Skip to main content

Development of an Implanted Neural Prostheses

  • Conference paper
Applied Informatics and Communication (ICAIC 2011)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 224))

Included in the following conference series:

  • 1800 Accesses

Abstract

To research and design a type of implantable functional electrical stimulator for restoring the injured peripheral nervous system. The crucial circuits of the implantable neural prosthesis were designed based on the digital signal processor TMS320VC54x and programmable logic device XC95144XL, corresponding program were developed and an experiment was carried on for verifying the system. Results show that the prototype realized the bi-directional wireless communication between the implantable simulator and the external controller. The output of stimulation pulse width, duration and some other parameters are controllable. This low power and system integrated implantable neural prosthesis stimulator could generate biphasic stimulating pulses, which after improving and optimizing could be used for repairing injured nerve system.

This work is partially supported by NNSF Grant #60571005 to W.D. Wang.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tehovnik, E.J.: Electrical stimulation of neural tissue to evoke behavioral responses. Journal of Neuroscience Methods 65, 1–17 (1996)

    Article  Google Scholar 

  2. Lanmuller, H., Ashley, Z., Unger, E., et al.: Implantable device for long-term electrical stimulation. Med. Biol. Eng. Comput. 43(5), 35–40 (2005)

    Google Scholar 

  3. Jalilian, E., Onen, D., Neshev, E., Mintchev, M.P.: Implantable neural electrical stimulator for external control of gastrointestinal motility. Med. Eng. Phys. 29(2), 38–52 (2009)

    Google Scholar 

  4. Thurgood, B.K., Warren, D.J., Ledbetter, N.M., Clark, G.A., Harrison, R.R.: A wireless integrated circuit for 100-channel charge-balanced neural stimulation. IEEE Transactions on Biomedical Circuits and Systems 3(6), 405–414 (2009)

    Article  Google Scholar 

  5. Jandial, R., Aryan, H.E., Hughes, S.A., Levy, M.L.: Effect of vagus nerve stimulator magnet on programmable shunt settings. Neurosurgery 55(62), 7–9 (2004)

    Google Scholar 

  6. Dhillon, G.S., Horch, K.W.: Direct neural sensory feedback and control of a prosthetic arm. IEEE Trans. Neural Syst. Rehabil. Eng. 13(4), 68–72 (2005)

    Article  Google Scholar 

  7. Coulombe, J., Sawan, M., Gervais, J.F.: A highly flexible system for microstimulation of the visual cortex: Design and implementation. IEEE Transactions on Biomedical Circuits and Systems 1(4), 258–269 (2007)

    Article  Google Scholar 

  8. Hart, D.J., Taylor, P.N., Chappell, P.N., Wood, D.E.: A microcontroller system for investigating the catch effect: functional electrical stimulation of the common peroneal nerve. Med. Eng. Phys. 28(4), 38–48 (2006)

    Google Scholar 

  9. Williams, J.C., Hippensteel, J.A., Dilgen, J., Shain, W., Kipke, D.R.: Complex impedance spectroscopy for monitoring tissue responses to inserted neural implants. Journal of Neural Engineering 4, 410–423 (2007)

    Article  Google Scholar 

  10. Thurgood, B.K., Warren, D.J., Ledbetter, N.M., Clark, G.A., Harrison, R.R.: A wireless integrated circuit for 100-channel charge-balanced neural stimulation. IEEE Transactions on Biomedical Circuits and Systems 3(6), 405–414 (2009)

    Article  Google Scholar 

  11. Jandial, R., Aryan, H.E., Hughes, S.A., Levy, M.L.: Effect of vagus nerve stimulator magnet on programmable shunt settings. Neurosurgery 55(62), 7–9 (2004)

    Google Scholar 

  12. Liu, X., Demosthenous, A., Donaldson, N.: An integrated implantable stimulator that is fail-safe without off-chip blocking capacitors. IEEE Transactions On Biomedical Circuits and Systems 2(3), 231–244 (2008)

    Article  Google Scholar 

  13. Ilic, M., Vasiljevic, D., Popovic, D.B.: A programmable electronic stimulator for FES systems. IEEE Trans. Rehabil. Eng. 2(23), 4–9 (2004)

    Google Scholar 

  14. Constandinou, T.G., Georgiou, J., Toumazou, C.: A partial-current steering biphasic stimulation driver for vestibular prostheses. IEEE Transactions On Biomedical Circuits and Systems 2(2), 106–113 (2008)

    Article  Google Scholar 

  15. Lee, J., Rhew, H., Kipke, D., Flynn, M.: A 64 channel programmable closed-loop deep brain stimulator with 8 channel neural amplifier and logarithmic ADC. In: IEEE Symposium on VLSI Circuits, pp. 76–77 ( June 2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, H., Wang, W., Zhang, Z. (2011). Development of an Implanted Neural Prostheses. In: Zeng, D. (eds) Applied Informatics and Communication. ICAIC 2011. Communications in Computer and Information Science, vol 224. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23214-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23214-5_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23213-8

  • Online ISBN: 978-3-642-23214-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics