
Dynamic Reactive Modules ?

J. Fisher1, T.A. Henzinger2, D. Nickovic2, N. Piterman3, A.V. Singh2, and M.Y. Vardi4

1 Microsoft Research, Cambridge, UK
2 IST Austria, Klosterneuburg, Austria

3 University of Leicester, UK
4 Rice University, Houston, TX, USA

Abstract. State-transition systems communicating by shared variables have been
the underlying model of choice for applications of model checking. Such for-
malisms, however, have difficulty with modeling process creation or death and
communication reconfigurability. Here, we introduce “dynamic reactive mod-
ules” (DRM), a state-transition modeling formalism that supports dynamic re-
configuration and creation/death of processes. The resulting formalism supports
two types of variables, data variables and reference variables. Reference variables
enable changing the connectivity between processes and referring to instances of
processes. We show how this new formalism supports parallel composition and
refinement through trace containment. DRM provide a natural language for mod-
eling (and ultimately reasoning about) biological systems and multiple threads
communicating through shared variables.

1 Introduction
State-transition systems provide a natural formalism in many areas of computer sci-
ence. They provide a convenient framework for understanding programming languages
(cf. [21]), provide a natural executable modeling framework for reactive and concurrent
systems (cf., [11]), provide the most intuitive semantics for the application of model
checking (cf. [4]), and even proved to be useful to the development of biological mod-
els [7, 10, 8, 9], where the straightforward semantics make these formalisms natural and
attractive for cell biologists. State-transition systems capture elegantly the concept of a
system with variables that change their values over time. The state-transition approach
to modeling concurrent systems can be fairly described as enormously successful, com-
bining executability, explorability, and analyzability. In the state-transition approach
communication is typically modeled via shared variables, while in the complementary
approach of process calculi communication is modeled via message passing [18].

In recent years, new application domains that stress mobility and dynamic reconfig-
urability gained importance. In mobile and ad-hoc networks, network elements come
and go, changing communication configuration according to their position. The state-
transition approach, however, does not model naturally reconfigurable systems. Simi-
larly, it has difficulty with dynamics features of biological systems, such as cell move-
ment, division, and death.
? This work was supported by the ERC Advanced Grant QUAREM, the FWF NFN Grant

S11402-N23 (RiSE), and the EU NOE Grant ArtistDesign

In the process-calculi approach, the π-calculus has become the de facto standard
in modeling mobility and reconfigurability for applications with message-based com-
munication [19, 20]. The power of the π-calculus comes from its ability to transmit
processes as messages, a mathematically natural and powerful construct. This idea im-
mediately allows the encoding of dynamic aspects and has been widely accepted by the
research community (cf. [17]). No analogous widely acceptable extension exists for the
state-transition approach, enabling the modeling of mobility and reconfigurability.

In this paper, we propose a state-transition formalism that supports reconfigura-
tion of communication and dynamic creation of new processes. We accomplish this by
adapting to the state-transition approach three fundamental language mechanisms of
modern programming languages: encapsulation, composition, and reference. Encapsu-
lation is a language mechanism for bundling together related data and methods, while
restricting access to some of those. Composition is a language mechanism for compos-
ing such bundles of data and methods. Finally, reference is a language mechanism for
creating such bundles dynamically. While the mechanisms of encapsulation and com-
position have been used in state-transition formalisms, for example, in reactive modules
[2], which are the basis for our work here, it is striking that the concept of a reference is
missing in all state-based modeling formalisms, while it is present in every reasonable
imperative programming language. We show how this well known and widely used con-
cept in programming offers a powerful modeling concept in the state-transition context.

In the reactive-modules formalism, modules define behavior of a bundled set of
variables. Behavior of a module is defined through that of its variables, partitioned to
internal, interface, and external variables. The module controls its internal and interface
variables and reads the external variables from other modules. To allow executability,
an update round is partitioned to subrounds. Variables that are co-updated in the same
round are not allowed to depend on one another. Thus, the module mechanism essen-
tially supports encapsulation. Then, composition is supported by the ability to compose
modules in parallel, and the ability to make multiple copies of modules.

Modern imperative object-oriented programming languages combine our guiding
principles: encapsulation, composition, and reference. A class is a schema of encap-
sulated behavior. It has a well defined interface that cleanly supports composition. An
object has to be instantiated, returning a reference through which it can be accessed. It
then executes according to its prescribed behavior. Different instantiations of the same
class behave differently according to their individual histories, which are stored in their
own variables. References, in addition to enabling us to create multiple instances of the
same class, allow us to dynamically change the configuration of instances in memory.
Classes and references together allow us to organize the program in multiple levels of
abstraction and manage (to some extent) the complexity of software.

Here, we adapt these concepts to the world of state-transition modeling. In this
context, the instantiation of an object also assigns “dynamic computation power” to it:
every newly instantiated variable includes with it a recipe for behavior as a function
of the values of some other variables. Our “objects” are independent processes, each
controlling a set of variables. We impose encapsulation by assigning ownership to vari-
ables. Each process has its own variables, which it and it alone can change; the update
may depend on the values of variables that it does not own. Thus, our variables are

single-write multiple-read variables. These variables can be accessed either, tradition-
ally, by direct static sharing, or, via references, by dynamic sharing, enabling dynamic
communication configurations. In addition, we use a specialized creation command to
model the appearance of new processes that come to the awareness of the system at
some point of computation. This is analogous to allocating new memory from the heap.
Here, again, references are invaluable, as they allow communication in both directions:
for a newly instantiated process, this enables initial knowledge about its environment;
for an instantiating process this enables access to some of the newly created variables.

There have been few attempts to handle dynamicity in state-transition formalisms.
Dynamic I/O automata [3] are an extension of I/O automata [16]. In order to change
communication configuration, explicit state-based modeling of the reconfiguration is
needed (through changing alphabet signatures from state to state). Alur and Grosu ex-
tend reactive modules by creation through the usage of unbounded arrays [1]. Global
information regarding arrays and their length is required, as indeed exhibited in the
“reconfiguration controller” that controls the entire system. Updates are done via λ-
expressions on entire arrays and not locally. This makes it impossible to apply multiple
levels of abstraction, one of the main strengths of programming languages. This is akin
to viewing the heap as a linear sequence of memory locations and using integers as
pointers into the array. This gives a low level implementation of the heap, depriving the
programmer of the ability to abstract. Lucid-Synchrone is an extension of Lustre that
supports creation but restricts to a fixed topology [5]. There have been attempts to add
object-orientation to statecharts, an important state-transition formalism. For example,
in [13, 12], the semantics of Rhapsody, an object-orientation extension of StateMate,
is described in terms of the underlying programming languages. Thus, they bypass the
need to reason about dynamic creation of processes. Damm et al. [6] give a specialized
semantics for UML Statecharts. Their formalism is cumbered by the need to support
directly many specialized features of Statecharts and does not offer a general solution.

Our main contribution is a new state-transition formalism, based on widely used
object-oriented programming paradigms, that supports communication via shared vari-
ables and dynamic reconfiguration and creation. We show that our formalism supports
a straightforward trace semantics, where refinement corresponds to trace containment
over appropriate projections and composition corresponds to a specialized form of in-
tersection. In addition, we allow partial specifications that translate to nondeterminism,
just like in standard state-transition settings, and their refinement, through a replacement
operator. We provide a rich modeling formalism that suggests many future directions.

2 High-Level Description of Dynamic Reactive Modules
We generalize reactive modules [2] to dynamic reactive modules by including refer-
ence variables and the ability to create new modules. This is similar to modern object-
oriented languages, where a reference variable refers to an instance of a class. A class
definition describes the way to update multiple included variables and an instantiation
leads to allocation of memory. While in standard objects the data is updated only via
explicit method invocation; in dynamic reactive modules variables continually update
their values according to update rules. Thus, instantiating a module leads to allocation
of new variables that are updated simultaneously in all instantiated modules. In this sec-

reference

initialization

identity

ClientServer

ServerT ClientT

new cl

new cl

id cl

id

in

r srv t

id id

id

id srv

out

r cl t

id srv id cl

id srvid cl

Fig. 1. A server/client system.

tion, we further motivate the need for- and introduce dynamic reactive modules through
an example of a simple server/client model. Definitions are made formal in Section 4.

Consider the diagram in Figure 1. It includes a server and a client. The client gener-
ates new client threads at arbitrary times. The server detects that a new client thread has
been generated and allocates a new server thread dedicated to serve the respective client
thread’s request. The server and the client need to produce a pair of threads and connect
them so that the server thread reads the client thread’s input in and the client thread
reads the server thread’s output out. For that, the server thread initializes its reference
variable r cl t to refer to in and the client thread initializes its reference variable r srv t
to refer to out. Once a pair of server thread and client thread have been connected the
server and the client can forget about them and create (and mutually initialize) a new
pair. Every newly instantiated module gets a unique identifier and its own reference to
itself, through the special id variable (akin to the this construct in Java). The mutual
references between server thread and client thread variables are exchanged between the
server and the client through reading each other’s variables (static communication) and
passed to the corresponding thread as parameter. This exchange of references is done
by mutually accessing external variables id cl and id srv that hold references to newly
created client thread and server thread, respectively. In addition, the server accesses
client’s variable new cl that signals when a new client thread is created. We generalize
the notion of reactive module to that of a dynamic module. We distinguish between (a) a
dynamic module class, which defines the module, its variables, and how to update them
and (b) a dynamic module, which is the actual instantiation. A dynamic system defines
a collection of dynamic-module classes.

In Figure 2, we include the code for the ServerClient dynamic reactive system that
models the above example. It consists of four modules depicted in Figure 2, together
with the (initial) module Server || Client that denotes the composition of Server and
Client modules. Every module in the system consists of a declaration, that defines the
variables owned by the module, and a body that specifies initialization and update rules
for these variables. The module body has a finite set of typed variables that are par-
titioned into controlled and external variables and either range over finite domains or

system ServerClient =
〈{Server, ServerT,Client,ClientT, Server ‖Client}, Server ‖Client〉

class Server
external id cl : R, new cl : B
control id srv : R

atom id srv
init

[] true → id srv′ := 0;
update

[] new cl → id srv′ :=
new ServerT(id cl′) ;

class ServerT
param id cl : R
control out : B, r cl t : R

atom r cl t
init

[] true → r cl t′ := id cl′;
update

[] true →
atom out

initupdate
[] r cl t′ 6= 0 → out′ :=

f(r cl t′.in) ;

class Client
external id srv : R
control id cl : R, new cl : B

atom new cl
initupdate

[] true → new cl′ := true;
[] true → new cl′ := false;

atom id cl
init

[] true → id cl′ := 0;
update

[] new cl → id cl′ :=
new Client(id srv′) ;

class ClientT
param id srv : R
control in : B, r srv t : R

atom r srv t
init

[] true → r srv t′ := id srv′;
update

[] true →

Fig. 2. Server/client system modeled with dynamic reactive modules.

are reference variables. Additionally, a module has a set of parameters and a special
variable id, which holds the identifier of an instance of the module. Parameter vari-
ables are used for initialization of the module according to some information from its
environment.

Reference variables establish dynamic communication between module instances.
When a module is instantiated, its variable id is assigned a unique identifier. For exam-
ple, id.m and id.n use the variable id to indirectly access many variables of the same
module. We add the two basic functionalities of references. First, the ability to take the
address of a variable through ref(x), which returns a reference to x. Second, the ability
to dereference a variable and access the value of the variable that it references.

The variable id srv (id cl) holds a reference to a server (client) thread, it is controlled
by Server (Client) and is external to Client (Server). In addition, Client controls new cl
(external to Server) that signals the instantiation of a new client in the system. Client
and Server communicate statically over these three variables, and mutually exchange
references between newly created client and server threads. The communication be-
tween the server thread and the client thread has to be dynamic (via reference variables)
as the two are instantiated independently. For that, server (client) thread holds reference
r cl t (r srv t) to the client (server) thread’s identifier. The server (client) thread’s iden-
tifier is passed to the client (server) thread through the parameter id srv (id cl) upon its

instantiation. We use indirect access to in through the reference to the client thread to
update the value of out of the server thread, through the expression f(r cl t′.in).

The module body consists of a set of atoms that group rules for setting values to
variables owned by the module. Atoms of the module control precisely its controlled
variables, and every controlled variable declared in the module is controlled by exactly
one atom. We distinguish between the current value of a variable, denoted x, and its
next value x′. Atoms contain initialization and update rules, or commands, that define
the value of x′ based on current and next values of variables declared in the module.
When a module is instantiated, its variables do not have current values. Thus, initial
commands may use only next values of variables in the same module, or the values of
parameters passed to it. Update commands may refer to both current and next values
of variables and can either define an instantiation of a new instance of a module, or a
classic update of a variable as a function of current and next values of other variables.

The atom that controls new cl in the Client sets the next value new cl′ to either
true or false, nondeterministically. An instantiation is a special type of update, using
the command new . It can update the reference variables of the instantiating module to
refer to the newly instantiated module and uses parameters to pass information to the
instantiated module for proper initialization. For example, the update in the atom that
controls id cl either takes no action (if new cl is false) or instantiates a new ClientT.
The instantiation updates the reference variable id cl′ to refer to the newly instantiated
ClientT. When the new client thread is created it receives the value of the identifier of the
ServerT instance in variable id srv′ through the parameter id cl. Passing the identifier to
an instance of a module enables access to all variables of that instance. For example, in
the initial command in the atom r srv t, the value of parameter id srv is stored in r srv t.
Thus, if id srv is null (0) then r srv t is updated to null as well. Otherwise, id srv holds
the reference of a server thread and r srv t is updated to the refer to the same server
thread. Overall, the co-instantiation of a ClientT and ServerT modules will initialize
the value of r srv t′ of the client thread to refer to the server thread and the value of
r cl t′ of the server thread to refer to the client thread. To avoid infinite instantaneous
creation, we disallow instantiation of new modules in initial commands.

A state of a dynamic reactive system carries the unique identifiers and variable
valuations of instantiates modules. In the initial state, the only instantiated module is
the initial one. In every subsequent round, the state variables are updated according to
the specified commands, which may, in addition, instantiate new modules. Initialization
of instantiated modules depends on transferred parameter values.

3 Dynamic Discrete Systems
Dynamic reactive modules is a modelling language. In this section, we introduce a
semantic model, which is interesting in its own right, to give a formal semantics to dy-
namic reactive modules. We extend fair discrete systems (FDS) [14], which are “bare
bones” transition systems including a set of variables and prescribed initial states and
transition relations by logical formulas. The simplicity of FDS and their resemblance
to BDDs, have made them a convenient tool for defining symbolic transition systems.
FDSs support composition but not encapsulation and here we extend them with dynam-
icity. We then use this new model to define the semantics of dynamic reactive modules.

Our template for creating a process is a simple dynamic discrete system (SDDS) and
the collection of SDDSs is a dynamic discrete system (DDS). An SDDS defines a process,
its variables, their initializations, and their updates. To create multiple instances of an
SDDS, each instantiation has a unique identifier. Accordingly, when instantiating an
SDDS we allocate all its variables with the same identifier. As mentioned, DDS do not
support encapsulation. Thus, the model has a set of variables coming from multiple
SDDS and possibly multiple instantiations of the same SDDS. We prefix the variables of
the SDDS with the identifier of its instantiation, thus making the variables unique. For
that we will use identified variables. For example, if the definition includes the variable
n, the instantiation with identifier i uses the variable i.n.

Let N be the universal set of variables such that id ∈ N . The variables in N are
going to be used in the definitions of SDDSs. Let I be the universal set of identifiers.
The identifiers in I are going to be used to identify instances of SDDSs. Apart from
the universal set of variables, all sets of variables N ⊂ N are finite. For example, in
Figure 2, the set {id cl, new cl, id srv} is the set of variables for the server. When an
SDDS is instantiated, all its variables are going to be prefixed with an identifier i. For
that, given a set of variables X , let i.X denote {i.n | n ∈ X}. When a server thread,
from Figure 2, is instantiated with identifier i, the set of identified variables for that
instance is {i.out, i.r cl t}. So when there are multiple active instances of server thread,
e.g., with identifiers i and j, their variables can be distinguished, e.g., as i.out and j.out.
Variables range either over some finite domain (for the sake of concreteness we use
Booleans denoted B) or over the set R = I ∪ {0} of references. A reference is either
the identifier of an instantiated SDDS (i ∈ I) or null (0). We denote by type(x) the type
of a variable x. For a variable x ∈ X , we denote by x′ its primed copy, and naturally
extend this notation for a set X .

Let X = I × N be the universal set of identified variables. A state s is a valuation
function s : X→ R∪B∪{⊥} such that for every i ∈ I we have s(i.id) ∈ {⊥, i}. That
is, a state interprets all variables as either Booleans, identifiers, identified variables,
or ⊥. The id of i is either i or ⊥. The value ⊥ is used for two purposes. First, if
s(i.n) = ⊥, then i.n is not allocated in s. Second,⊥ is used as a third value in 3-valued
propositional logic. This allows to formally represent impossible dereferencing. The
type of a variable x in state s is denoted as types(x). A variable x such that s(x) ∈ B is
said to be Boolean, denoted types(x) = B. A variable x such that s(x) ∈ R is said to
be a reference, denoted types(x) = R. Let s⊥ denote the state such that s(x) = ⊥ for
every x ∈ X. An identified variable x ∈ X is inactive in state s if s(x) = ⊥ and active
otherwise. If i.id is inactive in state s then for every variable n we have i.n is inactive
in s. An identifier i is inactive in state s if i.id is inactive in s and active otherwise.

Through a reference variable that holds an identifier of an SDDS, we need to be able
to access the variables of this SDDS. Given a set of variables X ⊂ N , we define direct
accesses (π), indirect accesses (τ) and expressions (ϕ) over X as follows.

π ::= x ∈ X ∪X
τ ::= π | τ.m for m ∈ N
ϕ ::= τ | τ = τ | τ = 0 | ϕ ∧ ϕ |ϕ ∨ ϕ | ¬ϕ

(1)

We give values to both x and x′ by interpreting direct accesses, indirect accesses, and
expressions over pairs of states, which stand for current and next values.

(s, t)(x)=

{
s(x) if x ∈ X
t(x) if x ∈ X′

(s, t)(x.m)=


⊥ if (s, t)(x) /∈ I
(s, t)((s, t)(x).m) if (s, t)(x) ∈ I and x ∈ X
(s, t)((s, t)(x).m′) if (s, t)(x) ∈ I and x ∈ X′

Fig. 3. Evaluation of indirect accesses on a state pair (s, t).

In Figure 2, the indirect access r cl t′.in in ServerT’s atom out, updates the value of
out based on the value of the variable in of the associated ClientT.

An expression that does not use primed variables is current. An expression that
does not use unprimed variables is next. Thus, expressions are logical characterization
of possible assignments to variables. As usual, using two copies of a variable x and x′

we can use expressions to define the relations between current and next assignments.
We assume familiarity Kleene’s strongest regular 3-valued propositional logic over the
set 3 = {t,⊥, f} [15]. For example, f ∧ ⊥ = f, ⊥ ∨ true = true, and ¬⊥ = ⊥.

Given two states s and t, we denote by (s, t) the mapping (s, t) : X ∪ X′ → R ∪
B∪{⊥} such that for every x ∈ X we have (s, t)(x) = s(x) and (s, t)(x′) = t(x). The
definition of type(s,t)(x) is extended as expected.

The value of an indirect access τ in pair (s, t) is defined in Figure 3. For exam-
ple, consider the value of the indirect access x.m. We start by evaluating (s, t)(x). If
(s, t)(x) is not an identifier, then clearly we cannot access its m variable and return
⊥. Otherwise, (s, t)(x) is an identifier i. If x is unprimed, then we access the value
of i.m in s. Otherwise, we access the value of i.m in t. Other evaluations of the in-
direct access are similar. The value of an expression ϕ in pair (s, t) denoted (s, t)(ϕ),
is defined as follows. For an indirect access τ we have already defined (s, t)(τ). We
define (s, t)(τ1 = τ2) to be t if (s, t)(τ1) = (s, t)(τ2) and f otherwise. Similarly,
(s, t)(τ = 0) is t iff (s, t)(τ) = 0. The definition of (s, t)(ϕ) for expressions using the
Boolean connectives ∧, ∨, and ¬ is as expected, where every α ∈ R is treated like ⊥.
Finally, a pair (s, t) satisfies an expression ϕ if (s, t)(ϕ) = t. Note that the definitions
in Figure 3 takes into account both the current and next versions of variables. Thus, it
is defined over a pair of states (s, t). The definition for current expressions and single
state is a specialization, where we care only about the state s on the left.

3.1 Definitions

A DDS is K = 〈D,D0〉, where D is a finite set of SDDS and D0 ∈ D is an initial SDDS.
An SDDS is a tuple D = 〈X,Y,Θ, ρ〉 consisting of the following components.

– X ⊆ X is the finite set of variables of D and Y is the finite set of its parameters.
– Θ: The initial condition is a next expression over X ∪Y characterizing all states in

which D can be created. These are the initial states of D at the time of creation.
– ρ: The transition relation. We extend expressions in Equation (1) to creation ex-

pressions. Given Di = 〈Xi, Yi, Θi, ρi〉, for i ∈ {1, 2}, a creation of D2 by D1 is
n′1 = new D2(τ1, . . . , τl) where n1 ∈ X1, {y1, . . . , yl} = Y2, and τ1, . . ., τl are
terms over X1. Intuitively, the new expression returns the identifier i of the newly
created module. Thus, the new command stores the identifier of the newly created
SDDS in n′1. The parameters ofD2 are initialized with the values of the expressions

τj passed by D1. Let C(D,D) be the set of all possible creations of SDDS D′ by
D such that D′ ∈ D. Let ϕ denote the set of expressions over X , then creation
expressions by D in the context of D are:

ϕc ::= ϕ | c ∈ C(D,D) | ϕc ∧ ϕc |ϕc ∨ ϕc,
The transition relation ρ is a creation expression by D in the context of D.

We now define the possible traces of an SDDS. This is a sequence of states such that
every pair of adjacent states satisfy the transition of the SDDS. However, as creation
is involved, the transition relation needs to be augmented with the rules that govern
the newly created variables. For that, we add to traces the maps of creations that are
performed along them and the update of the transition that governs these new creations.

Given a transition relation ρ, let subnew(ρ) be the subformulas of ρ that are cre-
ations. A creation-map m for ρ is a partial one-to-one function m : subnew(ρ) → I.
A creation map tells us which creations are actually invoked (those for which m is
defined) and what is the identifier of the instantiated process.

A pair of states (s, t) satisfies a transition ρ with creation map m and producing
transition ρ̃, denoted (s, t) |= (ρ,m, ρ̃) if all the following conditions hold.

1. For every creation c ∈ subnew(ρ) ofD1, if m(c) = i then i is inactive in s and for
every n ∈ X1 we have i.n is active in t. That is, instantiated SDDS are activated.

2. For every i.n such that i is active in s we have i.n is active in s iff it is active in t
and types(i.n) = typet(i.n). That is, existing instantiations do not change.

3. For every creation c ∈ subnew(ρ) of D1, where c is
i.n1 = new D1(τ1, . . . , τl),

if m(c) = j then all the following hold:
(a) (s, t) |= Θ1[j][τ1/y1, . . . , τl/yl], where Θ1[j][τ1/y1, . . . , τl/yl] is obtained

from Θ1 by replacing every mention of n by j.n and every input y′b by τb.
(b) (s, t)(i.n′1) = j,
That is, the pair (s, t) satisfies the initialization of the instantiated SDDS using the
inputs sent by the creating SDDS. Furthermore, the reference n1 of the creating
SDDS now references the newly created SDDS.

4. (s, t) |= ρ, where ρ is obtained from ρ by replacing the creation sub-formulas
c ∈ subnew(ρ) such that m(c) = i by t, and c ∈ subnew(ρ) such that m(c) is
undefined by f.
That is, the pair (s, t) satisfies the transition relation. We ensure that enough SDDS
were instantiated by evaluating those that were not instantiated as f.

5. ρ̃ = ρ∧
∧

{c | m(c)=i}

ρc[m(c)], where ρc[m(c)] is the transition relation of the SDDS

created by c with every mention of n replaced by m(c).n.
That is, we update the transition relation with the rules that govern the updates of
the newly created SDDSs.

We are now ready to define traces of DDS. Traces are going to include the states, transi-
tion relations, and creation maps that match them. Consider a finite or infinite sequence
σ = s0, ρ0,m0, s1, ρ1,m1 . . ., where for every j ≥ 0 we have sj is a state, ρj is a
creation expression, and mj is a creation map for ρj . If σ is infinite we write |σ| = ω.
If σ is finite it ends in an expression ρn−1 and we write |σ| = n. A sequence σ is a

creation trace for an SDDS D = 〈X,Y,Θ, ρ〉 with identifier i at time 0 ≤ t < |σ| and
valuations v1, . . . , vl for {y1, . . . , yl} = Y if all the following hold.
1. For every t′ < twe have ρt′ = t andmt′ is the empty map. Furthermore, ρt = ρ[i].
2. If s−1 = s⊥ then (st−1, st) |= Θ[i][v1/y1, . . . , vk/yk].
3. For every 0 ≤ t′ < |σ| − 1 we have (st′ , st′+1) |= (ρt′ ,mt′ , ρt′+1).
4. The identifier i is inactive in st−1 and for every n ∈ X , i.n is active in st.

We write in short (σ, i, t, v1, . . . , vk) is a CT of D.
Intuitively, the SDDS D is created at time t by initializing its inputs to v1, . . ., vl.

All the variables of D (and possibly more) identified by i become active in t; And the
(mutable according to the creation maps) transition of D holds on the entire sequence.
Prior to the creation ofD the transitions are t and accordingly creation maps are empty.

A finite CT σ ends in a deadlock if it cannot be extended to a longer CT. Intuitively,
there can be two reasons for deadlocks. First, a contradiction in the transition, such
as requiring that x = y and y = ¬x. Obviously, this can be made more interesting
by accessing x and y through their references. Second, the option to indirectly access
through null, a Boolean variable, or trying to access a wrong name.

3.2 Properties

Here we define parallel composition, refinement, and replacement. Parallel composition
allows to create models of increasing complexity from smaller parts. It enables static
communication through external variables. Refinement says when one DDS is more
general than another. Then, replacement is the action of replacing creation of abstract
SDDS by SDDS that refine it. Composition corresponds to intersection of traces and
refinement to inclusion of traces (both with appropriate adjustments).

We start with parallel composition, which essentially allows to “run” two SDDS side
by side. Consider a set of SDDS D and two SDDS Di ∈ D, where Di = 〈Xi, Yi, Θi, ρi〉
for i ∈ {1, 2}. Then, D1‖2 is the SDDS 〈X1‖2, Y1‖2, Θ1‖2, ρ1‖2〉 where X1‖2 = X1 ∪
X2, Y1‖2 = Y1 ∪ Y2, Θ1‖2 = Θ1 ∧Θ2, and ρ1‖2 = ρ1 ∧ ρ2.

Consider a CT µ = (σ, i, t, v1, . . . , vk), where σ = s0, ρ0,m1, We say that
CTs (σ1, i, t, vj1 , . . . , vjl1) and (σ2, i, t, vp1 , . . . , vpl2) partition µ if {vj1 , . . . , vjl1 } ∪
{vp1 , . . . , vpl2} = {v1, . . . , vk} and for every t ≥ 0 we have st = s1t = s2t , ρt =

ρ1t ∧ ρ2t , and mt is the disjoint union of m1
t and m2

t .

Theorem 1. A creation trace µ is a creation trace ofD1‖2 iff there exist µ1 and µ2 that
partition µ such that µi is a creation trace of Di, for i ∈ {1, 2}.

We define refinement as having the same set of traces with specialized creations.
Consider a set of SDDS D and two SDDS Di ∈ D, where Di = 〈Xi, Yi, Θi, ρi〉 for i ∈
{1, 2}. Consider two CTs µ1 = (σ1, i, t, vj1 , . . . , vjl1) and µ2 = (σ2, i, t, v1, . . . , vl2),
where σi = si0, ρ

i
0,m

i
0, . . ., for i ∈ {1, 2}. We say that µ2 specializes µ1 if for every

t′ ≥ 0 we have ρ2t′ = ρ1t′ ∧ ρ∗t′ and m2
t′ is the disjoint union of m1

t′ and m∗t′ for some
ρ∗t′ and m∗t′ . We say that D2 refines D1, denoted D2 � D1, if X2 ⊇ X1, Y2 ⊇ Y1, and
every creation trace µ2 of D2 is a specialization of some CT µ1 of D1.

Theorem 2. The refinement relation � is a preorder.

In order to replace the creation of D2 by D3 we have to ensure that D3 does “more”
than D2. Consider a set of SDDS D. We say that transition relation ρ2 refines transition
relation ρ1 if ρ2 = ρ1∧ρ∗ for some ρ∗, where ρ1 is obtained from ρ1 by replacing every
creation n1 = new D3(. . . , τl) in ρ1 by creation n1 = new D4(. . . , τl, τl+1, . . . , τl+b),
whereD4 refinesD3. As for every SDDSD � D, some creations can remain unchanged.

Theorem 3. For all SDDS D1 and D2, if the initial condition Θ2 refines the initial
condition Θ1 and the transition relation ρ2 refines the transition relation ρ1, thenD2 �
D1.

Theorem 4. For all SDDS D1, D2, and D3, we have D1‖2 � D1 and D(1‖2)‖3 =
D1‖(2‖3).

Finally, when an SDDS refines another, we can replace creations of the second
by creations of the first. Consider SDDS Di = 〈Xi, Yi, Θi, ρi〉, for i ∈ {1, 2, 3},
where D3 � D2. The SDDS D1[3/2] is given by 〈X1, Y1, Θ1, ρ1〉 where ρ1 is ob-
tained from ρ1 by replacing every creation n1 = new D2(. . . , τl) by a creation n1 =
new D3(. . . , τl, τl+1, . . . , τl+b).

Theorem 5. For all SDDS D1, D2 and D3 where D3 � D2, we have D1[3/2] � D1.

4 Formal Dynamic Reactive Modules

We give the formal definition of dynamic reactive modules. As mentioned, a module
class is the recipe of behavior that may be instantiated multiple times. A dynamic reac-
tive system is a collection of reactive-module classes, where one is identified as initial.

A dynamic reactive system M = (S, S0) consists of a finite set of module classes
S and an initial class S0 ∈ S. A class S = (X,Y,A) consists of a finite set X of typed
variables, a finite set Y of typed parameters and a finite set A of atoms. The set X is
partitioned into two sets: (1) a set ctr of controlled variables and (3) a set ext of external
variables. The set of atoms A partitions further the controlled variables, where each
atom A ∈ A controls the initialization and the updates of a subset ctr(A) ⊆ ctr. Note
that we allowA to be empty, in which case all the variables inX can have unconstrained
behavior. If A is not empty, every atom A ∈ A consists of two finite sets Init(A)
and Update(A) of guarded commands γ that define rules for initializing and updating
variables in ctr(A), respectively. We distinguish between initial and update guarded
commands. A guarded command γ ∈ A is a pair (pγ ,Actγ), where pγ is a guard, i.e. a
next expression ϕ over X ∪ Y if γ is initial, or an expression over X if γ is update, and
Actγ consists of a finite set of actions that can have the following form: (1) n′ := ϕ;,
where n ∈ ctr(A) and ϕ is a future expression overX∪Y if γ is initial, or an expression
overX if γ is update, or (2) n′1 := new S′(τ1, . . . , τl);, where S′ ∈ S, for all i ∈ [1, k],
n1 ∈ ctr(A), param(S′) = {y1, . . . , yl}, and for all i ∈ [1, l], we have τi is a term over
X . A guarded command γ is said to be creation-free if Actγ contains no creation action.
We require that for all classes S ∈ S, all atomsA ∈ A(S), the set Init(A) contains only
creation-free guarded commands.

Renaming avoids conflicts when statically creating different instances of a class.

Definition 1 (Class Renaming). For a class S with X = {n1, . . . , nk} then S[m1 =
n1, . . . ,mk = nk] is the class that results from S by replacing nj by mj for every j.

The composition operation between two classes results in a single class whose be-
havior captures the interaction between two classes. Two classes S1 and S2 are com-
posable if they do not share controlled variables. Parallel composition encodes the static
and hard-coded input/output connections between S1 and S2. We naturally extend com-
position from classes to systems M1 and M2.

Definition 2 (Parallel Composition). Let S1 = (X1,A1) and S2 = (X2,A2) be two
classes. We say that S1 and S2 are composable if ctr(S1) ∩ ctr(S2) = ∅. Given two
composable classes S1 and S2, we denote by S = S1 ||S S2 the parallel composition of
S1 and S2, where S = (X,A), such that X(S) is partitioned into ctr(S) = ctr(S1) ∪
ctr(S2), ext(S) = (ext(S1)∪ext(S2))\ctr(S) and param(S) = param(S1)∪param(S2)
and A = A1 ∪ A2.

Let M1 = (S1, S0
1) and M2 = (S2, S0

2) be two dynamic reactive systems. We say
that M1 and M2 are composable if S1 ∩S2 = ∅ and S0

1 and S0
2 are composable. Given

two composable systems M1 and M2, we define their parallel composition, denoted by
M = M1 || M2 as the system M = (S, S0), such that S = S1 ∪ S2 ∪ {S0} and
S0 = S0

1 ||S S0
2 .

We define the extending operator between classes S1 and S2 to capture specializa-
tion at the syntactic level. Informally, a class S1 extends S2 if S1 and S2 have the same
updates for the joint controlled variables, but S1 is allowed to constrain more control
variables than S2 and can read more variables (external and input) from its environment.

Definition 3 (Extending Classes). Let S1 and S2 be two classes. We say that S1 ex-
tends S2, denoted by S1 v S2 if ctr(S2) ⊆ ctr(S1), ext(S2) ⊆ ext(S1), Y (S2) ⊆
Y (S1) and A(S2) ⊆ A(S1).

Definition 4 (Replacement of Classes). Let S1 and S2 be two classes. We say that S2

is replaceable by S1 if S1 v S2.
Let S1, S2 and S3 be three classes such that S3 v S2. We denote by S1[S3/S2] the

replacement of S2 by S3 in S1, that consists in replacing every occurrence of a creation
n′1 := new S2(. . . , τl); in S1 by a creation n′1 := new S3(. . . , τl, τl+1, . . . , τl+q);.

We extend this operator to systems, and given two systems MA = (SA, S0
A) and

MB = (SB , S0
B) and two classes S2 and S3 such that S2 ∈ SA and S3 v S2, we say

that MB replaces S2 by S3 in MA, denoted by MB = MA[S3/S2], if the following
conditions hold: (1) SB = SA ∪ {S3}; (2) if S0

A = S2, then S0
B = S3, and S0

B = S0
A

otherwise; and (3) every S in S(MA) is replaced by S[S3/S2] in MB .

We define the semantics of a reactive dynamic system M in terms of an associated
dynamic discrete system [[M]]. We now formalize the translation from M to [[M]].

Definition 5 (Semantics: from DRM to DDS). Let M = (S, S0) be a dynamic reac-
tive system. Then, its associated DDS is [[M]] = 〈D,D0〉, where D =

⋃
S∈S µ(S) and

D0 = µ(S0) and for a given S, µ(S) = 〈XS , YS , θS , ρS〉, such that

– XS = X(S(M)) and YS = Y (S(M))
– θS is the expression

∧
A∈A(S(M))

∨
γ∈Init(A)(pγ → (

∧
α∈Actγ eα)), where eα is the

expression n′ = ϕ obtained from the assignment action α = (n′ := ϕ)
– ρS is the expression

∧
A∈A(S(M))

∨
γ∈Update(A)(pγ → (

∧
α∈Actγ eα)), where eα is

either the expression n′ = e ifα = (n′ = e) or the creation n′1 = new Di(τ1, . . . , τl)
if α is the creation action n′1 := new Si(τ1, . . . , τl).

The following theorem establishes some derived properties from the operations on
modules and the properties shown in Section 3.2

Theorem 6. Given three classes S1, S2, and S3, we have
1. if S2 v S1, then µ(S2) � µ(S1);
2. if S1 and S2 are composable classes, then µ(S1 ||S S2) � µ(S1);
3. if S2 v S3, then µ(S1[S3\S2]) � S1.

Biological Example: As another example, shown in Figure 4, we model a simple sys-
tem CellModule of cells (Cell class) arranged in a row. Cells can divide at arbitrary
times. This is modeled by creation of a new Cell instance by an existing one. A newly
created cell always appears to the right of its parent. The parent then updates its right
neighbor by updating its variable right to refer to its daughter cell. Similarly, the daugh-
ter cell updates its left neighbor by updating its variable left to refer to the parent cell’s
id (passed in the parameter pid). The cell to the right of the parent cell in the current
round, updates its left neighbor in the next round by updating variable left to refer to
the id of the new child cell that appeared on its left. The system runs creating new cells
non-deterministically, updating the cell-cell communication pattern with each creation.

5 Conclusions and Future Work
We introduced here dynamic reactive modules, a formalism for modeling dynamic
state-transition systems communicating via shared variables. Our formalism supports
the three basic features of programming languages: composition, encapsulation, and
dynamicity. Previous formalisms supported only the first two and by adding references
and creation we achieve dynamicity. The resulting formalism supports instantiation of
new “active” variables and reconfiguration of communication.

The resulting formalism is quite powerful and it is clear that many questions, such
as deadlock freedom, reachability, and model checking, are going to be undecidable. As
dynamicity has been generally missing from state-transition formalisms communicat-
ing via shared variables, we hope that this formalism will motivate further research into
its modeling capacity and the availability of analysis techniques for it. We state a few
obvious such directions. We are interested in techniques from software model checking
that could be adapted for its analysis. Similarly, pointer analysis, techniques for under-
standing the structure of the heap, and static analysis in general, could be applied in
this context as well. Another interesting direction is the identification of fragments for
which such questions are “well behaved”. One very important type of well behaved-
ness is deadlock avoidance. We are searching for simple rules for deadlock avoidance
through by combining (a) avoiding cyclic dependencies between variables and (b) ref-
erence safety through typing and access protection.

system CellModule = 〈{Cell},Cell〉

class Cell
control create, left, prev l, right : R
param pid : R
atom create

init
[] true → create′ := 0

update
[] true → create′ := new Cell(id)
[] true →

atom prev l
init

[] true → prev l′ := 0
update

[] true → prev l′ := left;

atom right
init

[] true → right′ := pid′, right
update

[] create 6= create′ → right′ := create′

atom left
init

[] true → left′ := pid′

update
[] (left.create) 6= (left p′.create) →

left′ := left p′.create

31
211

25341

2

reference

initialization

0
0

0
0

0

0
0

0

0right

create
left

right

create
left

right

left

right

left

right

left

right

left

0
0

0right

left

right

left

right

left

right

left

right

left

create create create create

createcreatecreatecreatecreate

Fig. 4. Dynamic reactive system CellModule and dividing cells.

– Something about assertion language. Include assertions in the modules. Asser-
tions can refer to anything that is viable by the module. To handle problematic
accesses it will have to be three valued.
The main assertions of the entire system are those that are in the initial mod-
ule.

– We can model death by adding a Boolean variable that can only change from
0 to 1. Once this variable is set to 1 all other variables cannot change anymore
(requires every part of the transition to include a conjunct). References to this
module can check if the module is dead.

References
1. R. Alur and R. Grosu. Dynamic Reactive Modules. Tech. Rep. 2004/6, Stony Brook, 2004.
2. R. Alur and T.A. Henzinger. Reactive modules. FMSD, 15(1):7–48, 1999.
3. P.C. Attie and N.A. Lynch. Dynamic input/output automata, a formal model for dynamic

systems. In PODC, pages 314–316, 2001.
4. E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
5. J.-L. Colaço, A. Girault, G. Hamon, and M. Pouzet. Towards a higher-order synchronous

data-flow language. In EmSoft, pages 230–239. ACM, 2004.
6. W. Damm, B. Josko, A. Pnueli, and A. Votintseva. A discrete-time UML semantics for

concurrency and communication in safety-critical applications. SCP, 55(1-3):81–115, 2005.

7. S. Efroni, D. Harel, and I.R. Cohen. Toward rigorous comprehension of biological com-
plexity: Modeling, execution, and visualization of thymic T-cell maturation. Genome Res.,
13(11):2485–97, 2003.

8. S. Efroni, D. Harel, and I.R. Cohen. Emergent dynamics of thymocyte development and
lineage determination. PLoS Comput. Biol., 3(1):e13, 2007.

9. J. Fisher, N. Piterman, A. Hajnal, and T.A. Henzinger. Predictive modeling of signaling
crosstalk during C. elegans vulval development. PLoS Comput. Biol., 3(5):e92, 2007.

10. J. Fisher, N. Piterman, E.J.A. Hubbard, M.J. Stern, and D. Harel. Computational insights
into Caenorhabditis elegans vulval development. Proc Natl Acad Sci, 102(6):1951–6, 2005.

11. D. Harel. Statecharts: A visual formalism for complex systems. Sci. Comput. Program.,
8(3):231–274, 1987.

12. D. Harel and H. Kugler. The Rhapsody semantics of statecharts (or, on the executable core
of the UML). In LNCS 3147, pages 325–354. Springer, 2004.

13. D. Harel and A. Naamad. The STATEMATE semantics of statecharts. ACM Trans. Softw.
Eng. Methodol., 5(4):293–333, 1996.

14. Y. Kesten and A. Pnueli. Verification by augmented finitary abstraction. Inf. Comput.,
163(1):203–243, 2000.

15. S.C. Kleene. Introduction to Mathematics. North Holland, 1987.
16. N. Lynch and M. Tuttle. An introduction to input/output automata. Distributed Systems

Engineering, 1988.
17. L. Mandel and M. Pouzet. ReactiveML: a reactive extension to ML. In PPDP, pages 82–93.

ACM, 2005.
18. R. Milner. A Calculus of Communicating Systems, LNCS 92. Springer, 1980.
19. R. Milner. The polyadic pi-calculus (abstract). In Concur, LNCS 630. Springer, 1992.
20. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, i & ii. Inf. Comput.,

100(1):1–77, 1992.
21. G.D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI

FN-19, Computer Science Department, Aarhus University, 1981.

