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Abstract. Generative models of music are in need of performance and gesture 
additions, i.e. inclusions of subtle temporal and dynamic alterations, and 
gestures so as to render the music musical. While much of the research 
regarding music generation is based on music theory, the work presented here is 
based on the temporal perception, which is divided into three parts, the 
immediate (subchunk), the short-term memory (chunk), and the superchunk. By 
review of the relevant temporal perception literature, the necessary performance 
elements to add in the metrical generative model, related to the chunk memory, 
are obtained. In particular, the pitch gestures are modeled as rising, falling, or 
as arches with positive or negative peaks. 
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1   Introduction 

Music generation has more and more uses in today’s media. Be it in computer games, 
interactive music performances, or in interactive films, the emotional effect of the 
music is primordial in the appreciation of the media. While traditionally, the music 
has been generated in pre-recorded loops that is mixed on-the-fly, or recorded in 
traditional orchestras, the better understanding and models of generative music is 
believed to push the interactive generative music into the multimedia. Papadopoulos 
and Wiggins (1999) gave an early overview of the methods of algorithmic 
composition, deploring “that the music that they produce is meaningless: the 
computers do not have feelings, moods or intentions”. While vast progress has been 
made in the decade since this statement, there is still room for improvement.  
The cognitive understanding of musical time perception is the basis of the work 
presented here. According to Kühl (2007), this memory can be separated into three 
time-scales, the short, microtemporal, related to microstructure, the mesotemporal, 
related to gesture, and the macrotemporal, related to form. These time-scales are 
named (Kühl and Jensen 2008) subchunk, chunk and superchunk, and subchunks 
extend from 30 ms to 300 ms; the conscious mesolevel of chunks from 300 ms to 3 
sec; and the reflective macrolevel of superchunks from 3 sec to roughly 30−40 sec. 
The subchunk is related to individual notes, the chunk to meter and gesture, and the 
superchunk is related to form. The superchunk was analyzed and used for in a 
generative model in Kühl and Jensen (2008), and the chunks were analyzed in Jensen 
and Kühl (2009). Further analysis of the implications of how temporal perception is 



related to durations and timing of existing music, and anatomic and perceptual finding 
from the literature is given in section 2 along with an overview of the previous work 
in rhythm. Section 3 presents the proposed model on the inclusion of pitch gestures in 
music generation using statistical methods, and the section 4 discusses the integration 
of the pitch gesture in the generative music model. Finally, section 5 offers a 
conclusion. 

2   Cognitive and Perceptual aspects of rhythm 

According to Snyder (2000), a beat is single point in time, while the pulse is recurring 
beats. Accent gives salience to beat, and meter is the organization of beats into a 
cyclical structure. This may or may not be different to the rhythmic grouping, which 
is generally seen as a phrase bounded by accented notes. Lerdahl and Jackendorff 
(1983) gives many examples of grouping and meter, and show how this is two 
independent elements; Grouping – segmentation on different levels is concerned with 
elements that has duration, and Meter – regular alternation of strong and weak beats is 
concerned with durationless elements. While grouping and meter are independent, the 
percept is more stable when they are congruent. 
The accentuation of some of the beats gives perceptually salience to the beat (Patel 
and Peretz 1997). This accenting can be done (Handel 1989) by for instance an 
intensity rise, by increasing the duration or the interval between the beats, or by 
increasing the frequency difference between the notes. 

Samson et al (2000) shows that the left temporal lobe processes rapid auditory 
sequences, while there are also activities in front lobe. The specialized skills related to 
rhythm are developed in the early years, for instance Malbrán (2000) show how 8-
year-old children can perform precise tapping. However, while the tapping is more 
precise for high tempo, drifting is ubiquitous. Gordon (1987) has determined that the 
perceptual attack time (PAT) is most often located at the point of the largest rise of 
the amplitude of the sound. However, in the experiment, the subjects had problems 
synchronizing many of the sounds, and Gordon concludes that the PAT is more vague 
for non-percussive sounds, and spectral cues may also interfere in the determination 
of the attack. Zwicker and Fastl (1999) introduced the notion of subjective duration, 
and showed that the subjective duration is longer than the objective durations for 
durations below 100ms. Even more subjective deviations are found, if pauses are 
compared to tones or noises. Zwicker and Fastl found that long sounds (above 1 
second) has the same subjective durations than pauses, while shorter pauses has 
significantly longer subjective durations than sounds. Approximately 4 times longer 
for 3.2kHz tone, while 200Hz tone and white noise have approximately half the 
subjective duration, as compared to pauses. This is true for durations of around 100-
200 ms, while the difference evens out to disappear at 1sec durations. Finally Zwicker 
and Fastl related the subjective duration to temporal masking, and give indications 
that musicians would play tones shorter than indicated in order to fulfill the subjective 
durations of the notated music. Fraisse (1982) give an overview of his important 
research in rhythm perception. He states the range in which synchronization is 
possible to be between 200 to 1800 msec (33-300 BPM). Fraisse furthermore has 



analyzed classical music, and found two main durations that he calls temps longs 
(>400msec) & temps courts, and two to one ratios only found between temps longs 
and courts. As for natural tempo, when subjects are asked to reproduce temporal 
intervals, they tend to overestimate short intervals (making them longer) and under- 
estimate long intervals (making them shorter). At an interval of about 500 msec to 
600 msec, there is little over- or under-estimation. However, there are large 
differences across individuals, the spontaneous tempo is found to be between 1.1 to 5 
taps per second, with 1.7 taps per second most occurring. There are also many 
spontaneous motor movements that occur at the rate of approximately 2/sec, such as 
walking, sucking in the newborn, and rocking. 

Friberg (1991), and Widmer (2002) give rules to how the dynamics and timing 
should be changed according to the musical position of the notes. Dynamic changes 
include 6db increase (doubling), and up to 100msec deviations to the duration, 
depending on the musical position of the notes. With these timing changes, Snyder 
(2000) indicate the categorical perception of beats, measures and patterns. The 
perception of deviations of the timing is examples of within-category distinctions. 
Even with large deviations from the nominal score, the notes are recognized as falling 
on the beats. 

As for melodic perception, Thomassen (1982) investigated the role of interval as 
melodic accents.  In a controlled experiment, he modeled the anticipation using an 
attention span of three notes, and found that the accent perception is described ‘fairly 
well’. The first of two opposite frequency changes gives the strongest accentuation. 
Two changes in the same direction are equally effective. The larger of two changes 
are more powerful, as are frequency rises as compared to frequency falls. 

3   Model of pitch gestures 

Music is typically composed, giving intended and inherent emotions in the structural 
aspects, which is then enhanced and altered by the performers, who change the 
dynamics, articulations, vibrato, and timing to render the music enjoyable and 
musical. In this work, the gestures in the pitch contour are investigated.  Jensen and 
Kühl (2009) investigated the gestures of music through a simple model, with positive 
or negative slope, and with positive or negative arches, as shown in figure 1. For the 
songs analyzed, Jensen and Kühl found more negative than positive slopes and 
slightly more positive than negative arches. Huron (1996) analyzed the Essen Folk 
music database, and found - by averaging all melodies - positive arches. Further 
analyses were done by comparing the first and last note to the mean of the 
intermediate notes, revealing more positive than negative arches (39% and 10% 
respectively), and more negative than positive slopes (29% and 19% respectively). 
According to Thomassen (1982) the falling slopes has less powerful accents, and they 
would thus require less attention. 



 
Figure 1. Different shapes of a chunk. Positive (a-c) or negative arches (g-i), 

rising (a,d,g) or falling slopes (c,f,i). 

The generative model is made through statistical models based on data from a musical 
database (The Digital Tradition 2010). From this model, note and interval occurrences 
are counted. These counts are then normalized, and used as probability density 
functions for note and intervals, respectively. This statistics are shown in figure 2. As 
can be seen, the intervals are not symmetrical. This corroborates the finding in Jensen 
and Kühl (2009) that more falling than rising slopes are found in the pitch of music. 
According to Vos and Troost (1989), the smaller intervals occur more often in 
descending form, while the larger ones occur mainly in ascending form. However, 
since the slope and arch are modelled in this work, the pdf of the intervals are 
mirrored and added around zero, and subsequently weighted and copied back to 
recreate the full interval pdf. It is later made possible to create a melodic contour with 
a given slope and arch characteristics, as detailed below. 

 



 
Figure 2. Note (top) and interval probability density function obtained from 

The Digital Tradition folk database. 

In order to generative pitch contours with gestures, the model in figure 1 is used. 
For the pitch contour, only the neutral gesture (e) in figure 1, the falling and rising 
slope (d) and (f), and the positive and negative arches (b) and (h) are modeled here. 
The gestures are obtained by weighting the positive and negative slope of the interval 
probability density function with a weight, 

€ 

pdfi = w⋅ pdfi
+,(1− w)⋅ pdfi

+[ ] . (1) 

Here, pdfi
+ is the mirrored/added positive interval pdf, and w is the weight. If 

w=0.5, a neutral gesture is obtained, and if w<0.5, a positive slope is obtained, and if 
w>0.5, a negative slope is obtained. In order to obtained an arch, the value of the 
weight is changed to w=1- w, in the middle of the gesture.  

In order to obtain a musical scale, the probability density function for the intervals 
(pdfi) is multiplied with a suitable pdfs for the scale, such as the one illustrated in 
figure 2 (top), 

€ 

pdf = shift(pdfi,n0)⋅ pdfs⋅ wr . (2) 

As pdfs is only defined for one octave, it is circularly repeated. The interval 
probabilities, pdfi, are shifted for each note n0. This is done under the hypothesis that 
the intervals and scale notes are independent. So as to retain the register, 
approximately, a register weight wr is further multiplied to the pdf. This weight is one 



for one octave, and decreases exponentially on both sides, in order to lower the 
possibility of obtaining notes far from the original register. 

In order to obtain successive notes, the cumulative density function, cdf, is 
calculated from eq (2), and used to model the probability that r is less than or equal to 
the note intervals cdf(n0). If r is a random variable with uniform distribution in the 
interval (0,1), then n0 can be found as the index of the first occurrence of cdf>r. 

Examples of pitch contours obtained by setting w=0, and w=1, respectively, are 
shown in figure 3. The rising and falling pitches are reset after each gesture, in order 
to stay at the same register throughout the melody. 

 

 
Figure 3. Pitch contours of four melodies with positive arch, rising slope, 

negative arch and falling slope. 

The positive and negative slopes are easily recognized when listening to the 
resulting melodies, because of the abrupt pitch fall at the end of each gesture. The 
arches, in comparison, are more in need of loudness and/or brightness variations in 
order to make them perceptually recognized. Without this, a positive slope can be 
confused for a negative arch that is shifted in time, or a positive or negative slope, 
likewise shifted in time. Normally, an emphasis at the beginning of each gesture is 
sufficient for the slopes, while the arches may be in need of an emphasis at the peak 
of the arch as well. 



4   Recreating pitch contours in meter 

In previous work (Kühl and Jensen 2008), a generative model that produces tonal 
music with structures changes was presented. This model, that creates note values 
based on a statistical model, also introduces changes at the structural level (each 30 
seconds, approximately). These changes are introduced, based on analysis of music 
using the musigram visualization tools (Kühl and Jensen 2008).  
 

 
Figure 4. The generative model including meter, gesture and form. Structural 
changes on the note values, the intensity and the rhythm is made every 30 

seconds, approximately, and gesture changes are made on average every seven 
notes. 

With respect to chroma, an observation was made that only a subset of the full 
scale notes were used at each structural element. This subset was modified, by 
removing and inserting new notes from the list of possible notes, at each structural 
boundary. The timbre changes include varying the loudness and brightness between 
loud/bright and soft/dark structural elements. The main rhythm changes were based 
on the identification of short elements (10 seconds) with no discernable rhythm. A 
tempo drift of up-to 10% and insertion of faster rhythmic elements (Tatum) at 
structural boundaries were also identified. These structural changes were 
implemented in a generative model, which flowchart can be seen in figure 4. While 
the structural elements certainly were beneficial for the long-term interest of the 



music, the lack of short-term changes (chunks) and a rhythm model impeded on the 
quality of the music. The meter, that improves the resulting quality, is included in this 
generative model by adjusting the loudness and brightness of each tone according to 
its accent. The pitch contour is made through the model introduced in the previous 
section. 

The notes are created using a simple envelope model and the synthesis method 
dubbed brightness creation function (bcf, Jensen 1999) that creates a sound with 
exponentially decreasing amplitudes that allows the continuous control of the 
brightness. The accent affects the note, so that the loudness brightness is doubled, and 
the duration is increased by 25 %, with 75% of the elongation made by advancing the 
start of the note, as found in Jensen (2010). 

These findings are put into a generative model of tonal music. A subset of notes (3-
5) is chosen at each new form (superchunk), together with a new dynamic level. At 
the chunk level, new notes are created in a metrical loop, and the gestures are added 
to the pitch contour and used for additional gesture emphasis. Finally, at the 
microtemporal (subchunk) level, expressive deviations are added in order to render 
the loops musical. The interaction of the rigid meter with the more loose pitch gesture 
renders the generated notes a more musical sense, by the incertitude and the double 
stream that results. The pure rising and falling pitch gestures are still clearly 
perceptible, while the arches are less present. By setting w in eq(1) to something in 
between (0,1), e.g. 0.2, or 0.8, a more realistic, agreeable rising and falling gestures 
are resulting. Still, the arches are more natural to the ear, while the rising and falling 
demand more attention, in particular perhaps the rising gestures. 

5   Conclusion 

The automatic generation of music is in need of model to render the music expressive. 
This model is found using knowledge from time perception of music studies, and 
further studies of the cognitive and perceptual aspects of rhythm. Indeed, the 
generative model consists of three sources, corresponding to the immediate 
microtemporal, the present mesotemporal and the long-term memory macroterminal. 
This corresponds to the note, the gesture and the form in music. While a single stream 
in each of the source may not be sufficient, so far the model incorporates the 
macrotemporal superchunk, the metrical mesotemporal chunk and the microtemporal 
expressive enhancements. The work presented here has introduced gestures in the 
pitch contour, corresponding to the rising and falling slopes, and to the positive and 
negative arches, which adds a perceptual stream to the more rigid meter stream. 

The normal beat as is given by different researchers to be approximately 100 BPM, 
and Fraisse (1982) furthermore shows the existence of two main note durations, one 
above and one below 0.4 secs, with a ratio of two. Indications as to subjective time, 
given by Zwicker and Fastl (1999) are yet to be investigated, but this may well be 
creating uneven temporal intervals in conflict with the pulse. 

The inclusion of the pitch gesture model certainly, in the author’s opinion, renders 
the music more enjoyable, but more work remains before the generative model is 
ready for general-purpose uses. 
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