
Incremental Web-Site Boundary Detection
Using Random Walks

Ayesh Alshukri, Frans Coenen and Michele Zito

Department of Computer Science,
University of Liverpool, Ashton Building,
Ashton Street, L69 3BX Liverpool, UK.

{a.alshukri, coenen, michele}@liverpool.ac.uk

Abstract. The paper describes variations of the classical k-means clus-
tering algorithm that can be used effectively to address the so called
Web-site Boundary Detection (WBD) problem. The suggested advan-
tages offered by these techniques are that they can quickly identify most
of the pages belonging to a web-site; and, in the long run, return a solu-
tion of comparable (if not better) accuracy than other clustering meth-
ods. We analyze our techniques on artificial clones of the web generated
using a well-known preferential attachment method.

keywords: Web Site Boundary Detection, Random Walk Techniques,
Web Site Clustering,

1 Introduction

Web-site Boundary Detection (WBD) is an important activity [8, 21, 22] with
respect to such applications as: web archiving [23] [1] , web search and informa-
tion retrieval [20]. While also being important in the study and analysis of the
web [5] , which includes; content authorship [8], link structure analysis [17], and
web content accessibility studies [6].

The principal objective of the WBD problem is, given a start web-page, the
target (or seed, or home) web-page, to automatically identify all pages that are
related to this web-page in such a way that they can be considered to form a
web-site. In this paper we will follow [4] in postulating that web-sites are col-
lections of pages describing their authors intentions. Therefore they are formed
by groups of web-pages that can be seen as similar to an (number of) initial
seed(s). We assume that web-pages can be described by a set of measurable
features. Additionally web-sites are characterized by some global structural fea-
tures encoded by their hyper-link distribution. Given all this, web-site boundary
detection can be reduced to a special type of clustering problem whereby the
saught web-site is obtained by grouping highly connected pages described by
similar feature vectors.

Such an approach carries, however, a number of issues related to the nature
of the web. In particular the simplistic idea of gathering all the data first and
then performing the clustering, in this context, is highly inefficient as the initial

2 Ayesh Alshukri, Frans Coenen and Michele Zito

fetching stage will then dominate the overall computation time by several orders
of magnitude [14, 19]. Also, it is well-known that the web is a very dynamic
environment, where pages get created and deleted continuously [11, 13].

In this paper we suggest that more effective results can be obtained by re-
sorting to iterative clustering methods that do not need to have (local memory)
access to the whole data set in order to start clustering the pages: the clustering
process takes place while the pages are fetched from the internet. We refer to
such methods as incremental methods. Our empirical investigation is centered on
the k-means clustering heuristic. It is well known that k-means depends heavily
on the sequence in which data is presented [9, 12, 24, 25]. We claim that meth-
ods based on fetching the various web-pages by moving across the web-graph
in a random manner, following the web hyperlink structure and clustering the
pages on the fly, perform better than other k-means variants in the context of
the WBD problem. In fact such methods, often, don’t even need to explore the
whole dataset to provide quite acceptable solutions for the WBD problem. We
argue that such algorithms quickly identify most of the pages belonging to the
web-site under consideration and, in the long run, return a solution of compa-
rable (if not better) accuracy than other incremental variants of k-means. Our
analysis is based on studying the performance of various clustering algorithms
using artificial datasets generated using the preferential attachment web model
proposed by Kumar’s et al. [15]. We also argue that the properties of this model,
and the resulting performance figures, suggest the possibility that our random-
ized clustering methods would out-perform all other k-means variants considered
here, even on real web data.

The rest of the paper is organized into three broad sections. In Section 2 we
define the WBD problem, both in general and in the specific setting analyzed
in this paper, and review the main definitions related to Random Walks and
the k-means clustering algorithm. In Section 3 we report on our experiments by
describing one after the other our data sets, our performance measures, and our
results. Finally Section 4 is devoted to a discussion of our results.

2 Preliminaries

All algorithms considered in this paper will work on a portion of the world-
wide web. We may think of this as a graph G = (V,E), where V is a collection
of web-pages, and the set E keeps track of all directed links between pairs of
elements of V . Without loss of generality assume that G is connected. Each
page has a numerical feature vector associated with it. Technically this can be
determined once the page has been downloaded from the internet. Thus, there
exists a function f : V → IRk, for some fixed integer k ≥ 1, such that for any
P ∈ V , f(P) is an ordered sequence of k real numbers characterizing the page P .
In what follows we will denote the elements of V using italicized capital letters
(rather than the usual u, v, . . .). We will use the terms page, web-page, node,
and vertex interchangeably, but in all cases we will actually be referring to the
pair formed by an element of V and its corresponding feature vector. Given a

Incremental Web-Site Boundary Detection Using Random Walks 3

specified web-page P ∈ V (G), our purpose is to define a setW =W(P) ⊆ V (G)
called the web-site of P , containing all pages of G that are similar to P .

In the work described in this paper we focus on iterative clustering processes
founded on the template presented in Table 1. The graph G is assumed to model
a portion of the web. For the purpose of our experiments (see Section 3.1) we
may assume that it resides on some secondary memory storage device and bits
of it are retrieved as needed. If the algorithms were to be used on the real
web G they would be distributed at different sites across the internet and its
content would have to be downloaded through http requests. Note that the well
known k-means [9, 12, 24, 25] clustering method fits this template, however the
template can equally be used to represent a host of different algorithms. In the
forthcoming sections we provide details about the proposed iterative clustering
processes that will be considered in the rest of this paper.

Algorithm clustering template (P)

W = {P}; N = {};
set up the process internal state;
repeat

select a page Q from G;
add Q to W or N ;
update the process state;

until convergence;
return W ;

Table 1. Clustering algorithm template.

2.1 k-means clustering

The classical k-means clustering algorithm is obtained from the template given
in Table 1 by assuming that the state of the process contains information about
the (two) clusters centroids, that the pages in G are inspected one at a time in
some given order (which may vary over subsequent iterations) and that the state
update is only performed after a complete sweep of the data has been performed.
Also, it is assumed that the graph G = (V,E) is not initially available. It is
retrieved from the web incrementally as different pages get requested inside the
process main loop. The loop is then further repeated until the system state does
not change from one sweep of the graph to the next one.

This paper considers the two variants of this process, named BF-means and
DF-means, obtained by assuming that the order in which the pages of G are
examined is determined by the way in which they are retrieved from the web,
and is given by a fixed and bound breadth-first (resp. depth-first) traversal of
the web starting at P , including all pages up to a certain bounded distance from
P .

4 Ayesh Alshukri, Frans Coenen and Michele Zito

2.2 Clustering based on random crawling

The careful reader will have realised that many different processes fit the tem-
plate described above. The order in which the pages are considered needn’t be
fixed or deterministic. The way in which the web-graph is explored can be quite
arbitrary. Furthermore the process state may be updated every time a new page
is considered, rather than at the end of a whole sweep of the given dataset.
Finally the periodical state update might include major modification of the re-
trieved web-graph content. In the remainder of this section we describe two
possible processes of this type: (i) Naive Random Walk (NRW) clustering and
the Advanced Random Walk (ARW) clustering. The first is appealing because of
its simplicity, the second will turn out to deliver the best results. Other variants
were tested but results of these are omitted from this paper mainly because they
are not significantly different from those of the two methods considered.

Fig. 1. Example web dataset displayed
as a graph; vertices indicate web pages,
dashed edges indicate hyperlinks (di-
rections omitted so as to maintain clar-
ity)

Fig. 2. Sample run of NRW (numbered
directed edges indicate progress of the
random walk)

Naive Random Walk (NRW) Clustering. Given an arbitrary graph G, the se-
quence of vertices visited by starting at a vertex and then repeatedly moving
from one vertex to the next by selecting a neighbour of the current vertex at
random is termed a random walk on the graph G (see for instance [18]). Ran-
dom walks arise in many settings (e.g. the shuffling of a deck of cards, or the
motion of a dust particle in the air) and there’s a vast literature related to them
(the interested reader is referred to the classical [10], or the very recent [2] and
references therein). In particular they can be used [3] as a means for exploring
a graph.

The process NRW is the variant of the clustering process in Table 1 based on
the idea of performing a random walk on G. A pure random walk is not easily
simulated (at least initially) if we want to keep the constraint that the process
does not require access to the full dataset to start off with. The sequence of
pages to be (re-)clustered is thus given by the order in which they are visited
by performing a random walk on the known portion of G. Initially the walk has
to choose a neighbour of P . In general, given the current page Q, the page to

Incremental Web-Site Boundary Detection Using Random Walks 5

be visited next is selected at random among those pointed by a link of Q and
the set of pages seen so far that point to Q. For example, with reference to the
example graph given in Figure 1, the first four steps of the process might be as
shown in Figure 2, with clustering performed at every step. Note that the walk
can revisit nodes multiple times, even before having completed a full sweep of G.
It is therefore convenient to re-compute the centroids after each step of the walk,
rather than at the end of a sweep. It is well-known [3] that any random walk
on a finite connected graph eventually visits all vertices in it. Thus, in principle,
the process could run until convergence as in the standard k-means algorithm. It
will turn out, however, that stopping the process after a given maximum number
of “steps” (MaxIterations) is more effective and still results in good quality
clusters. Some pseudo code describing the NRW technique is presented in Table
2. The decision on whether to add Q to W or the noise cluster N is based on
the computation of the Euclidean distance between Q’s feature vector and the
centroids of the two clusters W \ {Q} and N \ {Q}.

Algorithm NRW (P)

W = {P}; N = {};
set Q to P ; set a counter to one;
set up the process internal state;
repeat

redefine Q to be a random neighbour of Q in G;
add Q to W or N ;
increase the counter;
update the process state;

until counter goes past MaxIterations;
return W ;

Table 2. Pseudo code for RW

Advanced Random Walk (ARW) clustering. Random walks, as defined above,
are examples of so called Markov stochastic processes [10]. The evolution of a
process of this type is fully determined by its current state: in the example in
Figure 1, assuming the graph is completely known to the walk, every time we
visit vertex A we have a 50-50 chance of moving to B or D and no chance at all
to visit vertex C next.

The process NRW, strictly speaking, already breaks this framework. In this
section we describe a slight more refined process (ARW) that moves even further
from a pure random walk process. The process traverses the graph vertices in
a random order in a similar manner as in the case of NRW. However in the
case of ARW, all edges are weighted (initially such weights are all equal to one)
and these weightings are reduced by a factor φ whenever an edge is discovered
from the current vertex (the “to” vertex) to the previous vertex (the “from”

6 Ayesh Alshukri, Frans Coenen and Michele Zito

vertex) where the vertex pair are not considered to be similar (according to a
predetermined similarity threshold). With respect to the experiments reported
later in this paper a φ value of 9 was used, i.e. we divided the edge weight of
dissimilar edges by φ = 9 each time we used one such edge. Additionally the
graph structure may be changed as a result of a traversal by the addition of
further edges. Immediately after visiting a page for the first time, the algorithm
computes the similarity between the “new” vertex and all previously visited
vertices. If the similarity is above a predefined threshold an edge is added between
the corresponding vertices. The additional edges included in this manner are then
taken into account when considering the next vertex (page) to visit.

Algorithm ARW (P)

W = {P}; N = {};
set Q to P ; set a counter to one;
set up the process internal state;
repeat

{ Secondary edges }
if first visit to Q then

for all nodes R seen so far do
if R and Q are similar then

add a “secondary edge” (R,Q) to G; set w(R,Q) to one;
end if

end for
end if

{ Similarity Reduction }
if Q and its predecessor are NOT similar then

set w(Q,pred(Q)) to w(Q,pred(Q))/φ;
set w(pred(Q), Q) to w(pred(Q), Q)/φ;

end if

redefine Q to be a random neighbour of Q in G;
add Q to W or N ;
increase the counter;
update the process state;

until counter goes past MaxIterations;
return W ;

Table 3. Pseudo code for ARW

The effect of all this is that, as the walk progresses, a number of links are
added to the graph between similar vertices and thus the walk is more likely
to remain within a certain group of pages, while the reduction of edge weights
between non-similar vertices will further reduce the chance of visiting unrelated
vertexes in succession. Some pseudo code for ARW is presented in Table 3. In

Incremental Web-Site Boundary Detection Using Random Walks 7

that description pred(Q) is the page visited immediately before Q. As in the
case of the NRW algorithm the choice of Q’s neighbours is made from among all
pages R such that either (R,Q) or (Q,R) is in E.

3 Experiments

In this section we describe a number of experiments used to evaluate the pro-
cesses described in Section 2.

3.1 Data set

In a first attempt to assess the quality of our algorithms we tested them on a
number of artificial data sets. Graphs G = (V,E) containing a particular set of
pages similar to some chosen element of V were put together by first creating
artificial host graphs using the well established web-graph model proposed by
Kumar et al. [15]. One of the generated host graphs was then selected to be
the target graph. The graphs were then represented using a standard feature
vector representation that included noise words randomly selected from a “bag”
of noise words.

A model of the web. We will use the graph process described in [15], but with
case 3. below derived from [16]. Given a positive integer m, the process generates

a synthetic model of the world wide web starting from a graph GK,m
0 having a

single vertex with m links pointing to itself. Then, for t ≥ 1, GK,m
t is derived from

GK,m
t−1 according to the following procedure (here α, β, and ν are real numbers

between zero and one):

1. With probability α× β add a new vertex to GK,m
t−1 with m links pointing to

itself.
2. With probability α × (1 − β) choose a random edge in GK,m

t−1 and make its
source point to P .

3. With probability (1−α)×β, pick a random copying vertex Qc; a new vertex
P will point to m vertices chosen as follows:
uar with probability ν, choose a random vertex Q and add (P,Q) to the

graph.
pa with probability 1 − ν, add (P,R) to the graph, where R is a random

neighbour of Qc.
4. with the remaining probability (1− α)× (1− β) no new vertex is generated

and a random edge is added to GK,m
t−1 .

In our experiments we used values of m mirroring the fact that the average
page on the world wide web contains some 40-50 links [7]. Also α = 0.01, β = 0.9
and ν = 0.2. So, most of the time, new vertices will be generated to which 50
neighbours will be linked according to the procedure described in 3 above. The
resulting graph shared many features with the real web, in particular: (i) in

8 Ayesh Alshukri, Frans Coenen and Michele Zito

and out degree distribution, (ii) the diameter, and (iii) the presence of small

bipartite “cliques”. For the purpose of our experiments, we generate GK,m
T and

then remove GK,m
0 from it. Because of the copy mechanism by which we add

edges to GK,m
t−1 , the single page in GK,m

0 contains a large number of links and is
linked by a large number of “younger” pages. Removing it from the graph used
for our experiments makes the resulting graph, which we denote by KT more
realistic.

Generating clustery data. The use of a synthetic version of the web has many
advantages. However Kumar’s graphs have one disadvantage: the lack of the
“clustery” nature of the real web. To complete the definition of our artificial
instances we need to identify a web-site W within KT (and then complete the
definition of G by adding some noise cluster, N to that). To this end we per-
formed the following steps:

1. Given KT , we picked a random node X from this graph. Such node will
represent the home-page in W.

2. To create the set of pages in W we then performed a breadth-first crawl of
KT starting from X, up to a certain maximum depth. The nodes visited by
such process are then added to W with some fixed probability p.

3. The noise cluster N contains all nodes reachable from X that have not been
added to W in the previous step.

4. The graph G is then defined as the subgraph of KT induced by the setW∪N .

For the experiments reported in this paper we generated datasets of two
types, which we term A and B. Both sets were generated from copies of KT . Sets
of type A are derived from graphs generated using m = 50, keeping in the setW
all nodes at a distance of at most three links from the initial page X. Sets of type
B were generated using m = 30 and p = 0.5 and breadth-first exploration up
to distance five. Table 4 reports some graph-theoretic statistics of the resulting
graph G. Note that the two clusters have roughly the same number of elements
but the class cluster W has many more internal links than links pointing to the
noise cluster (modelling the fact that the elements of W represent homogeneous
web-pages). Furthermore W is popular in the sense that many links from the
noise cluster N point back to W. There are two main differences between the
graphs in set A and those in set B. First, typically graphs of type B contain
fewer edges and, individually, their nodes contain fewer out-links. Second, for
graphs in set A the class W coincides with the set of all pages at distance at
most three from X (also known as the ball of radius three around X). For the
graphs in B this is not the case. The web-site of X, although much bigger than
in the case of A, is typically more “stringy”. Only half of the neighbours of a
vertex in W are in the cluster.

Given a particular graph structure G, we may generate several instances of
this structure by changing the feature vectors that we associate with the vari-
ous pages (vertices). In general, for any page P ∈ W (resp. in N , the feature
vector f(P) can be chosen from the superposition of two k-dimensional normal

Incremental Web-Site Boundary Detection Using Random Walks 9

multivariate distributions, having different means, µW and µN , and equal devi-
ations σ. The vectors associated with the elements of W may be chosen from
the Nk(µW , σ) distribution, those for N from Nk(µN , σ). Varying the relative
position of the means results in datasets of differing difficulty.

For our experiments we simulated such process in a very simple way. Given P
in V (KT), f(P) contains k = 20 integer numbers, corresponding to the number
of occurrences of the elements of a pool of words S in a bag associated with P .
The pool S is split in two disjoint groups of equal size, SW and SN . The bag
of P is defined by sampling, independently, k elements of S. If P is in W, each
chosen word has a chance π = 0.7 (resp. 1− π) of belonging to SW (resp. SN),
and is selected uniformly at random with replacement, from the chosen group.
If P ∈ N , the selection is symmetrically biased towards SN .

Type Name
Cluster W Cluster N

Size Intra
edges

Inter
edges

Size Intra
edges

Inter
edges

A

G1 181 2443 53 176 470 2353
G2 124 1581 48 182 591 2335
G3 102 978 89 128 374 1463
G4 149 2046 77 109 259 1665

B

G1 208 4783 46 201 699 5006
G2 262 6616 80 199 623 5570
G3 254 5956 76 212 706 5554
G4 293 6108 128 237 766 5500

Table 4. Data set graph-theoretic statistics. Intra edges are links connecting two pages
in the same cluster. Inter edges are links connecting pages in different clusters.

3.2 Evaluation Criteria

We used a number of measures to compare the performance of the various clus-
tering methods considered in this paper. Given an instance (G, f) generated as
described in Section 3.1, the output (W,N) of a particular clustering algorithm
A on (G, f) can be expressed as:

W = Wt ∪Wf N = Nt ∪Nf

where Wt (resp. Wf) is the collection of class items (noise items) that are cor-
rectly (resp. incorrectly) identified as being within the target web site, and,
similarly, Nt (resp. Nf) is the collection of noise items (resp. items in W) that
are correctly (resp. incorrectly) identified as noise. The accuracy γ = γ(A, (G, f))
of algorithm A on input (G, f) is given by the expression:

|Wt|+ |Nt|
|W|+ |N |

10 Ayesh Alshukri, Frans Coenen and Michele Zito

which measure the proportion of correctly classified items.
We argue that in this context the accuracy only tells half of the story. Some

of our clustering methods are deterministic others are randomized. As we men-
tioned above randomized graph crawls are only likely to visit the whole graph,
eventually, but they may fail to do so, in some particular cases. Even more im-
portantly, the clustering problems we are dealing with are asymmetric; in the
sense that, one may argue, grouping together all pages in the cluster W is much
more important than even discovering the pages in N . Hence a (randomized)
algorithm A may achieve poor accuracy, just because it does not see many noise
pages but, on the other hand, maybe considered good because it classifies cor-
rectly all the pages in W. We therefore resort to a second measure that focuses
on W. In what follows the class ratio ω = ω(A, (G, f)) of algorithm A on input
(G, f) will denote the quantity |Wt|/|W|.

For completeness we will also track two obvious coverage parameters:

χW =
|Wt|+ |Nf |
|W|

χN =
|Wf |+ |Nt|
|N |

,

the number of steps ς = ς(A, (G, f)) (i.e. iterations of the main algorithm loop)
performed and the average CPU time to complete a single step, denoted by
θ = θ(A, (G, f)) calculated as the total execution time to terminate a particular
run divided by how many steps the algorithm took to terminate.

3.3 Results

Table 5 shows the average performance, over 50 distinct runs, of all algorithms
considered in this paper on the eight datasets mentioned in Section 3.1. For
completeness, Figure 3 all the way up to Figure 10 provide more detailed plots
showing how the various quantities change as the algorithms run.

In our experiments we compared the two random walk methods (NRW,
ARW) described in Section 2.2 with two versions of each of the determinis-
tic variants of k-means (BF,DF-means) described in Section 2.1: in each case we
considered the full process as well as a version that only performs one scan of the
data (denoted in table by (1) in Table 5). The latter has been included to show,
in a sense, the quality of the solution produced by the given clustering algorithm
if one relaxes its termination condition. A process that can only “see” each page
once is faster than the fully-fledged k-means heuristic, but returns much poorer
solutions.

The results in the table show that in most cases the methods based on random
walks perform, on average, better than the deterministic ones. In most cases
they provide better accuracy and class ratio. The results for such methods are
particularly good on graphs in set A, and even on the “stringy” datasets of type
B, which are easier for BF-means and DF-means, they perform reasonably well.
Figures 6 and 10 provide even more interesting results for the class ratios: both
random walk based heuristics cover more than 70% of the “good” pages in less
than 50000 steps.

Incremental Web-Site Boundary Detection Using Random Walks 11

Algorithm γ ω χW χN θ ς

A

BF-means 63.76 61.7 100 100 1.1577 1071
BF-means (1) 56.9 53.75 100 100 1.1527 715
DF-means 79.07 78.63 100 100 0.9596 2467
DF-means (1) 73.18 51.38 100 100 1.3354 715
NRW 92.76 92.09 99.74 88.67 0.0868 100000
ARW 92.11 91.61 99.67 70.32 0.1060 100000

B

BF-means 71.08 67.84 100 100 1.4275 1591
BF-means (1) 64.06 56.71 100 100 1.9449 1061
DF-means 89.24 86.8 100 100 1.6542 1591
DF-means (1) 83.36 76.68 100 100 2.3369 1061
NRW 87.38 83.57 97.85 63.29 0.1085 100000
ARW 92.05 87.85 95.88 45.90 0.1308 100000

Table 5. Table shows the average performance of each technique, run 50 times on each
graph in sets A and B (Each run has a varying word distribution of class and noise
pages). Accuracies, class ratios and coverages are reported as percentages.

Of course one may object that this comes at a price. Table 5 clearly indicates
that the randomized algorithms in question struggle to visit all pages in the
given data set. Furthermore, the random walk methods seem hugely slower than
the deterministic ones. All deterministic methods complete their processing on
average in less than 3000 steps, whereas all randomized processes considered are
run for 100000 steps. However we argue that, for the problem at hand, these
issues may not be very important. In the context of web-site boundary detection
the main aim is to identify a web-site containing a particular homepage. It may
thus be quite satisfactory to get a clustering that correctly classifies 95% of
the “good” web-pages even if 40% of the noise pages are not visited at all. The
relatively high running times are also not too meaningful, as the average running
time per step (parameter θ in Table 5) gives a better indicator of the overall run
time.

4 Discussion

The results in Section 3.3 show that, at least on the artificial data used here, sim-
ple randomized methods that combine k-means clustering abilities with graph
exploration methods that carefully use the graphical structure of the data out-
perform a clustering method that does not take the graph structure into consid-
eration. In particular the overall best method is ARW, which performs consis-
tently well across the two sets. The best performing deterministic method was
DF-means.

In set A the structure of the graph is such that web-pages associated with
the class are located at a certain distance (number of links) from the start
page, while noise pages are located beyond this distance . This type of graph is
more difficult for BF-means in particular to cluster, as the initial conditions of

12 Ayesh Alshukri, Frans Coenen and Michele Zito

Fig. 3. Set A: Class Coverage of NRW,
ARW, BF-means and DF-means.

Fig. 4. Set A: Noise Coverage of NRW,
ARW, BF-means and DF-means.

Fig. 5. Set A: Accuracy of NRW, ARW,
BF-means and DF-means.

Fig. 6. Set A: Class Ratio of NRW,
ARW, BF-means and DF-means.

the walk are affected by the amount of class items that are seen without any
relativity to noise items. Noise items are not seen till later in the walk, after all
class items have been seen. This also effects DF-means, but that process has a
chance to recover slightly by walking to a deeper depth to visit some noise items
before backtracking, which then in turn helps the clustering make the distinction
between class and noise items earlier in the walk.

In set B however, the structure is such that there is a mixture of noise and
class items. When BF and DF-means crawl the graphs in the initial stages, this
mixture helps improve the initial conditions for the clustering in both cases. As
a distinction can be made between class and noise earlier in the walk, thus this
improves the overall performance of DF-means

Looking at the performance of ARW on both set A and B, it can be seen
from the history of the walk there is some consistencies between the two sets.
For example, the coverage is quite consistent between both graphs (Set A: figs
3 & 4. Set B: figs 7 & 8). The coverage of class and noise is steady in both
cases. What this shows is that ARW is much less susceptible to variation in

Incremental Web-Site Boundary Detection Using Random Walks 13

Fig. 7. Set B: Class Coverage of NRW,
ARW, BF-means and DF-means.

Fig. 8. Set B: Noise Coverage of NRW,
ARW, BF-means and DF-means.

Fig. 9. Set B: Accuracy of NRW, ARW,
BF-means and DF-means.

Fig. 10. Set B: Class Ratio of NRW,
ARW, BF-means and DF-means.

the graph structure that would normally effect performance, as is shown by the
poor performance of BF-means and DF-means on set A in contrast to set B. The
performance of ARW is more consistent for both set A and B. Massive differences
in accuracy or class ratio are not seen when comparing the performance of the
random walk methods on both sets.

References

1. S. Abiteboul, G. Cobena, J. Masanès, and G. Sedrati. A first experience in archiv-
ing the french web. In Proceedings of the 6th European Conference on Research
and Advanced Technology for Digital Libraries, volume 2458 of ECDL’02, pages
1–15. Springer, 2002.

2. D. Aldous and J. Fill. Reversible markov chains and random walks on graphs.
Monograph in preparation, 2002.

3. R Aleliunas, R. M. Karp, R. J. Lipton, L. Lovasz, and C. Rackoff. Random walks,
universal traversal sequences, and the complexity of maze problems. In Proceedings
of the 20th Annual Symposium on Foundations of Computer Science, pages 218–
223, Washington, DC, USA, 1979. IEEE Computer Society.

14 Ayesh Alshukri, Frans Coenen and Michele Zito

4. A. Alshukri, F. Coenen, and M. Zito. Web-Site Boundary Detection. In Proceedings
of the 10th Industrial Conference on Data Mining, pages 529–543, Berlin, Germany,
2010. Springer.

5. K. Bharat, B-W. Chang, M.R. Henzinger, and M. Ruhl. Who links to whom:
Mining linkage between web sites. In Proceedings of the 2001 IEEE International
Conference on Data Mining, ICDM ’01, pages 51–58, Washington, DC, USA, 2001.
IEEE Computer Society.

6. A. Z. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,
A. Tomikns, and J. Wiener. Graph structure in the web. Computer Networks,
33(1-6):309–320, 2000.

7. A. Z. Broder, M. Najork, and J. L. Wiener. Efficient url caching for world wide
web crawling. In Proceedings of the 12th international conference on World Wide
Web, WWW ’03, pages 679–689, New York, NY, USA, 2003. ACM.

8. P. Dmitriev. As we may perceive: finding the boundaries of compound documents
on the web. In Proceeding of the 17th international conference on World Wide
Web, WWW ’08, pages 1029–1030, New York, NY, USA, 2008. ACM.

9. M. H. Dunham. Data Mining: Introductory and Advanced Topics. Prentice Hall
PTR Upper Saddle River, NJ, USA, 2002.

10. W. Feller. Introduction to probability theory and its applications, volume vol. 1.
WSS, 1968.

11. D. Gomes and M.J. Silva. Modelling Information Persistence on the Web. In 6th
International Conference on Web Engineering, pages 193 – 200. ACM Press, 2006.

12. J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kauf-
mann, 2001.

13. W. Koehler. Web page change and persistence A four-year longitudinal study.
Journal of the American Society for Information, pages 162–171, 2002.

14. T. M. Kroeger, D.D. E. Long, and J. C. Mogul. Exploring the Bounds of Web
Latency Reduction from Caching and Prefetching. Proceedings of the USENIX
Symposium on Internet Technologies and Systems Monterey, pages 2–2, December
1997.

15. R. Kumar. Trawling the Web for emerging cyber-communities. Computer Net-
works, 31:1481–1493, may 1999.

16. R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, a. Tomkins, and E. Upfal.
Stochastic models for the Web graph. In Proceedings of the 41st Annual Symposium
on Foundations of Computer Science, pages 57–65, Washington, DC, USA, 2000.
IEEE Computer Society.

17. B. Liu. Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data.
Springer, 2007.

18. L. Lovász. Random walks on graphs: A survey. Combinatorics Paul Erdos is
Eighty, 2:1–46, 1994.

19. V. N. Padmanabhan and J. C. Mogul. Using predictive prefetching to improve
World Wide Web latency. ACM SIGCOMM Computer Communication Review,
26, July 1996.

20. J. Pokorn. Web Searching and Information Retrieval. Computing in Science and
Engineering, 6(4):43–48, 2004.

21. E. M. Rodrigues, N. Milic-Frayling, and B. Fortuna. Detection of Web Subsites:
Concepts, Algorithms, and Evaluation Issues. In IEEE/WIC/ACM International
Conference on Web Intelligence, pages 66–73. IEEE Computer Society, 2007.

22. M. S. Schneider, F. Kirsten, K. Michele, and J. Gina. Building thematic web
collections: challenges and experiences from the september 11 web archive and the
election 2002 web archive. Digital Libraries, ECDL, pages 77–94, 2003.

Incremental Web-Site Boundary Detection Using Random Walks 15

23. P. Senellart. Identifying Websites with Flow Simulation. In ICWE, volume 3579
of Lecture Notes in Computer Science, pages 124–129, Sydney, Australia, 2005.
Springer.

24. P. N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining. Pearson
International Edition, 2006.

25. I. H. Witten and E. Frank. Data Mining: practical machine learning tools and
techniques. Morgan Kaufman, 2005.

