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Abstract. Case acquisition is the primary learning method for case-
based reasoning (CBR), and the ability of a CBR system’s case-base to
cover the problems it encounters is a crucial factor in its performance.
Consequently, the ability to assess the current level of case-base cover-
age and to predict the incremental benefit of adding cases could play
an important role in guiding the case acquisition process. This paper
demonstrates that such tasks require different strategies from those of
existing competence models, whose aim is to guide selection of compe-
tent cases from a known pool of cases. This paper presents initial steps
on developing methods for predicting how unseen future cases will affect
a system’s case-base. It begins by discussing case coverage as defined
in prior research, especially in methods based on the representativeness
hypothesis. It then compares alternative methods for assessing case-base
coverage, including a new Monte-Carlo method for prediction early in
case-base growth. It evaluates the performance of these approaches for
three tasks: estimating competence, predicting the incremental benefit
of acquiring new cases, and predicting the total number of cases required
to achieve maximal coverage.

1 Introduction

The case library is a fundamental knowledge container for case-base reasoning
(CBR) systems. CBR system development often includes a case acquisition pro-
cess to capture set of “seed cases,” as an initial case-base, after which additional
cases are gained during problem-solving. Currently, little quantitative guidance
is available to help system-builders to predict the likely benefit of acquiring an-
other seed case and the number of cases which will be required to maximize
coverage. The ability to predict the incremental benefit of case acquisition could
help to determine whether the effort to acquire new cases is worthwhile; predic-
tions of the case-base size required to achieve a desired performance level—and
of whether it is practical to achieve that performance level solely by adding
cases—could both help to determine the suitability of CBR for a given task and
help system designers decide whether to focus effort on case acquisition or on
improving other knowledge containers, such as case adaptation knowledge, to
reduce the number of cases that will be needed.



Assessing and predicting the effects of case acquisition is closely connected to
estimating case-base competence, the ability of a system’s case-base to support
the solution of potential target problems. Methods to predict case-base compe-
tence effects if unseen cases are added to the case-base can in turn be used to
estimate incremental competence gains from adding a future case to the case-
base. If methods can be developed to extrapolate these predictions to estimate
the competence effects of adding larger numbers of cases, those estimates may
be used for addressing questions such as the maximum competence the system
is likely to achieve.

Case-base competence has received substantial attention in CBR research,
from the perspective of guiding generation of compact and competent case-bases.
This work has centered on choosing which cases in an existing set of cases to
delete (for competence-based deletion, e.g., [4,6]) or to add (for competence-
based addition, e.g., [7]). This paper begins with background on previous treat-
ments of competence, based on the representativeness assumption that the ex-
isting case-base can be used as a proxy for future problems [6]. Such treatments
have proven effective for their intended purpose of guiding competence-based
deletion from a known case-base with satisfactory coverage. However, represen-
tativeness is not assured for the partial case-bases arising during early phases of
case acquisition.

To estimate coverage characteristics, the paper presents a set of empirical
methods for future coverage prediction. These include a new approach which
uses Monte Carlo integration—assessing coverage for a random sampling of the
problem space—to predict coverage without requiring the representativeness as-
sumption. This approach does not require knowledge of the correct solutions for
the sampled problems, but can be adjusted to reflect additional knowledge about
expected problem distributions and weighted to reflect additional cost/benefit
information.

The paper presents an evaluation of its competence estimation methods as
bases for three tasks: (1) predicting the incremental benefit of case acquisition,
(2) estimating a tight upper bound on the competence a system will achieve,
based on the competence effects of adding initial cases, and (3) predicting the
number of cases required for the case base to approximate maximal competence.
The paper evaluates performance for a range of case-bases. The results support
that representativeness-based methods for competence assessment may not be
well-suited to early competence estimation, but that both the leave-one-out and
Monte Carlo methods can provide useful information, and that the Monte Carlo
method has advantages over the leave-one out method for this task.

2 Competence and Representativeness

Smyth and McKenna’s seminal work on representativeness-based coverage [6]
defines competence as “the range of target problems that a given system can
solve.” If “competence” is considered to reflect problem-solving accuracy over
the entire problem space P, it may be defined as the fraction of the problems



p; € P which the reasoner will solve correctly, i.e., for which the case or cases
retrieved from the case-base will be adapted to produce a correct solution:

ZpiGP Correct(Adapt(Retrieve(CB, p;), p;i))
|P|

Competence(CB) =

A challenge for determining competence for a real problem distribution is that
the actual set of problems to be encountered in the future may be impossible
to know a priori. In the context of determining the contribution of particular
cases to the competence of a given case base, Smyth and McKenna address
the problem of unavailable target cases by basing competence calculations on
the representativeness assumption: “The case base is a representative sample of
the target problem space” [6]. As Smyth and McKenna observe, in the scenario
they consider it is reasonable to expect the representativeness hypothesis to
hold: If the case-base were not representative of future problems, CBR would
be inappropriate for the task. Accordingly, their proposed competence metric
explicitly excludes mention of target problems, instead considering only how the
system’s cases contribute to solving other cases in its existing case-base. The
coverage of a single case ¢ with respect to a case-base C' is defined as the set of
cases for whose problems it would be retrieved and to which it can be successfully
adapted [5]:

coverage(c € C) = {c' € C : ¢ € RetrievalSpace(c) N AdaptationSpace(c)}

The representativeness-based approach has been used as a basis for estimat-
ing both global competence [5] and relative coverage [6], a criterion for determin-
ing which cases are most important to retain in the case-base. Representativeness
approaches have been shown to be effective for guiding competence-preserving
case deletion from a set of cases with satisfactory competence. However, dur-
ing initial case acquisition, before satisfactory coverage is achieved, there is no
guarantee that the cases seen will be representative.

Some prior work has studied how to identify additional cases needed for
finite case-bases [3]. However, there has been little attention to the problem
of predicting the number of additional cases which a CBR system may need to
achieve maximal competence. It might appear that prior approaches for assessing
case-base competence could also be used to predict the number of cases needed.
However, Massie, Craw, and Wiratunga [2] have shown that metrics developed to
assess competence are not necessarily good indicators of the accuracy achievable
with a given set of cases.

3 Empirical Competence Estimation Strategies

We consider four empirical approaches for estimating competence: leave-one-out
testing using a limited number of test cases, leave-one-out testing using all cases
currently in the case-base, competence group estimation, and a Monte Carlo
method.



3.1 Leave one Out Testing

Leave-one-out testing is a simple approach for estimating accuracy. For tasks
for which solvability is Boolean—either a case is solved or it is not—competence
depends solely on the percent of target problems solved correctly. For other types
of problems, leave-one-out testing can be applied in conjunction with other types
of criteria for estimating competence, such as determining the percent of target
problems whose solution is within a given threshold of the correct solution,
or even simply considering average solution accuracy. Other criteria could use
different weightings for different problems (e.g., based on the risks associated
with particular types of errors).

We will consider two variants on leave-one-out testing. The first uses all the
cases in the current case-base. The second increases efficiency by conducting
testing using a smaller subset of the case-base.

3.2 Competence group estimation

The representativeness-based competence metric we consider follows Smyth and
McKenna’s coverage metric [6], based on the notion of competence groups. Each
case ¢ has an associated coverage within the case-base, consisting of those cases
which are retrieved for ¢ by the reasoner’s retrieval component and which can
be adapted to solve ¢ by the reasoner’s adaptation component. A competence
group is defined as a set of cases such that all cases share coverage with some
other case in the group, and no case outside the group shares coverage with any
case in the group. The density of a case ¢ within a group G is defined as:

ZC/EG—{C} Similarity(c, ¢')
Gl -1

Density(c, G) =

The group density is defined as the sum of the individual member cases’
densities, divided by the cardinality of the group. Group coverage is taken as:

GroupCoverage(G) = 1+ (|G| - (1 — GroupDensity(G)))

Case-base coverage is taken as the sum of group coverages over all competence
groups in the case-base.

3.3 Monte Carlo Coverage Estimation

Leave-one-out testing and representativeness-based approaches use existing cases
in the case-base as proxies for future problems. When the available cases may not
be representative, as when few cases have been acquired, this assumption is less
appropriate. To predict coverage of cases which may not be reflected by the ex-
isting case-base, we propose a Monte Carlo technique. This Monte Carlo method
uniformly samples the problem space, and tests whether the sampled points are
expected to be solvable. This process does not require actually generating so-
lutions for the sampled points, provided that a criterion exists for determining



1. Generate problem set with desired distribution
2. Initialize the total cost to 0
3. For each problem p:
3a. Find the closest case to p in the case-base
3b. If that case does not cover p, add the cost of not covering p to the total cost.
Table 1: General Monte Carlo sampling algorithm

Apply General Monte Carlo sampling algorithm with:
Uniform problem distribution for n samples
Cost = 0 if problem covered by nearest case; else 1.
Return (Monte Carlo result)/n
Table 2: Monte Carlo coverage estimation algorithm for our experiments

solvability. For example, a sampled case could be considered solvable if it were
sufficiently similar to an existing case in the case-base, based on the system sim-
ilarity metric. Because this method does not require access to any cases beyond
those already in the case-base, the number of points it can test is limited only
by available processing time. This is contrast to the leave one out approaches,
which are limited by the number of cases in the case-base.

The previously-described Monte Carlo process can be enriched in two ways to
better reflect pragmatic constraints. We describe these for generality, but leave
their exploration for future research:

— Biased sampling: When the problems encountered are not uniformly dis-
tributed, and if information about the distribution is available, the Monte
Carlo sample selection process can be biased to reflect that distribution.
The most informative results about the system’s ability to cover problems
in practice would follow from sampling frequently from regions of the prob-
lem space in which future problems are likely to occur and less frequently in
problem areas that are unlikely to arise.

— Problem-specific costs: Rather than simply considering points as “cov-
ered” or not, a cost function could be used to reflect factors such as finer-
grained accuracy loss or the costs of failure to cover particular cases, based
on knowledge of the importance of those cases, as illustrated in Table 1.

In the following, we apply the general Monte Carlo algorithm using a problem
generator which randomly selects problems with a uniform distribution through-
out the problem space. Cases which fall within the coverage of an existing case,
as determined by a similarity threshold, are recorded as solved. The percent
solved is then be used to approximate the coverage of the case-base. Table 2
sketches our general Monte Carlo Coverage algorithm and its application here.



4 Extrapolating from Competence Graphs to Estimate
Needed Cases

As illustrated in the following experiments, the observed coverage growth for our
sample case-bases followed a standard pattern, reaching an asymptotic value. If
the details of this standard pattern can be predicted for a given case-base, such
predictions can be applied to in turn predict the number of cases needed to
approximate this maximal performance level.

We hypothesized that the general form of competence as a function of case-
base size (x) can be approximated by the following function:

fl@)=c-(1=(z+0b)7")

The shape of the function is displayed by the fitted curves shown in Fig. 2
(all curves shown except for the Empirical Accuracy graph, which represents raw
data points).

This function captures the “elbow” or corner point of diminishing returns
that is typical of these experiments. Early in case acquisition, insufficient data
will be available to make reasonable long-term predictions. However, we hypoth-
esized that prediction algorithms can detect when the “elbow” of the curve is
reached, and at that point prediction can begin.

5 Experiments

5.1 Overview and Design

We conducted experiments to compare the performance of representativeness,
leave-one-out, and Monte-Carlo integration as a basis for the following tasks:

1. Estimation of system competence

2. Prediction of the marginal competence benefit from acquiring a new case

3. Prediction of the number of cases needed to for the system to achieve accu-
racy within e of its maximum accuracy level

Our experiments use four classification data sets, drawn from the UCI Ma-
chine Learning Repository [1]: Ad (classification of Internet images as ads), Mini-
BOONE (classification of particles), Adult (classification of income level), and
Car (classification of car models as acceptable to consumers). For each data set,
the same naive similarity metric was used, Euclidean distance on problem fea-
tures normalized by their ranges. Data sets with categorical features were given
simple hand-designed numeric distances between categories for those features.

The experiments used 10-fold cross-validation, with each data set split ran-
domly into f = 10 folds. Tunable experiment parameters included the range of
case-base size to test and the size increments to use, the number of points for the
Monte Carlo procedure to sample (for our experiments, 50 points were sampled),
and the number of nearest cases to use when generating a CBR solution for test
problems (3-NN for our experiments).



Estimation of Competence The experiments test competence estimation for
a variety of case-base sizes. For each case-base size, the cases for the case-base
are drawn sequentially from an initial random ordering of the current fold. At
each case-base size step, five values are computed:

1. Empirical accuracy: The percentage of problems from the (f — 1) test folds
which are solved correctly by the case-base

2. A leave-one-out estimate of the case-base’s accuracy, using all cases in the
current case-base

3. A leave-one-out estimate of the case-base’s accuracy, limited to the same
number of samples as the Monte-Carlo estimate

4. The representativeness coverage value

5. The Monte Carlo estimate of the case-base’s coverage

The comparative results of 3 and 4 are interesting in that they enable com-
paring the effectiveness of leave-one-out and Monte Carlo methods when each
has access to the same amount of information.

Prediction of marginal coverage benefit of next case addition As the
basis for prediction of the marginal coverage benefit, the system attempts to fit
the values produced by each estimation technique to the curve described in Sec-
tion 4. To fit the data to the curve, each set of values estimating the competence
of the case-base is linearized according to the inverse of the previously stated
curve, i.e., by:

_ Y, —
==
Where y are the estimate values. A least-squares fitting is used to fit the
parameters ¢, b, and p to the known case-base sizes x.
The curve fitted to the first s points is used to predict the gain in accuracy
that will result by expanding the case-base to size s + 1.

Prediction of the Number of Cases Required for Maximal Coverage
The fitted curve can also be used to predict the number of cases that will be
required for the reasoner to reach within € of a target accuracy value a. In our
experiments, we use the curve fitted to the estimate values up to s to predict
the case-base size at which the reasoner will reach an accuracy of at least a — e.

For our experiments, we set a to the empirical accuracy value obtained with
the largest case-base size sampled and set € to 5% of a. In practice, a developer
could select any desired target accuracy value less than the maximum.

Predictions are only generated after the “elbow” of the curve has been
crossed. The number of cases needed to reach a is re-predicted after each acqui-
sition step, as with the marginal-benefit task, allowing the estimation methods
to refine the prediction of the needed number of cases after every acquisition.
We expect the accuracy of all prediction methods to improve (on average) with
each case acquired.



100 T T T T T 100 T T T T T
> 80F 80 ,. a"
9
c
]
o 60| —e— Empirical Accuracy L 60 - —e— Empirical Accuracy il
<° =vy= Coverage By Representativeness -v- Coverage By Representativeness
i\‘ - 4~ Monte-Carlo Coverage f - a = Monte-Carlo Coverage
" m . Leave-One-Out (Limited) @ Leave-One-Out (Limited)
2 407 —+— Leave-One-Out (Full) [l 40 —e— Leave-One-Out (Full) I
]
3
O 20 eer T 20 .
— - 4
v—"""‘ﬂ P",*ﬂ_‘_'_,,_,_v’
A - -y
NEEEE anan . ‘ . obzwr-TmT " ‘ . ‘
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Case-Base Size Case-Base Size
(a) Ads (b) MiniBOONE
100 ‘ : : ‘ ‘ 100 ' ‘ ‘ ' '
5. 80 80
9
©
c
=
5 60 60 —+— Empirical Accuracy
<< A —v=- Coverage By Representativeness
& - &= Monte-Carlo Coverage
> = Leave-One-Out (Limited)
a 40 H
=4 40 —+— Leave-One-Out (Full)
b -
2 v —a— Empirical Accuracy = v
8 20 . » =v= Coverage By Representativeness|| 50 e A 1
v - 4= Monte-Carlo Coverage P Rt
v ’ B Leave-One-Out (Limited) A i "
’ —+— Leave-One-Out (Full) -
0 . n T T ; 0 L . . L n
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Case-Base Size Case-Base Size
(c) Adult (d) Car

Fig. 1: Estimates of coverage, accuracy, and empirical accuracy

By comparing predicted values to the empirical results — i.e., the gain in
empirical accuracy by expanding the case-base to size s+ and the size at which
the case-base’s empirical accuracy crossed a — €, we determined the accuracy of
these predictions for each estimation technique at every case-base size evaluated.

5.2 Results

Estimation of Competence Fig. 1 shows the estimation results and empirical
accuracy. We note that the representativeness function is not intended to pro-
duce a result in percent accuracy, so it is only meaningful to compare its shape
to the shapes of the curves for the other methods. We observe that for both
Ads and MiniBOONE, maximal accuracy is approached with a small number
of cases. Leave-one-out and Monte Carlo methods both track actual accuracy
closely after an initial lag and level off quickly. Results with Adult and Car show



more differentiation between the methods, with full leave-one-out providing the
best performance, followed by limited leave-one-out and then Monte Carlo.

The general behavior of the representativeness coverage estimates contrasts
with that of other methods, producing linear or nearly linear growth as a function
of case-base size. This is observation on representativeness estimates is consistent
with results by Massie et al. [2].
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Fig. 2: Empirical accuracy and curves fitted to the estimates of accuracy/cover-
age

Curve Fitting to Accuracy Estimates Because the general form of the
representativeness graph does not match the curve of the other methods, we
consider only the results for the other methods. Fig. 2 shows the results of
fitting the curve to the other methods, which all fit the general pattern, with
some variation compared to empirical accuracy.
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Fig. 3: Error in predicted marginal benefit of case acquisition, by case-base size

Prediction of Marginal Benefit of Acquisition Fig. 3 shows the absolute
error in predicted marginal benefit of case acquisition, for each case-base size
for which predictions are available. (For some case-base sizes, curve fitting was
occasionally unsuccessful for some estimate methods. Missing values in the graph
reflect failed curve-fitting, and the estimate technique incurs no error penalty for
these missed predictions.) Fig. 4 graphs the means of the available error values
for three different regions of case acquisition — early, middle, and late case-base
growth. To compute these values, the entire experiment was split evenly into
three stages and averages computed for each stage, to illustrate the accuracy
of different estimate techniques at each stage. These values illustrate that the
Monte-Carlo integration method generally compares favorably with leave-one-
out for predicting marginal benefit of new case acquisitions. In the Car data
set, the Monte-Carlo technique bests the leave-one-out technique in two out of
three stages when the leave-one-out is limited to the same number of samples as
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Fig.4: Mean error in predicted marginal benefit of case acquisition, for early,
middle, and late stages of case-base growth

Monte-Carlo, but not when leave-one-out is allowed the full range of the case-
base. However, see below for a discussion of the time required to execute each
test.

Prediction of Number of Cases Needed to Achieve Maximal Accuracy
The absolute error in predicting the case-base size required to reach at least
within € of the final experimental accuracy is shown in Fig. 5. These values are
presented as percentages of the final case-base size in the experiment. The mean
absolute error in these predictions is shown for each data set in Fig. 6. The error
in the Monte-Carlo technique is higher here, but it is often possible to produce
a prediction with the Monte-Carlo method when such a prediction is impossible
with the leave-one-out techniques because a curve could not be fitted.
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Fig.5: Error in predicted case-base size to reach within € of final experimental
accuracy, by case-base size

After 120 cases, the respective errors for limited leave-one-out, full leave-
one-out, and Monte Carlo, for Ads are no prediction possible, 19%, and 15%; for
MiniBOONE are no prediction possible, 27%, and 2%; for Adult are 5%, 13%,
and 10%; and for Car are 1038%, 15%, and 18%.

Note on Computation Time The time elapsed to compute the estimates with
each technique is shown in Fig. 7. The Monte-Carlo coverage method required
less time than the representativeness coverage technique or the leave-one-out esti-
mate using the full case-base (although leave-one-out can be faster for very small
case-bases, its time grows more quickly and rapidly overtakes the Monte-Carlo
technique). When leave-one-out testing is limited to the same number of sam-
ples as the Monte-Carlo technique, their elapsed time is comparable; however,
as shown by the previous results, the accuracy of the leave-one-out technique is
generally compromised by doing so.
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Fig. 6: Mean error in predicted case-base size to reach within € final experimental
accuracy

6 Future Work

The previous sections introduce the problem of predicting case-base coverage,
illustrate some central points, and present experiments testing initial methods.
A number of questions remain. One is how best to handle problem streams with
non-uniform distributions, if those distributions are not known a priori. Another
interesting future area is how to develop automated methods for selecting values
such as similarity thresholds for deciding whether to treat a case as covered.

The ability to predict the benefits of case acquisition also raises questions
for the tradeoff between increased case adaptation knowledge and increased case
knowledge and how to provide guidance for CBR system developers deciding
how to divide their effort between augmenting these two knowledge containers.
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Fig. 7: Log time (in seconds) to compute accuracy and competence estimates

7 Conclusion

As the acquisition of seed cases is an important part of the development of
CBR systems, the ability to predict the benefit of such acquisitions could play
a valuable role in guiding case acquisition decisions. Likewise, knowledge of the
benefit trends for case acquisition can aid in predicting the number of cases which
will be needed to achieve a desired level of accuracy and in predicting limits on
the accuracy attainable, aiding predictions of the practicality and effort required
to build a CBR system.

This paper explores methods for predicting coverage growth, including a
Monte Carlo simulation method to enable predictions early in the case acqui-
sition process, and presents tests illustrating the methods potential. This work
provides a first step towards answering the question of how to predict the number
of cases it will be necessary to acquire for a CBR system.
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