, T., Zach, C., Bischof, H., Cremers, D.: An improved algorithm for TV-L1 optical flow. In: Cremers, D., Rosenhahn, B., Yuille, A.L., Schmidt, F.R. (eds.) Statistical and Geometrical Approaches to Visual Motion Analysis. LNCS, vol. 5604, pp. 23–45. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV-L1 optical flow. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 214–223. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Müller, T., Rabe, C., Rannacher, J., Franke, U., Mester, R. (2011). Illumination-Robust Dense Optical Flow Using Census Signatures. In: Mester, R., Felsberg, M. (eds) Pattern Recognition. DAGM 2011. Lecture Notes in Computer Science, vol 6835. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23123-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23123-0_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23122-3

  • Online ISBN: 978-3-642-23123-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics