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Abstract. Many computational models of music fail to capture essential
aspects of the high-level musical structure and context, and this limits
their usefulness, particularly for musically informed users. We describe
two recent approaches to modelling musical harmony, using a probabilis-
tic and a logic-based framework respectively, which attempt to reduce the
gap between computational models and human understanding of music.
The first is a chord transcription system which uses a high-level model of
musical context in which chord, key, metrical position, bass note, chroma
features and repetition structure are integrated in a Bayesian frame-
work, achieving state-of-the-art performance. The second approach uses
inductive logic programming to learn logical descriptions of harmonic
sequences which characterise particular styles or genres. Each approach
brings us one step closer to modelling music in the way it is conceptu-
alised by musicians.

Keywords: Chord transcription, inductive logic programming, musical
harmony.

1 Introduction

Music is a complex phenomenon. Although music is described as a “universal
language”, when viewed as a paradigm for communication it is difficult to find
agreement on what constitutes a musical message (is it the composition or the
performance?), let alone the meaning of such a message. Human understand-
ing of music is at best incomplete, yet there is a vast body of knowledge and
practice regarding how music is composed, performed, recorded, reproduced and
analysed in ways that are appreciated in particular cultures and settings. It is
the computational modelling of this “common practice” (rather than philosoph-
ical questions regarding the nature of music) which we address in this paper. In
particular, we investigate harmony, which exists alongside melody, rhythm and
timbre as one of the fundamental attributes of Western tonal music.

Our starting point in this paper is the observation that many of the com-
putational models used in the music information retrieval and computer music
research communities fail to capture much of what is understood about music.
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Two examples are the bag-of-frames approach to music similarity [5], and the pe-
riodicity pattern approach to rhythm analysis [13], which are both independent
of the order of musical notes, whereas temporal order is an essential feature of
melody, rhythm and harmonic progression. Perhaps surprisingly, much progress
has been made in music informatics in recent yeardl, despite the naivete of the
musical models used and the claims that some tasks have reached a “glass ceil-
ing” [6].

The continuing progress can be explained in terms of a combination of factors:
the high level of redundancy in music, the simplicity of many of the tasks which
are attempted, and the limited scope of the algorithms which are developed. In
this regard we agree with [14], who review the first 10 years of ISMIR confer-
ences and list some challenges which the community “has not fully engaged with
before”. One of these challenges is to “dig deeper into the music itself”, which
would enable researchers to address more musically complex tasks; another is to
“expand ... musical horizons”, that is, broaden the scope of MIR systems.

In this paper we present two approaches to modelling musical harmony, aiming
at capturing the type of musical knowledge and reasoning a musician might use
in performing similar tasks. The first task we address is that of chord transcrip-
tion from audio recordings. We present a system which uses a high-level model
of musical context in which chord, key, metrical position, bass note, chroma
features and repetition structure are integrated in a Bayesian framework, and
generates the content of a “lead-sheet” containing the sequence of chord sym-
bols, including their bass notes and metrical positions, and the key signature and
any modulations over time. This system achieves state-of-the-art performance,
being rated first in its category in the 2009 and 2010 MIREX evaluations. The
second task to which we direct our attention is the machine learning of logical
descriptions of harmonic sequences in order to characterise particular styles or
genres. For this work we use inductive logic programming to obtain represen-
tations such as decision trees which can be used to classify unseen examples or
provide insight into the characteristics of a data corpus.

Computational models of harmony are important for many application areas
of music informatics, as well as for music psychology and musicology itself. For
example, a harmony model is a necessary component of intelligent music no-
tation software, for determining the correct key signature and pitch spelling of
accidentals where music is obtained from digital keyboards or MIDI files. Like-
wise processes such as automatic transcription are benefitted by tracking the
harmonic context at each point in the music [24]. It has been shown that har-
monic modelling improves search and retrieval in music databases, for example
in order to find variations of an example query [36], which is useful for musi-
cological research. Theories of music cognition, if expressed unambiguously, can
be implemented and tested on large data corpora and compared with human
annotations, in order to verify or refine concepts in the theory.

! Progress is evident for example in the annual MIREX series of evaluations of
music information retrieval systems (http://www.music-ir.org/mirex/wiki/2010:
Main_Page)
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The remainder of the paper is structured as follows. The next section provides
an overview of research in harmony modelling. This is followed by a section
describing our probabilistic model of chord transcription. In section[d], we present
our logic-based approach to modelling of harmony, and show how this can be
used to characterise and classify music. The final section is a brief conclusion
and outline of future work.

2 Background

Research into computational analysis of harmony has a history of over four
decades since [44] proposed a grammar-based analysis that required the user
to manually remove any non-harmonic notes (e.g. passing notes, suspensions
and ornaments) before the algorithm processed the remaining chord sequence.
A grammar-based approach was also taken by [40], who developed a set of chord
substitution rules, in the form of a context-free grammar, for generating 12-bar
Blues sequences. [31] addressed the problem of extracting patterns and substitu-
tion rules automatically from jazz standard chord sequences, and discussed how
the notions of expectation and surprise are related to the use of these patterns
and rules.

Closely related to grammar-based approaches are rule-based approaches, which
were used widely in early artificial intelligence systems. [21] used an elimination
process combined with heuristic rules in order to infer the tonality given a fugue
melody from Bach’s Well-Tempered Clavier. [I5] presents an expert system con-
sisting of about 350 rules for generating 4-part harmonisations of melodies in the
style of Bach Chorales. The rules cover the chord sequences, including cadences
and modulations, as well as the melodic lines of individual parts, including voice
leading. [28] developed an expert system with a complex set of rules for recognis-
ing consonances and dissonances in order to infer the chord sequence. Maxwell’s
approach was not able to infer harmony from a melodic sequence, as it considered
the harmony at any point in time to be defined by a subset of the simultaneously
sounding notes.

[41] addressed some of the weaknesses of earlier systems with a combined
rhythmic and harmonic analysis system based on preference rules [20]. The
system assigns a numerical score to each possible interpretation based on the
preference rules which the interpretation satisfies, and searches the space of all
solutions using dynamic programming restricted with a beam search. The sys-
tem benefits from the implementation of rules relating harmony and metre, such
as the preference rule which favours non-harmonic notes occurring on weak met-
rical positions. One claimed strength of the approach is the transparency of the
preference rules, but this is offset by the opacity of the system parameters such
as the numeric scores which are assigned to each rule.

[33] proposed a counting scheme for matching performed notes to chord tem-
plates for variable-length segments of music. The system is intentionally simplis-
tic, in order that the framework might easily be extended or modified. The main
contributions of the work are the graph search algorithms, inspired by Temper-
ley’s dynamic programming approach, which determine the segmentation to be
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used in the analysis. The proposed graph search algorithm is shown to be much
more efficient than standard algorithms without differing greatly in the quality
of analyses it produces.

As an alternative to the rule-based approaches, which suffer from the cu-
mulative effects of errors, [38] proposed a probabilistic approach to functional
harmonic analysis, using a hidden Markov model. For each time unit (measure
or half-measure), their system outputs the current key and the scale degree of
the current chord. In order to make the computation tractable, a number of
simplifying assumptions were made, such as the symmetry of all musical keys.
Although this reduced the number of parameters by at least two orders of mag-
nitude, the training algorithm was only successful on a subset of the parameters,
and the remaining parameters were set by hand.

An alternative stream of research has been concerned with multidimensional
representations of polyphonic music [T0/11/42] based on the Viewpoints approach
of [I2]. This representation scheme is for example able to preserve information
about voice leading which is otherwise lost by approaches that treat harmony as
a sequence of chord symbols.

Although most research has focussed on analysing musical works, some work
investigates the properties of entire corpora. [25] compared two corpora of chord
sequences, belonging to jazz standards and popular (Beatles) songs respectively,
and found key- and context-independent patterns of chords which occurred fre-
quently in each corpus. [20] examined the statistics of the chord sequences of sev-
eral thousand songs, and compared the results to those from a standard natural
language corpus in an attempt to find lexical units in harmony that correspond
to words in language. [34135] investigated whether stochastic language models in-
cluding naive Bayes classifiers and 2-, 3- and 4-grams could be used for automatic
genre classification. The models were tested on both symbolic and audio data,
where an off-the-shelf chord transcription algorithm was used to convert the audio
data to a symbolic representation. [39] analysed the Beatles corpus using proba-
bilistic N-grams in order to show that the dependency of a chord on its context
extends beyond the immediately preceding chord (the first-order Markov assump-
tion). [9] studied differences in the use of harmony across various periods of classi-
cal music history, using root progressions (i.e. the sequence of root notes of chords
in a progression) reduced to 2 categories (dominant and subdominant) to give a
representation called harmonic vectors. The use of root progressions is one of the
representations we use in our own work in section @ [2].

All of the above systems process symbolic input, such as that found in a score,
although most of the systems do not require the level of detail provided by the
score (e.g. key signature, pitch spelling), which they are able to reconstruct from
the pitch and timing data. In recent years, the focus of research has shifted to the
analysis of audio files, starting with the work of [16], who computed a chroma
representation (salience of frequencies representing the 12 Western pitch classes,
independent of octave) which was matched to a set of chord templates using the
inner product. Alternatively, [7] modelled chords with a 12-dimensional Gaussian
distribution, where chord notes had a mean of 1, non-chord notes had a mean of 0,
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and the covariance matrix had high values between pairs of chord notes. A hidden
Markov model was used to infer the most likely sequence of chords, where state
transition probabilities were initialised based on the distance between chords on
a special circle of fifths which included minor chords near to their relative major
chord. Further work on audio-based harmony analysis is reviewed thoroughly in
three recent doctoral theses, to which the interested reader is referred [22T8)32].

3 A Probabilistic Model for Chord Transcription

Music theory, perceptual studies, and musicians themselves generally agree that
no musical quality can be treated individually. When a musician transcribes
the chords of a piece of music, the chord labels are not assigned solely on the
basis of local pitch content of the signal. Musical context such as the key, met-
rical position and even the large-scale structure of the music play an important
role in the interpretation of harmony. [I7, Chapter 4] conducted a survey among
human music transcription experts, and found that they use several musical con-
text elements to guide the transcription process: not only is a prior rough chord
detection the basis for accurate note transcription, but the chord transcription
itself depends on the tonal context and other parameters such as beats, instru-
mentation and structure.

The goal of our recent work on chord transcription [24]22[23] is to propose
computational models that integrate musical context into the automatic chord
estimation process. We employ a dynamic Bayesian network (DBN) to combine
models of metrical position, key, chord, bass note and beat-synchronous bass and
treble chroma into a single high-level musical context model. The most probable
sequence of metrical positions, keys, chords and bass notes is estimated via
Viterbi inference.

A DBN is a graphical model representing a succession of simple Bayesian
networks in time. These are assumed to be Markovian and time-invariant, so
the model can be expressed recursively in two time slices: the initial slice and
the recursive slice. Our DBN is shown in Figure [[I Each node in the network
represents a random variable, which might be an observed node (in our case
the bass and treble chroma) or a hidden node (the key, metrical position, chord
and bass pitch class nodes). Edges in the graph denote dependencies between
variables. In our DBN the musically interesting behaviour is modelled in the
recursive slice, which represents the progress of all variables from one beat to
the next. In the following paragraphs we explain the function of each node.

Chord. Technically, the dependencies of the random variables are described in the
conditional probability distribution of the dependent variable. Since the highest
number of dependencies join at the chord variable, it takes a central position
in the network. Its conditional probability distribution is also the most com-
plex: it depends not only on the key and the metrical position, but also on the
chord variable in the previous slice. The chord variable has 121 different chord
states (see below), and its dependency on the previous chord variable enables
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Fig.1. Our network model topology, represented as a DBN with two slices and six
layers. The clear nodes represent random variables, while the observed ones are shaded
grey. The directed edges represent the dependency structure. Intra-slice dependency
edges are drawn solid, inter-slice dependency edges are dashed.

the reinforcement of smooth sequences of these states. The probability distribu-
tion of chords conditional on the previous chord strongly favours the chord that
was active in the previous slice, similar to a high self-transition probability in
a hidden Markov model. While leading to a chord transcription that is stable
over time, dependence on the previous chord alone is not sufficient to model ad-
herence to the key. Instead, it is modelled conditionally on the key variable: the
probability distribution depends on the chord’s fit with the current key, based on
an expert function motivated by Krumhansl’s chord-key ratings [19, page 171].
Finally, the chord variable’s dependency on the metrical position node allows us
to favour chord changes at strong metrical positions to achieve a transcription
that resembles more closely that of a human transcriber.
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Key and metrical position. The dependency structure of the key and metrical
position variables are comparatively simpler, since they depend only on the re-
spective predecessor. The emphasis on smooth, stable key sequences is handled
in the same way as it is in chords, but the 24 states representing major and minor
keys have even higher self-transition probability, and hence they will persist for
longer stretches of time. The metrical position model represents a j meter and
hence has four states. The conditional probability distribution strongly favours
“normal” beat transitions, i.e. from one beat to the next, but it also allows for
irregular transitions in order to accommodate temporary deviations from j me-
ter and occasional beat tracking errors. In Figure 2al black arrows represent a
transition probability of 1—e (where ¢ = 0.05) to the following beat. Grey arrows
represent a probability of /2 to jump to different beats through self-transition
or omission of the expected beat.

Bass. The random variable that models the bass has 13 states, one for each of
the pitch classes, and one “no bass” state. It depends on both the current chord
and the previous chord. The current chord is the basis of the most probable bass
notes that can be chosen. The highest probability is assigned to the “nominal”
chord bass pitch class@, lower probabilities to the remaining chord pitch classes,
and the rest of the probability mass is distributed between the remaining pitch
classes. The additional use of the dependency on the previous chord allows us
to model the behaviour of the bass note on the first beat of the chord differently
from its behaviour on later beats. We can thus model the tendency for the played
bass note to coincide with the “nominal” bass note of the chord (e.g. the note B
in the B7 chord), while there is more variation in the bass notes played during
the rest of the duration of the chord.

Chroma. The chroma nodes provide models of the bass and treble chroma au-
dio features. Unlike the discrete nodes previously discussed, they are continuous
because the 12 elements of the chroma vector represent relative salience, which

2 The chord symbol itself always implies a bass note, but the bass line might include
other notes not specified by the chord symbol, as in the case of walking bass.
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can assume any value between zero and unity. We represent both bass and treble
chroma as multidimensional Gaussian random variables. The bass chroma vari-
able has 13 different Gaussians, one for every bass state, and the treble chroma
node has 121 Gaussians, one for every chord state. The means of the Gaussians
are set to reflect the nature of the chords: to unity for pitch classes that are
part of the chord, and to zero for the rest. A single variate in the 12-dimensional
Gaussian treble chroma distribution models one pitch class, as illustrated in Fig-
ure[2hl Since the chroma values are normalised to the unit interval, the Gaussian
model functions similar to a regression model: for a given chord the Gaussian
density increases with increasing salience of the chord notes (solid line), and
decreases with increasing salience of non-chord notes (dashed line). For more
details see [22].

One important aspect of the model is the wide variety of chords it uses.
It models ten different chord types (maj, min, maj/3, maj/5, maj6, 7, maj7,
min7, dim, aug) and the “no chord” class N. The chord labels with slashes
denote chords whose bass note differs from the chord root, for example D/3
represents a D major chord in first inversion (sometimes written D/Ff). The
recognition of these chords is a novel feature of our chord recognition algorithm.
Figure [3] shows a score rendered using exclusively the information in our model.
In the last four bars, marked with a box, the second chord is correctly annotated
as D/Ff. The position of the bar lines is obtained from the metrical position
variable, the key signature from the key variable, and the bass notes from the
bass variable. The chord labels are obtained from the chord variable, replicated
as notes in the treble staff for better visualisation. The crotchet rest on the first
beat of the piece indicates that here, the Viterbi algorithm inferred that the “no
chord” model fits best.

Using a standard test set of 210 songs used in the MIREX chord detection
task, our basic model achieved an accuracy of 73%, with each component of the
model contributing significantly to the result. This improves on the best result at

7 7 7
G B Em G C F C|G D/Ff Em Bm’G
|
Ko N © T
E=3
I7)
I | i
I I I i
E‘G" D/F§ Em Bm7 G
04 ’_3—- — e —— v o
L7} ————F — =) | i F— —
X e e U/l I e R R Ssaa——
An-oth-er red let-ter day, so the pound has dropped and the child-ren are cre-at - ing._

Fig. 3. Excerpt of automatic output of our algorithm (top) and song book version
(bottom) of the pop song “Friends Will Be Friends” (Deacon/Mercury). The song
book excerpt corresponds to the four bars marked with a box.
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Fig. 4. Segmentation and its effect on chord transcription for the Beatles’ song “It
Won’t Be Long” (Lennon/McCartney). The top 2 rows show the human and automatic
segmentation respectively. Although the structure is different, the main repetitions are
correctly identified. The bottom 2 rows show (in black) where the chord was transcribed
correctly by our algorithm using (respectively not using) the segmentation information.

MIREX 2009 for pre-trained systems. Further improvements have been made via
two extensions of this model: taking advantage of repeated structural segments
(e.g. verses or choruses), and refining the front-end audio processing.

Most musical pieces have segments which occur more than once in the piece,
and there are two reasons for wishing to identify these repetitions. First, multiple
sets of data provide us with extra information which can be shared between the
repeated segments to improve detection performance. Second, in the interest of
consistency, we can ensure that the repeated sections are labelled with the same
set of chord symbols. We developed an algorithm that automatically extracts the
repetition structure from a beat-synchronous chroma representation [27], which
ranked first in the 2009 MIREX Structural Segmentation task.

After building a similarity matrix based on the correlation between beat-
synchronous chroma vectors, the method finds sets of repetitions whose ele-
ments have the same length in beats. A repetition set composed of n elements
with length d receives a score of (n — 1)d, reflecting how much space a hypothet-
ical music editor could save by typesetting a repeated segment only once. The
repetition set with the maximum score (“part A” in Figure M) is added to the
final list of structural elements, and the process is repeated on the remainder of
the song until no valid repetition sets are left.

The resulting structural segmentation is then used to merge the chroma repre-
sentations of matching segments. Despite the inevitable errors propagated from
incorrect segmentation, we found a significant performance increase (to 75% on
the MIREX score) by using the segmentation. In Figure [4] the beneficial effect
of using the structural segmentation can clearly be observed: many of the white
stripes representing chord recognition errors are eliminated by the structural
segmentation method, compared to the baseline method.
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A further improvement was achieved by modifying the front end audio pro-
cessing. We found that by learning chord profiles as Gaussian mixtures, the
recognition rate of some chords can be improved. However this did not result
in an overall improvement, as the performance on the most common chords de-
creased. Instead, an approximate pitch transcription method using non-negative
least squares was employed to reduce the effect of upper harmonics in the chroma
representations [23]. This results in both a qualitative (reduction of specific er-
rors) and quantitative (a substantial overall increase in accuracy) improvement
in results, with a MIREX score of 79% (without using segmentation), which
again is significantly better than the state of the art. By combining both of the
above enhancements we reach an accuracy of 81%, a statistically significant im-
provement over the best result (74%) in the 2009 MIREX Chord Detection tasks
and over our own previously mentioned results.

4 Logic-Based Modelling of Harmony

First order logic (FOL) is a natural formalism for representing harmony, as it is
sufficiently general for describing combinations and sequences of notes of arbi-
trary complexity, and there are well-studied approaches for performing inference,
pattern matching and pattern discovery using subsets of FOL. A further advan-
tage of logic-based representations is that a system’s output can be presented in
an intuitive way to non-expert users. For example, a decision tree generated by
our learning approach provides much more intuition about what was learnt than
would a matrix of state transition probabilities. In this work we focus in particu-
lar on inductive logic programming (ILP), which is a machine learning approach
using logic programming (a subset of FOL) to uniformly represent examples,
background knowledge and hypotheses. An ILP system takes as input a set of
positive and negative examples of a concept, plus some background knowledge,
and outputs a logic program which “explains” the concept, in the sense that
all of the positive examples but (ideally) none of the negative examples can be
derived from the logic program and background knowledge.

ILP has been used for various musical tasks, including inference of harmony
[37) and counterpoint [30] rules from musical examples, as well as rules for ex-
pressive performance [43]. In our work, we use ILP to learn sequences of chords
that might be characteristic of a musical style [2], and test the models on classi-
fication tasks [3/4T]. In each case we represent the harmony of a piece of music
by a list of chords, and learn models which characterise the various classes of
training data in terms of features derived from subsequences of these chord lists.

4.1 Style Characterisation

In our first experiments [2], we analysed two chord corpora, consisting of the
Beatles studio albums (180 songs, 14132 chords) and a set of jazz standards
from the Real Book (244 songs, 24409 chords) to find harmonic patterns that
differentiate the two corpora. Chord sequences were represented in terms of the
interval between successive root notes or successive bass notes (to make the
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sequences key-independent), plus the category of each chord (reduced to a triad
except in the case of the dominant seventh chord). For the Beatles data, where
the key had been annotated for each piece, we were also able to express the
chord symbols in terms of the scale degree relative to the key, rather than its
pitch class, giving a more musically satisfying representation. Chord sequences of
length 4 were used, which we had previously found [25] to be a good compromise
of sufficient length to capture the context (and thus the function) of the chords,
without the sequences being overspecific, in which case few or no patterns would
be found.

Two models were built, one using the Beatles corpus as positive examples
and the other using the Real Book corpus as positive examples. The ILP system
Aleph was employed, which finds a minimal set of rules which cover (i.e. describe)
all positive examples (and a minimum number of negative examples). The models
built by Aleph consisted of 250 rules for the Beatles corpus and 596 rules for the
Real Book. Note that these rules cover every 4-chord sequence in every song,
so it is only the rules which cover many examples that are relevant in terms
of characterising the corpus. Also, once a sequence has been covered, it is not
considered again by the system, so the output is dependent on the order of
presentation of the examples.

We briefly discuss some examples of rules with the highest coverage. For the
Beatles corpus, the highest coverage (35%) was the 4-chord sequence of major
triads (regardless of roots). Other highly-ranked patterns of chord categories
(5% coverage) had 3 major triads and one minor triad in the sequence. This is
not surprising, in that popular music generally has a less rich harmonic vocab-
ulary than jazz. Patterns of root intervals were also found, including a [perfect
4th, perfect 5th, perfect 4th] pattern (4%), which could for example be inter-
preted asa I - IV - I - IV progressionor asV - I - V - I. Since the root
interval does not encode the key, it is not possible to distinguish between these
interpretations (and it is likely that the data contains instances of both). At
2% coverage, the interval sequence [perfect 4th, major 2nd, perfect 4th| (e.g.
I - IV - V - I)is another well-known chord sequence.

No single rule covered as many Real Book sequences as the top rule for the
Beatles, but some typical jazz patterns were found, such as [perfect 4th, perfect
4th, perfect 4th] (e.g. ii = V = I - IV, coverage 8%), a cycle of descending
fifths, and [major 6th, perfect 4th, perfect 4th] (e.g. I - vi - ii - V, coverage
3%), a typical turnaround pattern.

One weakness with this first experiment, in terms of its goal as a pattern
discovery method, is that the concept to learn and the vocabulary to describe
it (defined in the background knowledge) need to be given in advance. Differ-
ent vocabularies result in different concept descriptions, and a typical process
of concept characterisation is interactive, involving several refinements of the
vocabulary in order to obtain an interesting theory. Thus, as we refine the vo-
cabulary we inevitably reduce the problem to a pattern matching task rather
than pattern discovery. A second issue is that since musical styles have no for-
mal definition, it is not possible to quantify the success of style characterisation
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directly, but only indirectly, by using the learnt models to classify unseen exam-
ples. Thus the following harmony modelling experiments are evaluated via the
task of genre classification.

4.2 Genre Classification

For the subsequent experiments we extended the representation to allow variable
length patterns and used TILDE, a first-order logic decision tree induction algo-
rithm for modelling harmony [3/4]. As test data we used a collection of 856 pieces
(120510 chords) covering 3 genres, each of which was divided into a further 3
subgenres: academic music (Baroque, Classical, Romantic), popular music (Pop,
Blues, Celtic) and jazz (Pre-bop, Bop, Bossa Nova). The data is represented in
the Band in a Box format, containing a symbolic encoding of the chords, which
were extracted and encoded using a definite clause grammar (DCG) formalism.
The software Band in a Box is designed to produce an accompaniment based on
the chord symbols, using a MIDI synthesiser. In further experiments we tested
the classification method using automatic chord transcription (see section [3])
from the synthesised audio data, in order to test the robustness of the system
to errors in the chord symbols.

The DCG representation was developed for natural language processing to
express syntax or grammar rules in a format which is both human-readable
and machine-executable. Each predicate has two arguments (possibly among
other arguments), an input list and an output list, where the output list is
always a suffix of the input list. The difference between the two lists corre-
sponds to the subsequence described by the predicate. For example, the pred-
icate gap(In,Out) states that the input list of chords (In) commences with a
subsequence corresponding to a “gap”, and the remainder of the input list is
equal to the output list (Out). In our representation, a gap is an arbitrary se-
quence of chords, which allows the representation to skip any number of chords
at the beginning of the input list without matching them to any harmony con-
cept. Extra arguments can encode parameters and/or context, so that the term
degreeAndCategory(Deg,Cat,In,Out,Key) states that the list In begins with
a chord of scale degree Deg and chord category Cat in the context of the key
Key. Thus the sequence:

gap(S,T),
degreeAndCategory(2,min7,T,U,gMajor),
degreeAndCategory(5,7,U,V,gMajor),
degreeAndCategory(1,maj7,V, [1,gMajor)
states that the list S starts with any chord subsequence (gap), followed by a
minor 7th chord on the 2nd degree of G major (i.e. Amin?7), followed by a (dom-
inant) 7th chord on the 5th degree (D7) and ending with a major 7th chord on
the tonic (Gmaj7).

TILDE learns a classification model based on a vocabulary of predicates sup-

plied by the user. In our case, we described the chords in terms of their root note,
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genre(g,A,B,Key)
gap(A,C),degAndCat(5,maj,C,D,Key),degAndCat(1,min,D,E,Key) ?

gap(A,F),degAndCat(2,7,F,G,Key),degAndCat(5,maj,G,H,Key) ?

) gap(H,l),degAndCat(1,maj,1,J,Key),degAndCat(5,7,J,K,Key) ?

gap(H,L),degAndCat(2,min7,L,M,Key),degAndCat(5,7,M,N,Key) ?

Fig. 5. Part of the decision tree for a binary classifier for the classes Jazz and Academic

Table 1. Results compared with the baseline for 2-class, 3-class and 9-class classifica-
tion tasks

Classification Task Baseline|Symbolic|Audio
Academic — Jazz 0.55 0.947 |0.912
Academic — Popular 0.55 0.826 |0.728
Jazz — Popular 0.61 0.891 |0.807
Academic — Popular — Jazz| 0.40 0.805 |0.696
All 9 subgenres 0.21 0.525 |0.415

scale degree, chord category, and intervals between successive root notes, and we
constrained the learning algorithm to generate rules containing subsequences of
length at least two chords. The model can be expressed as a decision tree, as
shown in figure Bl where the choice of branch taken is based on whether or not
the chord sequence matches the predicates at the current node, and the class
to which the sequence belongs is given by the leaf of the decision tree reached
by following these choices. The decision tree is equivalent to an ordered set of
rules or a Prolog program. Note that a rule at a single node of a tree cannot
necessarily be understood outside of its context in the tree. In particular, a rule
by itself cannot be used as a classifier.

The results for various classification tasks are shown in Table[Il All results are
significantly above the baseline, but performance clearly decreases for more dif-
ficult tasks. Perfect classification is not to be expected from harmony data, since
other aspects of music such as instrumentation (timbre), rhythm and melody
are also involved in defining and recognising musical styles.

Analysis of the most common rules extracted from the decision tree models
built during these experiments reveals some interesting and well-known jazz,
academic and popular music harmony patterns. For each rule shown below, the
coverage expresses the fraction of songs in each class that match the rule. For
example, while a perfect cadence is common to both academic and jazz styles,
the chord categories distinguish the styles very well, with academic music using
triads and jazz using seventh chords:
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genre(academic,A,B,Key) :- gap(A,C),
degreeAndCategory(5,maj,C,D,Key),
degreeAndCategory(1,maj,D,E,Key),
gap(E,B).

[Coverage: academic=133/235; jazz=10/338|

genre(jazz,A,B,Key) :- gap(A,C),
degreeAndCategory(5,7,C,D,Key),
degreeAndCategory(1,maj7,D,E,Key),
gap(E,B).

[Coverage: jazz=146/338; academic=0/235]

A good indicator of blues is the sequence: ... - I7 - IV7 - ...

genre(blues,A B Key) :- gap(A,C),
degreeAndCategory(1,7,C,D,Key),
degreeAndCategory(4,7,D,E,Key),
gap(E,B).

[Coverage: blues=42/84; celtic=0/99; pop=2,/100]

On the other hand, jazz is characterised (but not exclusively) by the sequence:
.o— iiT - VT - L.

genre(jazz,A,B,Key) :- gap(A,C),
degreeAndCategory(2,min7,C,D,Key),
degreeAndCategory(5,7,D,E,Key),
gap(E,B).

[Coverage: jazz=273/338; academic=42/235; popular=>52/283]

The representation also allows for longer rules to be expressed, such as the
following rule describing a modulation to the dominant key and back again in
academic music: ... - II7 -V - ... - I - V7 - ...

genre(academic,A B, Key) :- gap(A,C),
degreeAndCategory(2,7,C,D,Key),
degreeAndCategory(5,maj,D,E,Key),
gap(E,F),
degreeAndCategory(1,maj,F,G,Key),
degreeAndCategory(5,7,G,H,Key),
gap(H,B).

[Coverage: academic=75/235; jazz=0/338; popular=1/283]
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Although none of the rules are particularly surprising, these examples illus-
trate some meaningful musicological concepts that are captured by the rules. In
general, we observed that Academic music is characterised by rules establish-
ing the tonality, e.g. via cadences, while Jazz is less about tonality, and more
about harmonic colour, e.g. the use of 7th, 6th, augmented and more complex
chords, and Popular music harmony tends to have simpler harmonic rules as
melody is predominant in this style. The system is also able to find longer rules
that a human might not spot easily. Working from audio data, even though the
transcriptions are not fully accurate, the classification and rules still capture the
same general trends as for symbolic data.

For genre classification we are not advocating a harmony-based approach
alone. It is clear that other musical features are better predictors of genre.
Nevertheless, the positive results encouraged a further experiment in which we
integrated the current classification approach with a state-of-the-art genre classi-
fication system, to test whether the addition of a harmony feature could improve
its performance.

4.3 Genre Classification Using Harmony and Low-Level Features

In recent work [I] we developed a genre classification framework combining both
low-level signal-based features and high-level harmony features. A state-of-the-
art statistical genre classifier [8] using 206 features, covering spectral, temporal,
energy, and pitch characteristics of the audio signal, was extended using a ran-
dom forest classifier containing rules for each genre (classical, jazz and pop)
derived from chord sequences. We extended our previous work using the first-
order logic induction algorithm TILDE, to learn a random forest instead of a
single decision tree from the chord sequence corpus described in the previous
genre classification experiments. The random forest model achieved better clas-
sification rates (88% on the symbolic data and 76% on the audio data) for the
three-class classification problem (previous results 81% and 70% respectively).
Having trained the harmony classifier, its output was added as an extra feature
to the low-level classifier and the combined classifier was tested on three-genre
subsets of two standard genre classification data sets (GTZAN and ISMIR04)
containing 300 and 448 recordings respectively. Multilayer perceptrons and sup-
port vector machines were employed to classify the test data using 5x5-fold
cross-validation and feature selection. Results are shown in table 2] for the sup-
port vector machine classifier, which outperformed the multilayer perceptrons.
Results indicate that the combination of low-level features with the harmony-
based classifier produces improved genre classification results despite the fact

Table 2. Best mean classification results (and number of features used) for the two
data sets using 5x5-fold cross-validation and feature selection

Classifier GTZAN data set | ISMIR04 data set
SVM without harmony feature|0.887 (60 features)|0.938 (70 features)
SVM with harmony feature  |0.911 (50 features)|0.953 (80 features)
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that the classification rate of the harmony-based classifier alone is poor. For
both datasets the improvements over the standard classifier (as shown in table
2)) were found to be statistically significant.

5 Conclusion

We have looked at two approaches to the modelling of harmony which aim to “dig
deeper into the music”. In our probabilistic approach to chord transcription, we
demonstrated the advantage of modelling musical context such as key, metrical
structure and bass line, and simultaneously estimating all of these variables
along with the chord. We also developed an audio feature using non-negative
least squares that reflects the notes played better than the standard chroma
feature, and therefore reduces interference from harmonically irrelevant partials
and noise. A further improvement of the system was obtained by modelling the
global structure of the music, identifying repeated sections and averaging features
over these segments. One promising avenue of further work is the separation of
the audio (low-level) and symbolic (high-level) models which are conceptually
distinct but modelled together in current systems. A low-level model would be
concerned only with the production or analysis of audio — the mapping from
notes to features; while a high-level model would be a musical model handling
the mapping from chord symbols to notes.

Using a logic-based approach, we showed that it is possible to automatically
discover patterns in chord sequences which characterise a corpus of data, and
to use such models as classifiers. The advantage with a logic-based approach is
that models learnt by the system are transparent: the decision tree models can
be presented to users as sets of human readable rules. This explanatory power is
particularly relevant for applications such as music recommendation. The DCG
representation allows chord sequences of any length to coexist in the same model,
as well as context information such as key. Our experiments found that the more
musically meaningful Degree-and-Category representation gave better classifica-
tion results than using root intervals. The results using transcription from audio
data were encouraging in that although some information was lost in the tran-
scription process, the classification results remained well above the baseline, and
thus this approach is still viable when symbolic representations of the music are
not available. Finally, we showed that the combination of high-level harmony
features with low-level features can lead to genre classification accuracy im-
provements in a state-of-the-art system, and believe that such high-level models
provide a promising direction for genre classification research.

While these methods have advanced the state of the art in music informatics,
it is clear that in several respects they are not yet close to an expert musician’s
understanding of harmony. Limiting the representation of harmony to a list of
chord symbols is inadequate for many applications. Such a representation may
be sufficient as a memory aid for jazz and pop musicians, but it allows only a very
limited specification of chord voicing (via the bass note), and does not permit
analysis of polyphonic texture such as voice leading, an important concept in
many harmonic styles, unlike the recent work of [11] and [29]. Finally, we note
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that the current work provides little insight into harmonic function, for example
the ability to distinguish harmony notes from ornamental and passing notes and
to recognise chord substitutions, both of which are essential characteristics of a
system that models a musician’s understanding of harmony. We hope to address
these issues in future work.
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