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Abstract. Plan diversity has practical value in multiple planning domains, 

including travel planning, military planning and game planning. Existing 
methods for obtaining plan diversity fall under two categories: quantitative and 
qualitative. Quantitative plan diversity is domain-independent and does not 
require extensive knowledge-engineering effort, but can fail to reflect plan 
differences that are truly meaningful to users. Qualitative plan diversity is based 
on domain-specific characteristics which human experts might use to 
differentiate between plans, thus being able to produce results of greater 
practical value. However, the approach to qualitative plan diversity previously 
proposed in generative planning assumes the availability of a domain 

metatheory, hence requiring substantial knowledge engineering effort. We 
propose a case-based planning method for obtaining qualitative plan diversity 
through the use of distance metrics which incorporate domain-specific content. 
No additional domain theory is necessary, thus considerably reducing the 
knowledge-engineering effort. To our knowledge, this is the first time 
qualitative plan diversity is being explored in a case-based planning context.  

Keywords: diversity, case-based planning, qualitative diversity, quantitative 
diversity, diversity metrics  

1     Introduction 

Diversity-aware planning consists of generating two or more plans which, while 

solving the same problem, are dissimilar from one another, thus covering a large 

portion of the solution space, and providing a good indication of the range of 
available possibilities.  

Plan diversity has practical value in multiple planning domains, including military 

planning [13] (e.g., offensive versus defensive plans, or defensive plan variants), 

travel planning [11] and route planning (e.g. using local roads versus using 

highways). In mixed-initiative planning environments [12], diverse plans can provide 

the user with genuine alternatives, potentially highlighting useful solutions that may 

otherwise not be considered. In plan-based intrusion-detection [1], they raise 

awareness of manifold threats. In game environments, plan diversity could be used to 

assist the player in exploring multiple different game-play strategies, as well as for 



modeling non-player characters exhibiting varied behavior, adding to the realistic 

atmosphere and enjoyment factor of the gaming experience [15].   
 Depending on the type of plan distance (the measure of the dissimilarity between 
two plans) on which they are based, previous approaches to diversity-aware planning 
(used mostly in generative planning, rather than case-based planning) can be seen as 
belonging to one of two categories: qualitative and quantitative.  

Quantitative plan distance is domain-independent and has the advantage of not 

requiring domain knowledge aside from the usual state-action transition model (e.g., a 

collection of STRIPS operators). The most common example of a quantitative 

distance metric is an action-set metric that counts the number of actions two plans do 

not have in common. This approach is, however, inflexible, as well as likely to 

produce misleading results: two plans identified as distant using a quantitative,   

action-set metric could, in essence, be similar (e.g. in combat-based games, two plans 

may have very little overlap in terms of the actions they execute, while being both 

implementations of a defensive strategy). 
Qualitative plan distance, on the other hand, is based on domain-specific 

knowledge, thus having the potential to reflect subtler semantic differences that a 
human expert might take into account when comparing two plans (e.g. even if 
consisting of otherwise identical actions, a plan involving first-class air-travel will, 
from the point of view of a budget-conscious customer, be radically different from its 
economy-class counterpart). In contrast to the more mechanical quantitative approach, 
qualitative plan comparison should “see” plans much like human users would: as 
endeavors characterized by cost, risk, degrees of preference, etc. On the downside, the 
method for achieving qualitative plan diversity proposed previously in generative 
planning [11] is knowledge-intensive, requiring, in addition to the state-action 
transition model, an extended domain theory (“metatheory”).  

In our previous work [3], we took the first steps in exploring plan diversity in 
case-based planning [4,16,19], and did so using a quantitative approach. We now 
propose a case-based planning method for obtaining qualitative plan diversity without 
the need for extensive knowledge engineering. This is achieved through the use of 
distance metrics which, themselves, incorporate the minimal domain-specific content 
that is required for the purposes of obtaining diversity. To our knowledge, this is the 
first time qualitative plan diversity is being explored in a case-based planning context. 

In Section 2, we describe qualitative and quantitative plan distance in more detail. 
Then, in Section 3, we exemplify and compare quantitative and qualitative plan 
diversity in a planning domain. In Section 4, we present a case-based retrieval 
algorithm that is amenable to both quantitative and qualitative distance metrics, while 
Section 5 is dedicated to the comparative experimental evaluation of the diversity of 
plans obtained using quantitative and qualitative distance metrics. Section 6 provides 
an overview of related work, followed by final remarks in Section 7.  

2   Qualitative and Quantitative Plan Distance 

Adapting the case diversity definition formulated by Smyth and McClave [18], we 

can define the diversity Div() of a set of plans  as the average dissimilarity 
between pairs of plans in the set: 



                            
          

         
       

                                    

where the plan distance Dist:  [0,1] is a measure of the dissimilarity between 
two plans. This formula is a direct adaptation, for the purposes of plan comparison, of 

the case diversity formula proposed by Smyth and McClave [18]1, as Dist can be 

considered to be the complement of a similarity measure Sim2: 

 

                                                                             (2) 
 

It should immediately be pointed out that the problem of comparing plans is 

nontrivial: each plan may have an arbitrary number of actions, each with any number 

of parameters. Furthermore, the plan space for a given problem is potentially infinite 

(e.g., in a travel domain, a plan can be arbitrarily lengthened by repeatedly going back 

and forth between two locations). It follows that the notion of completeness [10], as 

defined for analysis tasks such as recommender systems cannot be applied to       

case-based planning (the set of possible solutions to planning problems is not limited 

to the contents of the case base, but includes all adapted plans which could possibly 

be obtained from those cases; and there are infinitely many such plans). 
The types of plan distance used in generative planning fall under two categories, 

which we will be referring to as quantitative and qualitative.  

Quantitative plan distance is based on plan elements (such as actions) derivable 

from the state-action transition model3, which are not interpreted in any domain-spe-

cific way. It follows than any two distinct plan elements are considered equally 

distant from one another (e.g. in a cooking domain, the action of adding lemon juice 

to a dish is considered equally distant from the action of adding vinegar and the action 

of adding sugar). Quantitative plan comparison, therefore, generally consists of 

counting the plan elements which plans have, or do not have, in common. An example 

of a quantitative distance metric (a normalized, complementary metric to the 

similarity metric used in [5]) is:    

 

                                 
            

              
                                 

 
where common(π,π’) is the  number of actions that plans π and π’ have in common 

and | | is the number of actions in plan  . 
Qualitative plan distance is based on interpretation, using domain knowledge, of 

the components of plans (e.g. in a cooking domain: lemon juice and vinegar are both 

sour, but sugar is sweet; in a travel domain: a first-class plane ticket is expensive, 

                                                        

1 The same formula is used in a generative planning context by Myers and Lee [11], under the name of 

“dispersion”. 
2 We are expressing diversity in terms of distance metrics. However, all formulas for distance metrics can 

be rewritten in terms of the complementary similarity metric. We maintain this interchangeability by 

always using normalized versions of the metrics, so that their values fall in the [0,1] interval.   
3 The minimal domain theory required in planning. 



while an economy one is affordable). As multiple bases for qualitative distance can be 

defined for the same domain, it is possible to vary the set of features along which one 

would like to see diversity (e.g. in a travel domain, variation of ticket cost, but not 

means of transportation). This has a clear practical advantage over the inflexible 

quantitative diversity. 

It is immediately obvious that, with the greater potential benefits of qualitatively 

diverse plan generation, comes the greater complexity of obtaining it. Unlike 

quantitative metrics, which are domain-independent, qualitative metrics require 
domain-specific knowledge to be encoded and utilized.  

Previously, this was achieved Myers and Lee [11] in a HTN planning context. 

Their approach, however, involves considerable knowledge engineering effort: for the 

purposes of diverse plan generation, Myers and Lee require a “metatheory” providing 

additional domain information, thus allowing plans to be compared in terms of    

high-level features, such as the objects which fulfill various “roles” in plans and the 

domain-specific characteristics of various types of actions (e.g. the speed of travel by 

a given means of transportation). 

We propose a method of obtaining qualitative diversity which requires neither an 

HTN planning context, nor a domain metatheory. Instead, it is based solely on the 

state-action transition model, a case base of plans, and qualitative distance metrics 

which incorporate all the domain-specific, qualitative content that is required for the 
purposes of creating diversity.  

Our approach is motivated by the observation that obtaining plan diversity does 

not require a comprehensive qualitative model of the domain. It is sufficient to 

“equip” the diversity metric with minimal knowledge regarding the select features it 

should base its differentiation between plans on. It immediately follows that multiple 

qualitative metrics can be defined for any domain, each metric reflecting the minimal 

useful information necessary for a particular diverse-plan retrieval task. These metrics 

can then be used separately or compounded as needed, offering much greater power 

and flexibility in generating diverse plan sets that are truly useful in practical 

situations.  

3  Qualitative and Quantitative Plan Diversity in a Real-Time 

Strategy Game Context 

To exemplify possible uses of quantitative and qualitative plan diversity, we assume a 

real-time strategy game context, which displays many of the complexities of real 

domains of practical interest:  it is dynamic (the world state evolves while the agent 

deliberates), non-deterministic (no specific action outcome can be guaranteed), 

partially observable, and adversarial (agents in each team maximize their performance 

metric by seeking to minimize the opponents’) [14]. 

Assume the following game configuration: the types of available units are 

peasants, soldiers, archers and mages. Units vary in terms of attack capabilities (e.g. 

soldiers are close-combat units, archers and mages long-range attack units) and 
robustness (e.g. peasant are very weak). The game score is computed by adding points 

for enemy kills and subtracting points for loss of friendly units. The amount 



added/subtracted on the destruction of a unit depends on the type of unit in question. 

The actions that can be taken by units are: move (the unit attempts to move to a 

specified location on the map), patrol (the unit moves back and forth between its 

current location and a specified location on the map) and attack (the unit attacks any 

enemies at a given location). The action structure is <action name (parameter 1, 

parameter 2)>, where parameter 1 specifies the unit which will undertake the action 

and parameter 2 specifies the target location of the action (e.g. action <move soldier1 

loc1> instructs unit soldier1 to move to the map location loc1.  There are two teams, 
one controlled using our plans, the other controlled by the built-in enemy AI.  

Consider the set of 3 plans in Fig. 1 and assume we have already retrieved Plan 1 

and are now trying to find a second plan, out of the two remaining ones, that is 

maximally distant from Plan 1 (making the resulting pair of retrieved plans maximally 

diverse). 

 

 

 

 

 

 

 
 

Fig. 1. Sample plans for a real-time strategy domain. The action parameters specify 

the unit which will be undertaking the action and the map location at which the action 

will take place. 

 

First, let’s consider quantitative diversity (in our previous work [3], we 

demonstrated quantitative plan diversity in a real-time strategy game domain). To do 

so, we use the quantitative metric DistQuant (Formula 3). As a result, the plan that is 

chosen is Plan 2: it shares no actions with Plan 1 (the attack actions in the two plans 

use distinct soldier units), therefore the distance between them is 1 (the maximum 

possible distance).  
However, an informed analysis, using domain-specific information, of the 

individual actions, yields significant information that has not yet been considered: an 

attack action indicates an offensive approach to the game; a more neutral move action 

could be interpreted in various ways: moving to a location on one’s own side of the 

map may be considered a defensive action, while attempting to move towards the 

enemy side is likely offensive, indicating the intention to engage in battle. Therefore, 

Plans 1 and 2 may not be meaningfully different at all. They both culminate in an 

attack action at the same map location, using units, which, while distinct, are of the 

same type (soldiers). The three other actions that differentiate Plan 1 from Plan 2 may 

not be of great consequence at all, if the locations the units are moving to are on the 

friendly side of the map and not very far from their initial locations.  
Let us now consider, instead, a qualitative distance metric which considers two 

plans maximally diverse if they attack using a different type of unit, and identical if 

they use units of the same type to attack, even if the units are distinct (we will be 

using a more elaborated variant of this metric in our experiments).  

Plan1: Move (soldier1, loc1), Move (soldier2, loc2), Move (mage1, loc3), 

Attack (soldier3, loc4) 
Plan 2: Attack (soldier2, loc4) 

Plan 3: Move (soldier1, loc1), Move (soldier2, loc2), Move (mage1, loc3),  

Attack (archer1, loc4) 

 



This method assesses Plan 2 as being maximally similar to Plan 1: they use units 

of the same type to attack, and the other actions in Plan 1 are ignored for the purposes 

of comparison, as they were not specified in the metric definition (this is an example 

of a qualitative metric including only the minimal amount of domain information that 

is relevant to the task at hand, thus reducing the knowledge engineering effort, and 

improving retrieval performance). As a result, the qualitative method picks the 

maximally distant Plan 3, which attacks using an archer, a unit very different from a 

soldier: it is long-range, weaker in close combat, and its loss incurs a different score 
penalty than the loss of a soldier. This makes the selected plans significantly different 

relatively to the rules of the game. 

4    Plan-Diversity-Aware Retrieval Algorithm 

To demonstrate plan-diversity-aware case retrieval, we use a variant of the Greedy 

Selection4 algorithm proposed by Smyth and McClave [18] (Fig. 2). The algorithm 

retrieves a set of k diverse cases. First, it automatically adds to the retrieved set the 

case that is maximally similar to the new problem. Then, for k-1 steps, it retrieves the 

case that maximizes an evaluation metric taking into account both the similarity to the 

new problem and the relative diversity to the set of solutions selected so far. 

 

 

 

 

 
 

 

 

 

 

 

 

 

Fig. 2. The Plan Diversity Greedy Selection algorithm: a case-based planning variant 

of Greedy Selection [18]. 

 

We assume a transformational-analogy adaptation method, in which the contents of 
a case are a problem (consisting of an initial and/or final state) and a solution, 

consisting of a plan. The new problem is defined in terms of initial and/or final state. 

The key difference between the original Greedy Selection method (used for analysis 

tasks) and our variant (used for planning, which is a synthesis task) stems from the 

                                                        
4 We chose to use general Greedy Selection, rather than its variant Bounded Greedy Selection [18], which 

improves performance for large case bases, as retrieval from our particular case base is manageable with 

the general algorithm. Alternatively, we can assume our case base to consist of only the top bk most similar 

cases, making our algorithm a variant of Bounded Greedy Selection.  

 

  1.  define PlanDiversityGreedySelection(n, C, k) 

  2.  begin 

  3.      R := {} 

  4.      For i := 1 to k 

  5.          Sort C by SimPlDiv(n,c,R) for each c in C 

  6.          R := R + First(C) 

  7.          C := C – First(C) 

  8.      EndFor 
  9.  return R 

10.  end 



fact that plan-diversity-aware retrieval needs to take the solution plan into account, in 

addition to the problem. During retrieval, the problem is considered for similarity 

purposes, while the solution is considered for diversity purposes.  

In Fig. 2, n is the new problem, C the case-base, and k the number of cases we aim 

to retrieve. In our variant of the algorithm, the quality based on which retrieval occurs 

is: 

 

                                                 ,      (4) 
 

where Sim is the case similarity measure used for traditional similarity-based retrieval 

(most generally, similarity of initial and/or final states), α a parameter used for 

varying the complementary weights assigned to the similarity and diversity retrieval 

criteria, c.π the solution plan of case c, R. Π the set of plans in the set of cases R, and 

RelPlDiv(π,Π), the diversity of a plan π relative to a set of plans Π (adapted from the 

RelDiversity formula proposed by Smyth and McClave [18]):   

 

                                               
           
   

  
                             (5) 

 

Dist can be any distance metric, either quantitative or qualitative.  

5   Experimental Evaluation 

Our experimental environment is real-time strategy game Wargus, which has 

previously been used in case-based planning work [3,14]. 

5.1   Experimental Setup 

Game configuration. We run two-player Wargus games on two 32x32 tile maps 

(Fig. 3), with our team acting out plans against the built-in Wargus enemy AI. The 
types of units and available actions are as described in Section 3. Each plan represents 

an individual battle (in which one of our armies engages the enemy), rather than a 

complete, prolonged game. This restriction was necessary so as not to allow excessive 

implicit game-play diversity, which might render meaningless the difference in 

variance between results produced using different metrics.  

The two maps on which we test our plans are topologically different: the first has 

one gap in the forest separating the two armies, while the second has two gaps, 

located at different coordinates than the gap in the first map. This difference is 

meaningful for the following reason: on the second map, units will sometimes make 

different choices as to which gap to use to pass to the other side: sometimes, all units 

will use the same gap, at other times, they will split up, sometimes they will even 

“hesitate”, marching towards one gap, then returning to the other one. This ensures 
considerably different game behavior between the two maps.  

 



 

 
 

Fig. 3. The two, topologically-different, game maps. Note how the archer army in the 

second map has split up into two divisions, each using a different gap to pass. 

 

 

Case-based planning system. In our case-based planning system, we use the 

following convention: the cases are interpreted as battle-plan blueprints, so that every 

unit in a case is an abstracted representation of an entire army of units of that type 

(e.g. a soldier stands for an army of soldiers). New problems consist of actual game 

configurations, specifying number of armies of each type, as well as number of units 

in each army. 

The case base consists of 100 distinct cases, composed of an initial state (the 

problem) and a plan (the solution). The initial state is represented in terms of 

numbers of armies of each type. Each of these armies is considered to be represented 

by one unit in the plan. 
The case plans were generated using the FastForward generative planner [6], 

modified so as to generate multiple plans for the same problem. All case plans contain 

an attack action by one unit (which represents the entire attacking army in the adapted 

plan). No goal state is specified: the general goal is to obtain the highest possible 

score, and there is never one single final state through which this is achieved.  

The new problems consist of initial game states, indicating the number of armies 

of each type (soldier, archer, mage, peasant), as well as the number of units in each of 

the armies. All units in an army are of the same type. There are 5 new problems, with 

varying numbers of armies of each type, as well as number of units per army. 

The adaptation algorithm is consistent with the idea of a case-base plan serving 

as blueprint. As each unit in the case plan represents an army, each army A in the new 
problem will be matched to a unit U (of the same type as the units in A) in the 

retrieved case. All units in A will then perform all actions performed by U in the case 

plan. The matching will occur in order of the numbering of units in the case plan, with 

one exception: if unit U is the attacking unit in the case plan, U will be the first to be 

assigned to an army of its type in the new problem, assuming such an army exists.   

This will always be the case with our problems: they all contain at least one army of 

each type, in order to be able to take at least partial advantage of any retrieved plan. 

 

 



 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4. Sample case, new problem, and the corresponding adapted plan (units in the 

adapted plan are not annotated with the army they belong to because, in this example, 

there is only one army of each type). The third action parameter indicates coordinates 

of the location at which the action should take place. 

 

 

For case retrieval, we use the PlanDiversityGreedySelection retrieval algorithm 

(Fig. 2), where k=4, α=0.5, and Sim is a similarity metric          , based on the 

initial states of the compared cases: 

 

                      

  

 
                                                 
                                                 

 
   

 
            

 

NEW PROBLEM 

 

Initial State 

1 soldier army  

(4 units) 

1 peasant army  

(4 units) 

2 mage armies  

(4 units each) 

2 archer armies  

(4 units each) 

RETRIEVED CASE 

 

Initial State 

1 soldier army 

1 peasant army 

1 mage army  

1 archer army  

 

Plan 
move (archer1, 05_05)  

move (peasant1, 03_02)  

move (mage1, 04_07)  

move (archer1, 24_07)  

patrol (soldier1, 01_04)  

move (soldier1, 05_04)  

attack (archer1, 24_07)  

 

ADAPTED PLAN 

 

move (archer1, 05_05)  

move (archer2, 05_05)  

move (archer3, 05_05)  

move (archer4, 05_05)  

  move (peasant1, 03_02)  

  move (peasant2, 03_02)  

  move (peasant3, 03_02)  
  move (peasant4, 03_02)  

move (mage1, 04_07)  

move (mage2, 04_07)  

move (mage3, 04_07)  

move (mage4, 04_07)  

  move (archer1, 24_07)  

  move (archer2, 24_07)  

  move (archer3, 24_07)  

  move (archer4, 24_07)  

patrol (soldier1, 01_04)  

patrol (soldier2, 01_04)  
patrol (soldier3, 01_04)  

patrol (soldier4, 01_04)  

  move (soldier1, 05_04)    

  move (soldier2, 05_04)  

  move (soldier3, 05_04)  

  move (soldier4, 05_04)  

attack (archer1, 24_07)  

attack (archer2, 24_07)  

attack (archer3, 24_07)  

attack (archer4, 24_07)  

 



where n is the number of types of units (in our experimental setup, n=4) and 

                     is the number of armies of units of type i  in the initial state 

of case c. 

As the distance metric Dist, we use the quantitative metric DistQuant (Formula 3), 

as well as a game-specific qualitative metric, which we call DistWargus: 

   

                   

 
                                            

                                                
 ,                     (7) 

 
where attackUnitsType(   is the type of units in the attacking army of the given plan 
and d is the degree of difference between two types of units, as defined by us, based 
on game-specific knowledge, and indicated in Table 1 below.  
 
 
  Table 1. Domain-specific degrees of distance between types of Wargus units. 
 

 
Unit type 1 

 

 
Unit type 2 

 
d 

Peasant Soldier 0.50 

Peasant Archer 0.75 

Peasant Mage 0.90 

Soldier Peasant 0.50 
Soldier Archer 0.50 

Soldier Mage 0.75 

Archer Peasant 0.75 

Archer Soldier 0.50 

Archer Mage 0.50 

Mage Peasant 0.90 

Mage Soldier 0.75 

Mage Archer 0.50 

 

The range of both DistQuant and DistWargus is [0,1]. 

5.2 Experimental Results 

Evaluation method. To evaluate the diversity of game-play sessions which are based 

on the sets of generated plans, we observe the variation of two game-specific 

evaluation metrics. The primary metric is Wargus score (computed as in Section 3); 

the secondary metric is time (the duration, in game cycles, of game-play sessions). 

Our hypothesis is that plans obtained using retrieval based on the qualitative   

plan-diversity metric DistWargus will produce greater game-play variation (reflected in 

the evaluation metrics), than plans obtained using the action-set quantitative distance 
metric DistQuant. We expect that, when run in the game, adaptations of plans retrieved 

using the qualitative metric will produce significantly more variation (as measured 



using standard deviation and assessed using the F-test) of Wargus scores5 than 

adaptations of quantitatively-diverse sets of plans. We expect to see a similar behavior 

with regard to time, but with less confidence, as we have observed that game duration 

tends to vary more between runs of the same plan, on the same map6.  

 

Results. In Fig. 5, each point in each chart represents the standard deviation of score 

or time (as indicated) for one plan set of 4 plans, where each plan is run in the game 5 

times. The two data sets in each chart correspond to results obtained using the 
quantitative distance metric DistQuant and the qualitative metric DistWargus in retrieval. 

There are 5 plan sets for each of the 5 new problems, on each of the 2 maps (50 plan 

sets in all). 

As can be seen in the charts, for score, the standard deviation of DistWargus results 

per plan set is consistently higher than that of DistQuant results7. Being highly diverse, 

the DistWargus score sets always include the highest recorded score per problem/map 

combination (while DistQuant sets do not). 

The F-test score results indicate that the difference between the variances of the 

DistWargus and DistQuant score data sets is statistically significant, at the 95% confidence 

level, for all problems, on both maps, with the DistWargus data set displaying the 

greater variance. 

For the secondary metric of time, the standard deviation of DistWargus results is 
greater than that of DistQuant, results on all but 2 of the 25 plan sets on the first map, 

and all but 3 out of the 25 plan sets on the second map.  

The F-test indicates that the DistWargus data sets display greater variance, and the 

variance difference is statistically significant, at the 95% confidence level, on 4 of the 

5 problems on each map. On the second map, the difference is statistically significant 

(with greater variance for the DistWargus data set), at the 90% confidence level, on the 

remaining problem. For the remaining problem on the first map, the variance is 

slightly greater for the DistQuant data set, but the difference is not statistically 

significant. 

To sum up, DistWargus results are, indeed, significantly more diverse than DistQuant 

results on all problems, with regard to score; and on the majority of problems, with 
regard to time. 

Another aspect we have noticed is that plans retrieved using DistWargus (and, 

consequently, the adapted plans based on them) tend to be shorter, on average, than 

plans retrieved using DistQuant (the reason for this should be obvious from the way the 

                                                        
5 Note how we have chosen one of the countless possible domain-specific, qualitative distance metrics in 

accordance with our purpose: that of obtaining easily quantifiable diversity. Had our objective been 

different, we might have opted for a distance metric producing some form of diverse game behavior 

which is not so clearly reflected in score variation.  
6 Had we chosen time as the primary metric, we might have retrieved plans which use diverse route 

waypoints, encouraging the variation of game duration more clearly than that of score. 
7 The question might be raised whether plan sets producing highly diverse scores, from high to low (rather 

than all of the plans playing the game expertly) are ever of practical value: a simple example is the 

modeling of AI enemies, which, to make the game environment realistic (as well as not discouragingly 

difficult) should vary in intelligence and ability. Also, in partially unknown environments (e.g. the map 

remains the same, but the enemy force may vary over consecutive plans), we may benefit from 

experimenting with multiple diverse plans, even if some of them behaved poorly in a slightly different 

game configuration.  



two metrics are computed, with DistQuant easily increasable by lengthening any of the 

compared plans, as long as the added actions are not encountered in the other plan). 

While plan length does not necessarily reflect plan quality, nor is it an accurate 

indication of how long the actual game session will last (game sessions based on 

longer plans were not necessarily longer in our experiments), it does relate to the time 

it takes to execute the strategy outlined in the plan. It follows that shorter plans may, 

in this context, be preferable to longer ones.  

6   Related Work 

Case diversity was explored extensively in case-based recommender systems 

[2,7,8,9,17,18]. 

In case-based planning, we began to explore diversity in our previous work [3]. 
However, the focus there was on comparing plan diversity with state diversity, and we 

only demonstrated quantitative plan distance. While we also tested the diversity of 

plans by running them in the Wargus game, the game configurations were less 

sophisticated (with fewer unit types and simpler plans), as was our case-based 

planning system. To our knowledge, no other work on plan diversity (generative or 

case-based) assesses plan diversity by running plans in their environment, and 

observing behavior and results thus obtained. Instead, they do so by analyzing the 

plans themselves [11,20]. 

In generative planning (which involves generating plans from scratch, rather than 

through retrieval from a case library), quantitative plan diversity has been explored by 

Srivastava et al. [20]. A method for qualitative-diversity aware plan generation has 
been proposed by Myers and Lee [11], in HTN planning. Their knowledge-intensive 

approach does not use distance metrics at plan generation time. Instead, it directs the 

generative planner towards regions of the search space which are identified as 

representing qualitatively different plan attributes, using a domain metatheory (an 

extended description of the planning domain in terms of high-level attributes, 

supplementing the standard domain model).  

Myers [13] explores qualitative plan comparison (identifying similarities and 

differences between plans) through the use of a similar domain metatheory. The 

approach assumes an HTN planning paradigm, and defines plan distance purely on 

the basis of high-level characteristics specified in the metatheory. It does not deal 

with diverse plan generation, but with the computation of distance between already 

available plans.  
The related and opposite problem of plan similarity is explored by Fox et al. [5], 

in the context of plan stability (which requires the difference between an original plan 

and a repaired plan to be minimized, rather than maximized). The similarity metric 

they use for this purpose is quantitative.   

Storyline diversity in a gaming environment, for the purpose of enhancing the 

player’s experience, is explored by Paul et al. [15]. 



 

Fig. 5. Standard deviation of game scores and time (game duration). 



7   Conclusions and Future Work 

Our work brings two main contributions to plan diversity research. First, to our 
knowledge, we approach qualitative diversity in case-base planning for the first time. 
Second, we obtain qualitative plan diversity without an intensive knowledge-en-
gineering requirement, such as a metatheory. Instead, we use a qualitative plan 
distance metric, which is, in general, a lesser knowledge-engineering requirement.  

In a game domain, we show how qualitative plan diversity can, by reflecting 
characteristics specific to the domain in question, produce more meaningful plan 
variation than quantitative diversity. In addition, we evaluate the diversity of 
generated plans by running them in the environment and observing their behavior, as 
opposed to examining the structure of the resulting plans themselves.   

In future work, we aim to explore qualitative plan diversity in various real 
domains of practical interest, once again testing the diversity of plans by running 
them in the environments they are intended for (or simulations thereof). We are also 
interested in exploring diversity in online planning, which should be particularly 
interesting in game domains, such as the one used herein. 

We also plan to analyze the trade-off between plan diversity and plan quality; and 

to explore whether qualitative distance metrics can be used to help ensure that the sets 

of retrieved plans are not only diverse, but also composed of individual plans of good 

quality. 
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