Skip to main content

Collective Classification Using Heterogeneous Classifiers

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6871))

Abstract

Collective classification algorithms have been used to improve classification performance when network training data with content, link and label information and test data with content and link information are available. Collective classification algorithms use a base classifier which is trained on training content and link data. The base classifier inputs usually consist of the content vector concatenated with an aggregation vector of neighborhood class information. In this paper, instead of using a single base classifier, we propose using different types of base classifiers for content and link. We then combine the content and link classifier outputs using different classifier combination methods. Our experiments show that using heterogeneous classifiers for link and content classification and combining their outputs gives accuracies as good as collective classification. Our method can also be extended to collective classification scenarios with multiple types of content and link.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernstein, A.A., Clearwater, S., Hill, S., Perlich, C., Provost, F.: Discovering knowledge from relational data extracted from business news. In: Proceedings of the Workshop on Multi-Relational Data Mining at KDD 2002, pp. 7–22 (2002)

    Google Scholar 

  2. Angin, P., Neville, J.: A shrinkage approach for modeling non-stationary relational autocorrelation. In: SNA/KDD (2008)

    Google Scholar 

  3. Awan, A., Bari, H., Yan, F., Moksong, S., Yang, S., Chowdhury, S., Cui, Q., Yu, Z., Purisima, E., Wang, E.: Regulatory network motifs and hotspots of cancer genes in a mammalian cellular signalling network. IET Syst. Biol. 1(5), 292–297 (2007)

    Article  Google Scholar 

  4. Balcan, D., Erzan, A.: Random model for rna interference yields scale free network. Eur. Phys. J. B (38), 253–260 (2004)

    Google Scholar 

  5. Buza, K., Nanopoulos, A., Schmidt-Thieme, L.: Graph-based model-selection framework for large ensembles. In: Graña Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds.) HAIS 2010. LNCS, vol. 6076, pp. 557–564. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Chakrabarti, S., Dom, B., Indyk, P.: Enhanced hypertext categorization using hyperlinks. In: SIGMOD (1998)

    Google Scholar 

  7. Chapelle, O., Zien, A., Scholkopf, B.: Semi-supervised learning. MIT Press, Cambridge (2006)

    Book  Google Scholar 

  8. Dasgupta, K., Singh, R., Viswanathan, B., Chakraborty, D., Mukherjea, S., Nanavati, A.A., Joshi, A.: Social ties and their relevance to churn in mobile telecom networks. In: EDBT 2008 (2008)

    Google Scholar 

  9. Fast, A., Jensen, D.: Why stacked models perform effective collective classification. In: Eighth IEEE International Conference on Data Mining, pp. 785–790 (2008)

    Google Scholar 

  10. Goodman, L.: Snowball sampling. Annals of Mathematical Statistics 32, 148–170 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jensen, D., Neville, J., Gallagher, B.: Why collective inference improves relational classification. In: University of Massachusetts, Technical Report 04-27 (2004)

    Google Scholar 

  12. Joachims, T.: Text categorization with support vector machines: Learning with many relevant features. In: Proceedings of ECML (1998)

    Google Scholar 

  13. Kou, Z., Cohen, W.W.: Notes on stacked graphical learning for efficient inference in markov random fields. In: CMU Technical Report, CMU-ML-07-101 (2007)

    Google Scholar 

  14. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley-Interscience, Hoboken (2004)

    Book  MATH  Google Scholar 

  15. Macskassy, S.A., Provost, F.: Classification in networked data: A toolkit and a univariate case study (May 2007)

    Google Scholar 

  16. Maeno, Y., Ohsawa, Y.: Node discovery problem for a social network (2007)

    Google Scholar 

  17. McDowell, L., Gupta, K., Aha, D.: Cautious collective classification. Journal of Machine Learning Research 10, 2777–2836 (2009)

    MathSciNet  MATH  Google Scholar 

  18. McDowell, L., Gupta, K., Aha, D.: Meta-Prediction for Collective Classification (2010)

    Google Scholar 

  19. McDowell, L., Gupta, K.M., Aha, D.W.: Cautious inference in collective classification. In: AAAI, pp. 596–601. AAAI Press, Menlo Park (2007)

    Google Scholar 

  20. Neville, J., Gallagher, B., Eliassi-Rad, T.: Evaluating statistical tests for within-network classifiers of relational data. In: ICDM (2009)

    Google Scholar 

  21. Neville, J., Jensen, D.: Iterative classification in relational data. In: Workshop on Statistical Relational Learning. AAAI, Menlo Park (2000)

    Google Scholar 

  22. Popescul, A., Ungar, L.H.: Statistical relational learning for link prediction. In: IJCAI Workshop on Learning Statistical Models from Relational Data (2003)

    Google Scholar 

  23. Preisach, C., Schmidt-Thieme, L.: Ensembles of relational classifiers. Knowl. Inf. Syst 14(3), 249–272 (2008)

    Article  MATH  Google Scholar 

  24. Rabiner, L.: A tutorial on hidden markov models and selected applications in speech recognition. Proc. of the IEEE 77(2), 275–286 (1989)

    Article  Google Scholar 

  25. Sen, P., Getoor, L.: Empirical comparison of approximate inference algorithms for networked data. In: ICML Workshop on Open Problems in Statistical Relational Learning, (SRL 2006) (2006)

    Google Scholar 

  26. Sen, P., Getoor, L.: Link-based classification. In: UM Computer Science Department, Technical Report, CS-TR-4858. University of Maryland (2007)

    Google Scholar 

  27. Sen, P., Namata, G., Bilgic, M., Getoor, L., Gallagher, B., Eliassi-Rad, T.: Collective classification in network data. AI Magazine 29(3) (2008)

    Google Scholar 

  28. Senliol, B., Aral, A., Cataltepe, Z.: Feature selection for collective classification. In: International Symposium on Computer and Information Sciences (ISCIS 2009). IEEE, Los Alamitos (2009)

    Google Scholar 

  29. Senliol, B., Cataltepe, Z., Sonmez, A.: Feature and node selection for collective classification. In: International Symposium on Computer and Information Sciences, (ISCIS 2010) (2010)

    Google Scholar 

  30. U. o. M. Statistical relational learning group

    Google Scholar 

  31. Tresp, V., Bundschus, M., Rettinger, A., Huang, Y.: Towards machine learning on the semantic web. In: Uncertainty Reasoning for the Semantic Web I. Lecture Notes in AI. Springer, Heidelberg (2008)

    Google Scholar 

  32. Vapnik, V.N.: Estimation of dependences based on empirical data. Birkhuser, Basel (2006)

    MATH  Google Scholar 

  33. Xiang, R., Neville, J., Rogati, M.: Modeling relationship strength in online social networks. In: Proceedings of the 19th International Conference on World Wide Web, pp. 981–990. ACM, New York (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cataltepe, Z., Sonmez, A., Baglioglu, K., Erzan, A. (2011). Collective Classification Using Heterogeneous Classifiers. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2011. Lecture Notes in Computer Science(), vol 6871. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23199-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23199-5_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23198-8

  • Online ISBN: 978-3-642-23199-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics