Skip to main content

Lower Bounds for Interpolating Polynomials for Square Roots of the Elliptic Curve Discrete Logarithm

  • Conference paper
Information Security and Assurance (ISA 2011)

Abstract

In this paper we derive lower bounds for the degree of polynomials that approximate the square root of the discrete logarithm for Elliptic Curves with orders of various specific types. These bounds can serve as evidence for the difficulty in the computation of the square root of discrete logarithms for such elliptic curves, with properly chosen parameters that result in the curve having order of any of types studied in this paper. The techniques are potentially applicable to elliptic curves of order of any specific, allowable (by Hasse’s bounds), order type that is of interest for the application in hand.

This work was partially supported by the European Union project ABC4Trust (Attribute-based Credentials for Trust) funded within the context of the 7th Research Framework Program (FP7).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkin, A.O.L., Morain, F.: Elliptic curves and primality proving. Mathematics of Computation 61, 29–67 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baier, H.: Efficient Algorithms for Generating Elliptic Curves over Finite Fields Suitable for Use in Cryptography, PhD Thesis, Dept. of Computer Science, Technical Univ. of Darmstadt (May 2002)

    Google Scholar 

  3. Buchmann, J., Baier, H.: Efficient construction of cryptographically strong elliptic curves. In: Roy, B., Okamoto, E. (eds.) INDOCRYPT 2000. LNCS, vol. 1977, pp. 191–202. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Blake, I., Seroussi, G., Smart, N.: Elliptic curves in cryptography. London Mathematical Society Lecture Note Series, vol. 265. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  5. Camenisch, J., Stadler, M.: Efficient Group Signature Schemes for Large Groups (Extended Abstract). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  6. Cohen, H.: A Course in Computational Algebraic Number Theory. Graduate Texts in Mathematics, vol. 138. Springer, Berlin (1993)

    MATH  Google Scholar 

  7. Cornacchia, G.: Su di un metodo per la risoluzione in numeri interi dell’ equazione \(\sum_{h=0}^{n} C_{h}x^{n-h}y^h = P\). Giornale di Matematiche di Battaglini 46, 33–90 (1908)

    Google Scholar 

  8. Cox, D.A.: Primes of the form \(x\sp 2 + ny\sp 2\). John Wiley and Sons, New York (1989)

    MATH  Google Scholar 

  9. Deuring, M.: Die Typen der Multiplikatorenringe elliptischer Funktionenkörper. Abh. Math. Sem. Hansischen Univ. 14, 197–272 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  10. IEEE P1363/D13, Standard Specifications for Public-Key Cryptography (1999), http://grouper.ieee.org/groups/1363/tradPK/draft.html

  11. Konoma, C., Mambo, M., Shizuya, H.: The Computational Difficulty of Solving Cryptographic Primitive Problems Related to the Discrete Logarithm Problem. IEICE Transactions 88-A(1), 81–88 (2005)

    Article  Google Scholar 

  12. Konstantinou, E., Stamatiou, Y., Zaroliagis, C.: A Software Library for Elliptic Curve Cryptography. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 625–637. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Konstantinou, E., Stamatiou, Y., Zaroliagis, C.: On the Efficient Generation of Elliptic Curves over Prime Fields. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 333–348. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Konstantinou, E., Stamatiou, Y.C., Zaroliagis, C.: On the Construction of Prime Order Elliptic Curves. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 309–322. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Konstantinou, E., Kontogeorgis, A., Stamatiou, Y., Zaroliagis, C.: Generating Prime Order Elliptic Curves: Difficulties and Efficiency Considerations. In: Park, C.-s., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 261–278. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Lange, T., Winterhof, A.: Polynomial Interpolation of the Elliptic Curve and XTR Discrete Logarithm. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp. 137–143. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  17. Lay, G.J., Zimmer, H.: Constructing Elliptic Curves with Given Group Order over Large Finite Fields. In: Huang, M.-D.A., Adleman, L.M. (eds.) ANTS 1994. LNCS, vol. 877, pp. 250–263. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  18. Lenstra Jr., H.: Factoring integers with elliptic curves. Ann. of Math. 2, 649–673 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lysyanskaya, A., Ramzan, Z.: Group Blind Digital Signatures: A Scalable Solution to Electronic Cash. In: Hirschfeld, R. (ed.) FC 1998. LNCS, vol. 1465, pp. 184–197. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  20. Meletiou, G.C.: Polynomial Interpolation of the k-th Root of the Discrete Logarithm. In: Bozapalidis, S., Rahonis, G. (eds.) CAI 2009. LNCS, vol. 5725, pp. 318–323. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  21. Meletiou, G.C., Winterhof, A.: Interpolation of the Double Discrete Logarithm. In: von zur Gathen, J., Imaña, J.L., Koç, Ç.K. (eds.) WAIFI 2008. LNCS, vol. 5130, pp. 1–10. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Savaş, E., Schmidt, T.A., Koç, Ç.K.: Generating Elliptic Curves of Prime Order. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 142–161. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  23. Shparlinski, I.E.: Number Theoretic Methods in Cryptography: Complexity Lower Bounds. In: Progress in Computer Science and Applied Logic (PCS). Birkhäuser, Basel (1999)

    Google Scholar 

  24. Silverman, J.H.: The Arithmetic of Elliptic Curves. GTM 106 (1986)

    Google Scholar 

  25. Stewart, I.: Galois Theory, 3rd edn. Chapman & Hall/CRC, Boca Raton, FL (2004)

    MATH  Google Scholar 

  26. Stewart, I., Tall, D.: Algebraic Number Theory, 2nd edn. Chapman & Hall, London (1987)

    MATH  Google Scholar 

  27. Traoré, J.: Group Signatures and Their Relevance to Privacy-Protecting Off-Line Electronic Cash Systems. In: Pieprzyk, J.P., Safavi-Naini, R., Seberry, J. (eds.) ACISP 1999. LNCS, vol. 1587, pp. 228–243. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Meletiou, G.C., Stamatiou, Y.C., Tsiakalos, A. (2011). Lower Bounds for Interpolating Polynomials for Square Roots of the Elliptic Curve Discrete Logarithm. In: Kim, Th., Adeli, H., Robles, R.J., Balitanas, M. (eds) Information Security and Assurance. ISA 2011. Communications in Computer and Information Science, vol 200. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23141-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23141-4_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23140-7

  • Online ISBN: 978-3-642-23141-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics