Skip to main content

Prediction of Batch-End Quality for an Industrial Polymerization Process

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6870))

Abstract

In this paper, an inferential sensor for the final viscosity of an industrial batch polymerization reaction is developed using multivariate statistical methods. This inferential sensor tackles one of the main problems of chemical batch processes: the lack of reliable online quality estimates.

In a data preprocessing step, all batches are brought to equal lengths and significant batch events are aligned via dynamic time warping. Next, the optimal input measurements and optimal model order of the inferential multiway partial least squares (MPLS) model are selected. Finally, a full batch model is trained and successfully validated. Additionally, intermediate models capable of predicting the final product quality after only 50% or 75% batch progress are developed. All models provide accurate estimates of the final polymer viscosity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aach, J., Church, G.: Aligning gene expression time series with time warping algorithms. Bioinformatics 17, 495–508 (2001)

    Article  Google Scholar 

  2. Arteaga, F., Ferrer, A.: Dealing with missing data in MSPC: several methods, different interpretations, some examples. J. Chemometr. 16, 408–418 (2002)

    Article  Google Scholar 

  3. Caiani, E.G., Porta, A., Baselli, G., Turiel, M., Muzzupappa, S., Pieruzzi, F., Crema, C., Malliani, A., Cerutti, S.: Warped-average template technique to track on a cycle-by-cycle basis the cardiac filling phases on left ventricular volume. IEEE Computers in Cardiology 25, 73–76 (1998)

    Google Scholar 

  4. Choi, S.W., Martin, E.B., Morris, A.J., Lee, I.-B.: Dynamic model-based batch process monitoring. Chem. Eng. Sci (2007), doi:10.1016/j.ces.2007.09.046

    Google Scholar 

  5. Dorsey, A.W., Lee, J.H.: Building inferential prediction models of batch processes using subspace identification. J. Proc. Contr. 13, 397–406 (2003)

    Article  Google Scholar 

  6. García-Munoz, S., Kourti, T., MacGregor, J.F., Mateos, A.G., Murphy, G.: Troubleshooting of an industrial batch process using multivariate methods. Ind. Eng. Chem. Res. 42, 3592–3601 (2003)

    Article  Google Scholar 

  7. García-Munoz, S., Kourti, T., MacGregor, J.F.: Model predictive monitoring for batch processes. Ind. Eng. Chem. Res 43, 5929–5941 (2004)

    Article  Google Scholar 

  8. Geladi, P., Kowalski, B.R.: Partial least-squares regression: a tutorial. Anal. Chim. Acta 185, 1–17 (1986)

    Article  Google Scholar 

  9. Gins, G.: Modelling of (bio)chemical processes using data-driven techniques, PhD Thesis, Faculteit Ingenieurswetenschappen, Katholieke Universiteit Leuven, Belgium (2007)

    Google Scholar 

  10. Itakura, F.: Minimum prediction residual principle applied to speech recognition. IEEE Trans. on Acoustics, Speech and Signal Proc. ASSP-23, 52–57 (1975)

    Google Scholar 

  11. Kassidas, A., MacGregor, J.F., Taylor, P.A.: Synchronization of batch trajectories using dynamic time warping. AIChE J. 44(4), 864–875 (1998)

    Article  Google Scholar 

  12. Keogh, E.J., Pazzani, M.J.: Derivative dynamic time warping. In: First SIAM International Conference on Data Mining, Chicago, IL, 2001 (2001)

    Google Scholar 

  13. Kourti, T., Nomikos, P., MacGregor, J.F.: Analysis, monitoring and fault diagnosis of batch processes using multiblock and multiway PLS. J. Proc. Contr. 5, 277–284 (1995)

    Article  Google Scholar 

  14. Kourti, T.: Multivariate dynamic data modeling for analysis and statistical process control of batch processes, start-ups and grade transitions. J. Chemometr. 17, 93–109 (2003)

    Article  Google Scholar 

  15. Lee, J.H., Dorsey, A.W.: Monitoring of batch processes through state-space models. AIChE J. 50(6), 1198–1210 (2004)

    Article  Google Scholar 

  16. Lu, N., Yao, Y., Gao, F.: Two-dimensional dynamic pca for batch process monitoring. AIChE J. 51(12), 3300–3304 (2005)

    Article  Google Scholar 

  17. McCready, C.: Model predictive multivariate control. In: Proc. 2nd European Conference on Process Analytics and Control Technology, p. 82 (2011)

    Google Scholar 

  18. Nomikos, P., MacGregor, J.F.: Monitoring of batch processes using multi-way principal component analysis. AIChE J. 40(8), 1361–1375 (1994)

    Article  Google Scholar 

  19. Nomikos, P., MacGregor, J.F.: Multivariate SPC charts for monitoring batch processes. Technometr. 37(1), 41–59 (1995)

    Article  MATH  Google Scholar 

  20. Nomikos, P., MacGregor, J.F.: Multiway partial least squares in monitoring batch processes. Chemometr. Intell. Lab. Syst. 30, 97–108 (1995)

    Article  Google Scholar 

  21. Ramaker, H.-J., Van Sprang, E.N.M., Westerhuis, J.A., Smilde, A.K.: Dynamic time warping of spectroscopic BATCH data. Anal. Chim. Acta 498, 133–153 (2003)

    Article  Google Scholar 

  22. Ratanamahatana, C.A., Keogh, E.J.: Three myths about dynamic time warping. In: Proceedings of SIAM International Conference on Data Mining (SDM 2005), Newport Beach, California, USA, pp. 506–510 (2005)

    Google Scholar 

  23. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. on Acoustics, Speech, and Signal Proc. ASSP-26(1), 43–49 (1978)

    Article  MATH  Google Scholar 

  24. Wold, S., Geladi, P., Ebensen, K., Öhman, J.: Multi-way principal components- and PLS-analysis. J. Chemometr. 1(1), 41–56 (1987)

    Article  Google Scholar 

  25. Tracy, N., Young, J., Mason, R.: Multivariate control charts for individual observations. J. Qual. Technol. 24(2), 88–95 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gins, G., Pluymers, B., Smets, I.Y., Espinosa, J., Van Impe, J.F.M. (2011). Prediction of Batch-End Quality for an Industrial Polymerization Process. In: Perner, P. (eds) Advances in Data Mining. Applications and Theoretical Aspects. ICDM 2011. Lecture Notes in Computer Science(), vol 6870. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23184-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23184-1_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23183-4

  • Online ISBN: 978-3-642-23184-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics