Skip to main content

A Fuzzy PID Controller Based on Hybrid Optimization Approach for an Overhead Crane

  • Conference paper

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 212))

Abstract

A fuzzy PID controller is proposed to asymptotically stabilize a three-dimensional overhead crane using a hybrid optimization approach in this article. In the proposed algorithm, the PID gains are adaptive then the fuzzy PID controller has more flexibility and capability than the conventional ones with fixed gains. To tune the fuzzy PID controller simultaneously, a hybrid optimization procedure integrating genetic algorithm (GA) and particle swarm optimization (PSO) method is adopted. The simulation results illustrate that the proposed controller with few fuzzy rules can effectively perform the asymptotical stability of the prototype overhead crane.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yu, J., Lewis, F.L., Huang, T.: Nonlinear Feedback Control of a Gantry Crane. In: Proceedings of American Control Conference, pp. 4310–4315 (1995)

    Google Scholar 

  2. Lee, H.H.: Modeling and Control of a Three-dimensional Overhead Crane. J. Dyn. Systs., Meas., and Control 120, 471–476 (1998)

    Article  Google Scholar 

  3. Singhose, W., Porter, L., Kenison, M., Kriikku, E.: Effects of Hoisting on the Input Shaping Control of Gantry Cranes. Control Eng. Pract. 8, 1159–1165 (2000)

    Article  Google Scholar 

  4. Moustafa, K.A.F., Ebeid, A.M.: Nonlinear Modeling and Control of Overhead Crane Load Sway. J. Dyn. Syst., Meas., and Control 110, 266–271 (1988)

    Article  Google Scholar 

  5. Cho, S.K., Lee, H.H.: A Fuzzy-logic Antiswing Controller for Three-dimensional Overhead Cranes. ISA Trans. 41, 235–243 (2002)

    Article  Google Scholar 

  6. Hua, Y.J., Shine, Y.K.: Adaptive Coupling Control for Overhead Crane Systems. Mechatronics 17, 143–152 (2007)

    Article  Google Scholar 

  7. Chang, C.Y.: Adaptive Fuzzy Controller of the Overhead Cranes with Nonlinear Disturbance. IEEE Trans. Ind. Inform. 3(2), 164–172 (2007)

    Article  Google Scholar 

  8. Park, M.S., Chwa, D.Y., Hong, S.K.: Antisway Tracking Control of Overhead Cranes with System Uncertainty and Actuator Nonlinearity Using an Adaptive Fuzzy Sliding-mode Control. IEEE Trans. Ind. Electronics 55(11), 3972–3984 (2008)

    Article  Google Scholar 

  9. Keel, L.H., Rego, J.I., Bhattacharyya, S.P.: A New Approach to Digital PID Controller Design. IEEE Trans. Automatic Control 48(4), 687–692 (2003)

    Article  MathSciNet  Google Scholar 

  10. Cervantes, I., Garrido, R., Jose, A.R., Martinez, A.: Vision-based PID Control of Planar Robots. IEEE Trans. Mechatronics 9(1), 132–136 (2004)

    Article  Google Scholar 

  11. Whidborne, J.F., Istepanian, R.S.H.: Genetic Algorithm Approach to Designing Finite-precision Controller Structures. IEE Proceedings of Control Theory Applications 148(5), 377–382 (2001)

    Article  Google Scholar 

  12. Lin, L., Jan, H.Y., Shieh, N.C.: GA-based Multiobjective PID Control for a Linear Brushless Dc Motor. IEEE Trans. Mechatronics 8(1), 56–65 (2003)

    Article  Google Scholar 

  13. Tao, C.W., Taur, J.S.: Robust Fuzzy Control for a Plant with Fuzzy Linear Model. IEEE Trans. Fuzzy Syst. 13(1), 30–41 (2005)

    Article  Google Scholar 

  14. Wu, C.J., Liu, G.Y., Cheng, M.Y., Lee, T.L.: A Neural-network-based Method for Fuzzy Parameter Tuning of PID Controllers. J. Chin. Inst. Eng. 25(3), 265–276 (2002)

    Article  Google Scholar 

  15. Gaing, Z.L.: A Particle Swarm Optimization Approach for Optimum Design of PID Controller in AVR System. IEEE Trans. Energy Conversion 19(2), 384–391 (2004)

    Article  Google Scholar 

  16. Habib, S.J., Al-kazemi, B.S.: Comparative Study between the Internal Behavior of GA and PSO through Problem-specific Distance Functions. In: The 2005 IEEE Congress on Evolutionary Computation, pp. 2190–2195 (2005)

    Google Scholar 

  17. Wang, L.X.: A Course in Fuzzy Systems and Control. Prentice-Hall, New Jersey (1997)

    MATH  Google Scholar 

  18. Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: Proceedings of the IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)

    Google Scholar 

  19. Ratnaweera, A., Halgamuge, S.K., Watson, C.: Self-organizing Hierarchical Particle Swarm Optimizer with Time-varying Acceleration Coefficients. IEEE Trans. on Evolutionary Comput. 8(3), 240–255 (2004)

    Article  Google Scholar 

  20. Haupt, R.L., Haupt, S.E.: Practical Genetic Algorithms, 2nd edn. John Wiley & Sons, New York (2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ko, CN. (2011). A Fuzzy PID Controller Based on Hybrid Optimization Approach for an Overhead Crane. In: Li, TH.S., et al. Next Wave in Robotics. FIRA 2011. Communications in Computer and Information Science, vol 212. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23147-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23147-6_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23146-9

  • Online ISBN: 978-3-642-23147-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics