Skip to main content

Optimal Path Planning for Nonholonomic Robotic Systems via Parametric Optimisation

  • Conference paper
Book cover Towards Autonomous Robotic Systems (TAROS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6856))

Included in the following conference series:

  • 2287 Accesses

Abstract

Motivated by the path planning problem for robotic systems this paper considers nonholonomic path planning on the Euclidean group of motions SE(n) which describes a rigid bodies path in n-dimensional Euclidean space. The problem is formulated as a constrained optimal kinematic control problem where the cost function to be minimised is a quadratic function of translational and angular velocity inputs. An application of the Maximum Principle of optimal control leads to a set of Hamiltonian vector field that define the necessary conditions for optimality and consequently the optimal velocity history of the trajectory. It is illustrated that the systems are always integrable when n = 2 and in some cases when n = 3. However, if they are not integrable in the most general form of the cost function they can be rendered integrable by considering special cases. If the optimal motions can be expressed analytically in closed form then the path planning problem is reduced to one of parameter optimisation where the parameters are optimised to match prescribed boundary conditions. This reduction procedure is illustrated for a simple wheeled robot with a sliding constraint and a conventional slender underwater vehicle whose velocity in the lateral directions are constrained due to viscous damping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baillieul, J.: Geometric Methods for Nonlinear Optimal control problems. Journal of Optimization Theory and Applications 25(4) (1978)

    Google Scholar 

  2. Biggs, J.D., Holderbaum, W.: Optimal kinematic control of an autonomous underwater vehicle. IEEE Transactions on Automatic Control 54(7), 1623–1626 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Biggs, J., Holderbaum, W.: Integrable quadratic Hamiltonians on the Euclidean group of motions. Journal of Dynamical and Control Systems 16(3), 301–317 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Biggs, J.D., Holderbaum, W., Jurdjevic, V.: Singularities of Optimal Control Problems on some 6-D Lie groups. IEEE Transactions on Automatic Control, 1027–1038 (2007)

    Google Scholar 

  5. Bloch, A.M.: Nonholonomic Mechanics and Control. Springer, New York (2003)

    Book  Google Scholar 

  6. Brockett, R.W.: Lie Theory and Control Systems Defined on Spheres. SIAM Journal on Applied Mathematics 25(2), 213–225 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brockett, R.W., Dai, L.: Non-holonomic Kinematics and the Role of Elliptic Functions in Constructive Controllability. In: Nonholonomic Motion Planning, Kluwer Academic Publishers, Dordrecht (1993)

    Google Scholar 

  8. Bullo, F., Lewis, A.: Geometric Control of Mechanical Systems. Springer, NY (2005)

    Book  MATH  Google Scholar 

  9. Canny, J.F.: The Complexity of Robot Motion Planning. MIT Press, Cambridge (1998)

    Google Scholar 

  10. Carinena, J., Ramos, A.: Lie systems in Control Theory. In: Nonlinear Geometric Control Theory. World Scientific, Singapore (2002)

    Google Scholar 

  11. Jurdjevic, V.: Geometric Control Theory. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  12. Justh, E.W., Krishnaprasad, P.S.: Natural frames and interacting particles in three dimension. In: Proceedings of 44th IEEE Conf. on Decision and Control and the European Control Conference (2005)

    Google Scholar 

  13. Lafferriere, G., Sussmann, H.: Motion Planning for Controllable systems without drift. In: Proc. IEEE Int. Conf. on Robotics and Automation, Sacramento, CA, pp. 1148–1153 (1991)

    Google Scholar 

  14. Latombe, J.C.: Robot Motion Planning. Kluwer, Boston (1991)

    Book  MATH  Google Scholar 

  15. Leonard, N., Krishnaprasad, P.S.: Motion control of drift free, left-invariant systems on Lie groups. IEEE Transactions on Automatic Control 40, 1539–1554 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Luenberger, D.: Linear and Nonlinear Programming. Addison-Wesley Publishing Company, Reading (1984)

    MATH  Google Scholar 

  17. Murray, R., Li, Z., Sastry, S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  18. Murray, R., Sastry, S.: Steering nonholonomic systems using sinusoids. In: Proc. of 29th IEEE Conf. on Decision and Control, Honolulu, Hawaii, pp. 2097–2101 (1990)

    Google Scholar 

  19. Selig, J.M.: Geometric Fundamentals of Robotics. Monographs in Computer Science. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  20. Sussmann, H.J.: An introduction to the coordinate-free maximum principle. In: Jakubczyk, B., Respondek, W. (eds.) Geometry of Feedback and Optimal Control, pp. 463–557. Marcel Dekker, New York (1997)

    Google Scholar 

  21. Sussmann, H.J., Liu, W.: Limits of highly oscillatory controls and approximations of general paths by admissible trajectories. In: Proc. of 30th IEEE Conf. on Decision and Control, pp. 437–442 (1991)

    Google Scholar 

  22. Zexiang, L., Canny, J.F.: Nonholonomic Motion Planning. Kluwer Academic Publishers, Dordrecht (1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Biggs, J. (2011). Optimal Path Planning for Nonholonomic Robotic Systems via Parametric Optimisation. In: Groß, R., Alboul, L., Melhuish, C., Witkowski, M., Prescott, T.J., Penders, J. (eds) Towards Autonomous Robotic Systems. TAROS 2011. Lecture Notes in Computer Science(), vol 6856. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23232-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23232-9_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23231-2

  • Online ISBN: 978-3-642-23232-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics