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Abstract

As the number of cores increases in modern multiprocessors, it is be-

coming increasingly di�cult to write general purpose applications that

e�ciently utilize this computing power. This remains an open research

problem.

Most applications manipulate structured data. Modern languages and

platforms provide collection frameworks with basic data structures like

lists, hashtables and trees. These data structures have a range of pre-

de�ned operations which include mapping, �ltering or �nding elements.

Such bulk operations traverse the collection and process the elements se-

quentially. Their implementation relies on iterators, which are not appli-

cable to parallel operations due to their sequential nature.

We present an approach to parallelizing collection operations in a

generic way, used to factor out common parallel operations in collection

libraries. Our framework is easy to use and straightforward to extend to

new collections. We show how to implement concrete parallel collections

such as parallel arrays and parallel hash maps, proposing an e�cient so-

lution to parallel hash map construction. Finally, we give benchmarks

showing the performance of parallel collection operations.

1 Introduction

Due to the arrival of new multicore computer architectures, parallel program-
ming is becoming more and more widespread. Fundamental changes in computer
architecture induce changes in the way we write and think about programs.
Multiprocessor programming is more complex than programming uniprocessor
machines and requires not only the understanding of new computational prin-
ciples and algorithms, but also the intricacies of the underlying hardware. This
makes e�cient programs not only harder to produce, but also to maintain.

One programming approach is to implement existing programming abstrac-
tions using parallel algorithms under the hood. This omits low-level details such
as synchronization and load-balancing from the program. Most programming
languages have libraries which provide data structures such as arrays, trees,
hashtables or priority queues. The challenge is to use them in parallel.

Collections come with bulk operations like mapping or traversing elements.
Functional programming encourages the use of prede�ned combinators, which is
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bene�cial to parallel computations � a set of well chosen collection operations can
serve as a programming model. These operations are common to all collections,
making extensions di�cult. In sequential programming common functionality
is abstracted in terms of iterators or a generalized foreach. But, due to their
sequential nature, these are not applicable to parallel computations which split
data and assemble results [26]. This paper describes how parallel operations
can be implemented with two abstractions � splitting and combining.

The approach of augmenting collection classes with a wide range of oper-
ations has been adopted in the Scala collection framework. These operations
strongly resemble those found in functional languages such as Haskell. While
developing Scala parallel collections, these operations had to be parallelized to
make parallel collections compliant with existing collections.

Our parallel collection framework is generic and can be applied to di�erent
data structures. It enhances collections with operations executed in parallel,
giving direct support for programming patterns such as map/reduce or parallel
looping. Some of these operations produce new collections. Unlike other frame-
works proposed so far, our solution adresses parallel construction without the
aid of concurrent data structures. While data structures with concurrent access
are crucial for many areas, we show an approach that avoids synchronization
when constructing data structures in parallel from large datasets.

Our contributions are the following:

1. Our framework is generic in terms of splitter and combiner abstractions,
used to implement a variety of parallel operations, allowing extensions to
new collections with the least amount of boilerplate.

2. We apply our approach to speci�c collections like parallel hash tables. We
do not use concurrent data structures. Instead, we structure the inter-
mediate results and merge them in parallel. Specialized data structures
with e�cient merge operations exist, but pay a price in cache-locality and
memory usage [28] [25]. We show how to merge existing data structures,
allowing parallel construction and retaining the e�ciency of the sequential
access.

3. Our framework has both mutable and immutable (persistent) versions of
each collection with e�cient update operations.

4. We present benchmark results which compare parallel collections to their
sequential variants and existing frameworks. We give benchmark results
which justify the decision of not using concurrent data structures.

5. Our framework relieves the programmer of the burden of synchroniza-
tion and load-balancing. It is implemented as an extension of the Scala
collection framework. Due to the backwards compatibility with regular
collections, existing applications can improve performance on multicore
architectures.
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The paper is organized as follows. Section 2 gives an overview of the Scala
collection framework. Section 3 describes adaptive work stealing. Section 4
describes the design and several concrete parallel collections. Section 5 presents
experimental results. Section 6 shows related work.

2 Scala Collection Framework

Scala is a modern general purpose statically typed programming language for the
JVM which fuses object-oriented and functional programming [6]. Its features of
interest for this paper are higher-order functions and traits. We summarize them
below. These language features are not a prerequisite for parallel collections �
they serve as a syntactic and design convenience. We shortly describe the basic
concepts of the Scala collection framework. Readers familiar with Scala and its
collections may wish to skip this section. Readers interested to learn more are
referred to textbooks on Scala [7].

In Scala, functions are �rst-class objects � they can be assigned to variables
or speci�ed as arguments to other functions. For instance, to declare a function
that increments a number and assign it to a variable:

var add = (n: Int) => n + 1

First-class functions are useful for collection methods. For example, method
find returns the �rst element in the collection that satis�es some predicate. The
following code �nds the �rst even number in the list of integers lst:

lst.find(_ % 2 == 0)

We have used some syntactic sugar above. Since the find method expects
a function from an integer to boolean, the local type inference mechanism will
deduce that the function expects an integer. Since the argument appears only
once in the body of the function, its occurence can be replaced by the placeholder
symbol _, making the code cleaner. In languages like Java without �rst-class
functions, anonymous classes can achieve the same e�ect.

Traits are similar to Java interfaces and may contain abstract methods. They
also allow de�ning concrete methods. Multiple traits can be mixed together
into a class using the with keyword. Here is an example of a trait describing an
iterator:

trait Iterator[T] {
def hasNext: Boolean
def next: T
def foreach[U](f: T => U) = while (hasNext) f(next)

}

Collections form a class hierarchy with the most general collection type
Traversable, which is subclassed by Iterable, and further subclassed by Set,
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Seq and Map, representing sets, sequences and maps, respectively [8] [18]. Col-
lections are in the package scala.collection, with 2 subpackages. Collections
in the mutable package additionally allow in-place modi�cations, while those in
the immutable package cannot be modi�ed � e.g. adding an element to the set
produces a new set. There exist e�cient implementations for most immutable
data structures [17] [19]. Some operations (filter, take or map) produce collec-
tions as results. The requirement in the framework is that these methods return
the same type of the collection as the receiver collection. This could be ensured
by re�ning the return types of all the methods returning collections in every col-
lection class, leading to low maintainability and a large amount of boilerplate.
In order to avoid this, each collection type trait (such as Traversable, Iterable
or Seq) has a corresponding template trait TraversableLiek, IterableLike or
SeqLike with an additional representation type Repr which is instantiated to
the concrete collection type once this template trait is mixed in with a concrete
collection class. All methods returning a collection of the same type as the
collection itself have their return type declared as Repr.

Traversable

Iterable

Set Map Seq

Figure 1: Collection base classes hierarchy

Collections use objects of type Builder. Builder declares a method += for
adding elements to the builder. Its method result is called after all the desired
elements have been added and it returns the collection. After calling result
the contents of the builder are unde�ned and the builder cannot be used again
before calling the clear method. Each collection provides a speci�c builder.

We give a short example program (Fig. 2). Assume we have two sequences
names and surnames. We want to group names starting with 'A' which have
same surnames and print all such names and surnames for which there exists
at most one other name with the same surname. We have omitted how we
obtained the actual sequences of names and surnames as this is not relevant for
the example. The example uses for-comprehensions [7] to iterate the sequence
of pairs of names and surnames obtained by zip and �lter those which start
with 'A'. They are grouped according to the surname (second pair element)
with groupBy. Surname groups with 2 or less names are printed. The sugared
code on the left is translated to a sequence of method calls similar to the one
shown on the right. PLINQ uses a similar approach of translating a query-based
DSL into method calls. Readers interested in exact rules of for-comprehensions
are referred to [7].

We want to run such programs in parallel, but new operations have to be in-
tegrated with the existing collections. Data Parallel Haskell de�nes a new set of
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names for parallel operations [22]. Method calls in existing programs have to be
modi�ed to use corresponding parallel operations. This clutters the namespace
with new names, the new names cannot be used in existing for-comprehensions
and existing programs have to be modi�ed. A di�erent approach is implement-
ing parallel operations in separate classes. We add a method par to regular col-
lections which returns a parallel version of the collection pointing to the same
underlying data. We also add a method seq to parallel collections to switch
back. Furthermore, we de�ne a separate hierarchy of parallel sequences, maps
and sets which inherit corresponding general collection traits GenSeq, GenMap
and GenSet.

val withA = for {
(n, s) <- names zip surnames
if n startsWith "A"

} yield (n, s)
val groups = withA.groupBy(_._2)
for {
(surname, pairs) <- groups
if pairs.size < 3
(name, surname) <- pairs

} println(name, surname)

val groups = names.zip(surnames)
.filter(_._1.startsWith("A"))
.groupBy(_._2)

groups.filter(_._2.size < 3)
.flatMap(_._2)
.foreach(p => println(p))

Figure 2: Example program

3 Adaptive work stealing

When using multiple processors load-balancing techniques are required. In our
case operations are performed on elements of the collection so dividing work
can be done in straightforward way by partitioning the collection into element
subsets. How partitioning is exactly done for an arbitrary collection is described
later in the paper. Classes in collection frameworks often provide users with a
method that performs some operation on every element of the collection � in the
case of Scala collection framework this operation is known as the foreachmethod.
Implementing a parallel foreach method requires that subsets of elements are
assigned to di�erent processors. Collection subsets can be assigned to di�erent
threads � each time a user invokes the foreach method on some collection, a
thread is be created and assigned a subset of elements to work on. However,
thread creation is expensive and can exceed the cost of the collection operation
by several orders of magnitude. For this reason it makes sense to use a pool of
worker threads in sleeping state and avoid thread creation each time a parallel
operation is invoked.

There exists a number of frameworks that provide thread pools. One of
them is the Java Fork/Join Framework [4]. It introduces an abstraction called
a fork/join task which describes a unit of work to be done. This framework
also manages a pool of worker threads, each being assigned a queue of fork/join
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tasks. Each task may spawn new tasks (fork) and later wait for them to �nish
(join). Scala parallel collections use it to e�ciently schedule tasks between
processors.

The simplest way to schedule work between processors is to divide it in �xed-
size chunks and schedule an equal part of these on each processor. The problem
with this approach is twofold. First of all, if one chooses a small number of
chunks, this can result in poor workload-balancing. In particular, at the end
of the computation a processor may remain with a relatively large chunk, and
all other processors may have to wait for it to �nish. On the other hand, large
number of chunks guarantees better granularity, but imposes a high overhead,
since each chunk requires some scheduling resources. One can derive optimal
expressions for optimal sizes of these chunks [1], but these are only appropriate
for a large number of processors [3]. Other approaches include techniques such
as guided self scheduling [2] or factoring [3], which were originally devised for
computers with a large number of processors. An optimal execution schedule
may depend not only on the number of processors and data size, but also on
irregularities in the data and processor availability. Because these circumstances
cannot be anticipated in advance, it makes sense to use adaptive scheduling.
Work is divided to tasks and distributed among processors. Each processor
maintains a task queue. Once a processor completes a task, it dequeues the
next one. If the queue is empty, it tries to steal a task from another processor's
queue. This technique is known as work stealing [11] [5]. We use the Java
fork-join framework to schedule tasks [4]. The fork/join pool abstraction can
be implemented in a number of ways, including work stealing, as it is the case
with Java Fork/Join Framework [4]. For e�ectiveness, work must be partitioned
into tasks that are small enough, which leads to overheads if there are too many
tasks.

Assuming uniform amount of work per element, equally sized tasks guarantee
that the longest idle time is equal to the time to process one task. This happens
if all the processors complete when there is one more task remaining. If the
number of processors is P , the work time for P = 1 is T and the number of
tasks is N , then equation 1 denotes the theoretical speedup in the worst case.
Thread wake-up times, synchronization and other aspects have been omitted
from this idealized analysis.

speedup =
T

(T − T/N)/P + T/N
→

P→∞
N (1)

In practice, there is an overhead with each created task � fewer tasks can
lead to better performance. But this can also lead to worse load-balancing. This
is why we've used exponential task splitting [12]. If a worker thread completes
its work with more tasks in its queue that means other workers are preoccupied
with work of their own, so the worker thread does more work with the next
task. The heuristic is to double the amount of work (Fig. 3). If the worker
thread hasn't got more tasks in its queue, then it steals tasks. The stolen task
is always the biggest task on a queue. There are two points worth mentioning
here. First, stealing tasks is generally more expensive than just popping them
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from the thread's own queue. Second, the fork/join framework allows only the
oldest tasks on the queue to be stolen. The former means the less times stealing
occurs, the better � so we will want to steal bigger tasks. The latter means that
which task gets stolen depends on the order tasks were pushed to the queue
(forked) � one can be selective about it. Stolen tasks are split until reaching
threshold size � the need to steal indicates that other workers may be short on
tasks too. This is illustrated in Fig. 3.

Once a method is invoked on a collection, the collection is split into two
parts. For one of these parts, a task is created and forked. Forking a task
means that the task gets pushed on the processor's task queue. The other part
gets split again in the same manner until a threshold is reached � at that point
that subset of the elements in the collection is operated on sequentially. After
�nishing with one task, the processor pops a task of its queue if it is nonempty.
Since tasks are pushed to the queue, the last (smallest) task pushed will be
the �rst task popped. At any time the processor tries to pop a task, it will be
assigned an amount of work equal to the total work done since it started with
the leaf. On the other hand, if there is a processor without work on its queue,
it will steal from the opposite side of the queue were the �rst pushed task is.
When a processor steals a task, it divides the subset of the collection assigned
to that task until it reaches threshold size of the subset. To summarize � stolen
tasks are divided into exponentially smaller tasks until a threshold is reached
and then handled sequentially starting from the smallest one, while tasks that
came from the processor's own queue are handled sequentially straight away.
An example of exponential splitting with 2 processors is shown on the right in
�gure 3.

The worst case scenario is a worker being assigned the biggest task it pro-
cessed so far when that task is the last remaining. We know this task came
from the processor's own queue (otherwise it would have been split, enabling
the other processors to steal and not be idle). At this point the processor will
continue working for some time TL. We assume input data is uniform, so TL

must be equal to the time spent up to that moment. If the task size is �ne-
grained enough to be divided among P processors, work up to that moment took
(T − TL)/P , so TL = T/(P +1). Total time for P processors is then TP = 2TL.
The equation 2 gives a bound on the worst case speedup, assuming P � N :

speedup =
T

TP
=

P + 1

2
(2)

This estimate says that the execution time is never more than twice as great
as the lower limit, given that the biggest number of tasks generated is N � P .
To ensure this, we de�ne the minimum task size as threshold = max(1, n/8P ),
where n is the number of elements to process.

Two further optimizations have been applied in our implementation. When
splitting a task into two tasks we do not fork both tasks, pushing them both to
the queue only to pop one of them [12]. Instead, we only push one of the tasks
to the queue, and operate on the other one directly. Since pushing and popping
to the queue involves synchronization, this leads to performance improvements.
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Figure 3: Fine-grained and exponential task splitting

Furthermore, Java Fork/Join Framework supports unforking tasks that have
been put to the task queue. After a processor �nishes with one of the tasks, it
tries to unfork the task that was pushed to the queue before the last one. It
does so by invoking the tryUnfork method. This proved to have a signi�cant
impact on performance.

Equation 2 has the consequence that the threshold size must depend on the
number of processors. We de�ne it according to 3, were n is the number of
elements in the collection and P is the number of processors. This means that
the number of tasks produced will be one order of magnitude greater than the
number of processors if no work stealing occurs. We found that this rule of the
thumb works well in practice.

threshold = max(1,
n

8P
) (3)

An important thing to notice here is that depending on the threshold one
can control the maximum number of tasks that get created. Even if the biggest
tasks from each task queue get stolen each time, the execution degenerates to
the balanced computation tree shown in �gure 3. The likelihood of this to
happen has shown to be extremely small in practice and exponential splitting
generates less tasks than dividing the collection into equal parts.

4 Design and implementation

We now describe how Scala parallel collections are implemented. We describe
abstract operations on parallel collections that are needed to implement other
parallel operations. We then classify operations into groups and describe how
operations in di�erent groups are implemented. Finally, we describe implemen-
tations of several concrete classes in our framework. The sequential versions
of these classes are the representatives of the sequential collection framework,
which is why we chose to implement parallel versions of these. The code exam-
ples we show are simpli�ed with respect to actual code for purposes of clarity
and brevity1.

1Variance and bounds annotations have been omitted, as well as implicit parameters. Only

crucial classes in the hierarchy are discussed. In some places, we have simpli�ed the code

by avoiding pattern matching. Complete and correct source code can be obtained at http:
//lampsvn.epfl.ch/svn-repos/scala/scala/trunk/src/library/scala/collection/parallel/.
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4.1 Splitters and combiners

For the bene�ts of easy extension and maintenance we want to de�ne most op-
erations (such as filter or flatMap from Fig. 2) in terms of a few abstractions.
The usual approach is to use an abstract foreach method or iterators. Due to
their sequential nature, they are not applicable to parallel operations. In addi-
tion to element traversal, we need a split operation that returns a non trivial
partition of the elements of the collection. The overhead induced by splitting
the collection should be as small as possible � this in�uences the choice of the
underlying data structure. We de�ne splitters � iterators which have operations
next and hasNext used to traverse. In addition, a splitter has a method split
which returns a sequence of splitters iterating over disjunct subsets of elements.
This allows parallel traversal. The original iterator becomes invalidated after
calling split.

trait Splitter[T] extends Iterator[T] {
def split: Seq[Splitter[T]]

}

trait Combiner[T, Coll] extends Builder[T, Coll] {
def combine(other: Combiner[T, Coll]): Combiner[T, Coll]

}

Method split returns a sequence of splitters such that the union of the
elements they iterate over contains all the elements remaining in the original
splitter. All these splitters are disjoint. Parallel sequences de�ne a more speci�c
splitter PreciseSplitter which inherits Splitter and allows splitting the elements
into subsets of arbitrary sizes, which is required to implement certain sequence
operations.

Some operations produce collections (e.g. filter). Collection parts pro-
duced by di�erent workers must be combined into the �nal result and combiners

abstract this. Type parameter T is the element type, and Coll is the collection
type. Parallel collections provide combiners, just as regular collections provide
builders. Method combine takes another combiner and produces a combiner
containing the union of their elements. Both combiners become invalidated af-
ter its invocation. Combining results from di�erent tasks occurs more than once
during a parallel operation in a tree-like manner (Fig. 3). The combine oper-
ation ideally has complexity O(1) and no more than O(log n), where n is the
number of elements in the combiners.

The parallel collection base trait ParIterable extends the GenIterable trait.
It de�nes operations splitter and newCombiner which return a new splitter
and a new combiner, respectively. Subtraits ParSeq, ParMap and ParSet de�ne
parallel sequences, maps and sets.

class Map[S](f: T => S, s: Splitter[T]) extends Task {
var cb = newCombiner
def split = s.split.map(subspl => new Map[S](f, subspl))
def leaf() = while (s.hasNext) cb += f(s.next)
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def merge(that: Map[S]) = cb = cb.combine(that.cb)
}

Parallel operations are implemented within tasks, corresponding to those
described previously. Tasks de�ne split, merge and leaf. For example, the Map
task is given a mapping function f of type T => S and a splitter s. Tasks are split
to achieve better load balancing � the split typically calls split on the splitter
and maps subsplitters into subtasks. Once the threshold size is reached, leaf is
called, mapping the elements and adding them into a combiner. Results from
di�erent processors are merged hierarchically using the merge method, which
merges combiners. In the computation root cb is evaluated into a collection.
More than 40 collection operations were parallelized and some tasks are more
complex � they handle exceptions, can abort or communicate with other tasks,
splitting and merging them is often more involved, but they follow this pattern.

4.2 Common operations

Scala collections come with a wide range of operations. We divide them into
groups, and show how to implement operations using abstract operations pro-
vided by speci�c collections.

One of the simplest operations found in our collection framework is the
foreach method [8].

def foreach[U](f: T => U): Unit

It takes a higher-order function f and invokes that function on each element.
The return value of f is ignored. The foreach method has two properties.
First is that there are no dependencies between processors working on di�erent
collection subsets. The second is that it returns no value2. In other words,
foreach is trivially parallelizable.

When foreach is invoked, a new task is created and submitted to the
fork/join pool. This task behaves as described in the previous section. To
split the elements of the collection into subsets, it invokes the split method
of its splitter. Note that split may return more than two subiterators (its
return type is Seq[Splitter]). This is more general than what was described
in section 3 as each internal node in the computation tree can have more than
two children, but the concept remains the same. The splitting and forking new
tasks continues until splitter sizes reach a threshold size. At that point splitters
are used to traverse the elements � function f is invoked on elements of each
splitter. Once that is done, the task ends. Another example of a method that
does not return a value is copyToArray.

Most other methods return a result. For instance, the reduce applies a
binary associative operator to elements of the collection to obtain a result:

def reduce[U >: T](op: (U, U) => U): U

2Type Unit in Scala is the equivalent of void in Java and denotes no value.
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It takes a binary function op which takes two elements of the collection and
returns a new element. If the elements of the collection are numbers, reduce
can take a function that adds its arguments. Another example is concatenation
for collections that hold strings or lists. Operator op must be associative, be-
cause the order in which subsets of elements are partitioned and results brought
together is undeterministic. Relative order is preserved � the operator does not
have to be commutative. The reduce operation is implemented like foreach,
but once a task ends, it returns its result to the parent task. Once the parent
task is joined its children in the computation tree, it uses the op to merge the
results. Other methods implemented in a similar manner are aggregate, fold,
count, max, min, sum and product.

So far di�erent collection subsets have been processed independently. For
some methods results obtained by one of the tasks can in�uence the results of
other tasks. One example is the forall method:

def forall(p: T => Boolean): Boolean

This method only returns true if the predicate argument p returns true for
all elements. Sequential collections may take advantage of this fact by ceasing
to traverse the elements once an element for which p returns false is found.
Parallel collections have to communicate that the computation may stop. The
Signalling trait mixed in with each splitter allows tasks using splitters obtained
from the same root splitter to send messages to each other. It contains a �ag
which denotes whether a computation may stop. When the forall encounteres
an element for which the predicate is not satis�ed, it sets the �ag. Other tasks
periodically check the �ag and stop processing elements if it is set. Every splitter
has a reference to an instance of this trait called a context. It provides methods
such as accessing an internal �ag which denotes whether or not the computation
should stop. This internal �ag is implemented as a volatile boolean variable.
When the forall method encounteres an element for which the predicate is not
satis�ed, it sets the �ag. Other tasks periodically check the �ag. Once they
detect it is false, they stop processing the elements and return. This can lead
to performance gains.

Tasks like exists, find, startsWith, endsWith, sameElements and corresponds
use the same mechanism to detect if the computation can end before processing
all the elements. Merging the results of these tasks usually amounts to a logical
operation. One other method we examine here is prefixLength:

def prefixLength(p: T => Boolean): Int

which takes a predicate and returns the number of initial elements in the
sequence that satisfy the predicate. Once some task �nds an element e that
does not satisfy the predicate, not all tasks can stop. Tasks that operate on
parts of the sequence preceding e may still �nd pre�x length to be shorter,
while tasks operating on the following subsequences cannot in�uence the result
and may terminate. To share information about the element's exact position,
Signalling has an integer �ag that can be set by di�erent processors using a
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compare and swap operation. Since changes to the �ag are monotonic, there
is no risk of the ABA problem [16]. What the Signalling trait provides is
an integer �ag and methods to access and modify it atomically. The method
setIndexFlagIfLesser displayed below implements a lock-free decrement of the
atomic �ag using compare-and-set operation provided by Java AtomicInteger
class 3:

def setIndexFlagIfLesser(f: Int) = {
var loop = true
do {
val old = flag.get
if (f >= old) loop = false
else if (flag.CAS(old, f)) loop = false

} while (loop);
}

This method decrements the �ag if the provided value is smaller than the �ag.
If the atomic compare-and-set operation detects that the value has changed in
the meanwhile, the procedure is repeated again. Note that changing the integer
�ag with other methods that the Signalling provides (such as unconditional
set) could potentially lead to the ABA problem [16], where a reference is read
once by one processor, changed once by other processors, then changed back
again. The changes remain undetected for the original processor. However, our
operations limit themselves to using only monotonic changes of the integer �ag
so there is no risk of this.

The prefixLength method uses the atomic integer �ag to decrement it if pos-
sible. This means that if there is some other task which found a preceeding
element not satisfying the predicate, the �ag will not be set. Other tasks can
read this �ag periodically and decide whether or not they should terminate. The
only question remaining is how to merge two task results in the computation
tree. The way this is done is the following � if the left task in the compu-
tation tree returned the pre�x length smaller than the number of elements it
processed, then that is the result. Otherwise, their results are summed together.
Other methods that use integer �ags to relay information include takeWhile,
dropWhile, span, segmentLength, indexWhere and lastIndexWhere.

Many methods have collections as result types. A typical example of these
is the filter method:

def filter(p: T => Boolean): Repr

which returns a collection containing elements for which p holds. Tasks in
the computation tree must merge combiners returned by their subtasks by in-
voking combine. Methods such as map, take, drop, slice, splitAt, zip and
scan have the additional property that the resulting collection size is known
in advance. This information can be used in speci�c collection classes to over-
ride default implementations in order to increase performance. For instance,

3The actual name of the method compareAndSet is not used here for brevity.
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ParArray is optimized to perform these operations by �rst allocating the inter-
nal array and then passing the reference to all the tasks to work on it and modify
it directly, instead of using a combiner. Methods that cannot predict the size
of the resulting collection include flatMap, partialMap, partition, takeWhile,
dropWhile, span and groupBy. Some of these will not just trivially merge the
two combiners produced by the subtasks, but process them further in some
way, such as the span. Method span returns a pair of two collections a and b
� �rst contains the longest pre�x of elements that satisfy a predicate, and the
second contains the rest. Merging results of two tasks T1 and T2 that have com-
biner pairs results (a1, b1) and (a2, b2), respectively, depends on whether the T1

found only elements satisfying the predicate � if so, then the result should be
the pair (a1a2, b2), where concatenation denotes merging combiners. Otherwise,
the result is (a1, b1a2b2).

Parallel sequences described by the trait ParSeq re�ne the return type of
their splitter method � they return objects of type PreciseSplitter. Method
psplit of the Splitter subclass PreciseSplitter for parallel sequences is more
general than split. It allows splitting the sequence into subsequences of arbi-
trary length. Sequences in Scala are collections where each element is assigned
an integer, so splitting produces splitters the concatenation of which traverses
all the elements of the original splitter in order. Some methods rely on this. An
example is:

def zip[S](that: ParSeq[S]): ParSeq[(T, S)]

which returns a sequence composed of corresponding pairs of elements be-
longing to the receiver and that. The regular split method would make im-
plementation of this method quite di�cult, since it only guarantees to split
elements into subsets of any sizes � that may be a parallel sequence of a di�er-
ent type. Di�erent splitters may split into di�erently sized subsequences, so it
is no longer straightforward to determine which are the corresponding elements
of the collections that the leaf tasks should create pairs of � they may reside in
di�erent splitters. The re�ned psplit method allows both sequences to be split
into subsequences of the same size. Other methods that rely on the re�ned split
are startsWith, endsWith, patch, sameElements and corresponds.

4.3 Parallel array

Arrays are mutable sequences � class ParArray stores the elements in an array.
It is a parallel sequence and extends the ParSeq trait. We now show how to
implement splitters and combiners for it.

Splitters. A splitter contains a reference to the array, and two indices for
iteration bounds. Method split divides the iteration range in 2 equal parts,
the second splitter starting where the �rst ends. This makes split an O(1)
method. We only show method split below:

class ArraySplitter[T](a: Array[T], i: Int, until: Int)
extends Splitter[T] {
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def split = Seq(
new ArraySplitter(a, i, (i + until) / 2),
new ArraySplitter(a, (i + until) / 2, until))

}

Combiners do not know the �nal array size (e.g. flatMap), so they construct
the array lazily. They keep a linked list of bu�ers holding elements. A bu�er is
either a dynamic array4 or an unrolled linked list. Method += adds the element
to the last bu�er and combine concatenates the linked lists (an O(1) operation).
Method result allocates the array and executes the Copy task which copies the
chunks into the target array (we omit the complete code here). Copying is thus
parallelized as well.. To copy the elements from the chained arrays into the
resulting array a new set of tasks is created which form another computation
tree. An e�ect known as false sharing may occur in situations where di�erent
processors write to memory locations that are close or overlap and thus cause
overheads in cache coherence protocols [16]. In our case, only a small part of an
array could be falsely shared at the bounds of di�erent chunks and writes from
di�erent chunks go left to right. False sharing is unlikely given that chunk sizes
are evenly distributed.

When the size is not known a priori, evaluation is a two-step process. Inter-
mediate results are stored in chunks, an array is allocated and elements copied
in parallel.

class ArrayCombiner[T] extends Combiner[T, ParArray[T]] {
val chunks = LinkedList[Buffer[T]]() += Buffer[T]()
def +=(elem: T) = chunks.last += elem
def combine(that: ArrayCombiner[T]) = chunks append that.chunks
def result = exec(new Copy(chunks, new Array[T](chunks.fold(0)(_+_.size))))

}

Operations creating parallel arrays that know their sizes in advance (e.g.
map) are overridden for ParArray to allocate an array and work on it directly.
These methods do not use lazy building schemes described above and avoid the
two step process described above.

4.4 Parallel rope

To avoid the copying step altogether, a data structure such as a rope is used to
provide e�cient splitting and concatenation [15]. Ropes are binary trees whose
leaves are arrays of elements. They are used as an immutable sequence which is
a counterpart to the ParArray. Indexing an element, appending or splitting the
rope is O(log n), while concatenation is O(1). However, iterative concatenations
leave the tree unbalanced. Rebalancing can be called selectively.

Splitters are implemented similarly to ParArray splitters. They maintain a
reference to the original rope, and the position in the rope. Splitting divides the

4In Scala, this collection is available in the standard library and called ArrayBu�er. In

Java, for example, it is called an ArrayList.
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rope into several parts, assigning each part to a new splitter. This operation is
bound by the depth of the tree, making it logarithmic.

Combiners may use the append operation for +=, but this results in unbal-
anced ropes [15]. Instead, combiners internally maintain a concatenable list of
array chunks. Method += adds to the last chunk. The rope is constructed at
the end from the chunks using the rebalancing procedure [15].

4.5 Parallel hash table

Associative containers, or maps, are another widely available collection. Asso-
ciative containers implemented as hash tables guarantee O(1) access with high
probability. There is plenty of literature available on concurrent hash tables
[21]. We describe a technique that constructs array-based hash tables in paral-
lel by assigning non-overlapping element subsets to workers, avoiding the need
for synchronization. This technique is applicable both to chained hash tables
(used for ParHashMap) and linear hashing (used for ParHashSet).

Splitters maintain a reference to the hash table and two indices for iteration
range. Splitting divides the range in 2 equal parts. For chained hash tables, a
splitter additionally contains a pointer into the bucket. Since buckets have a
probabilistic bound on lengths, splitting a bucket remains an O(1) operation.

Combiners do not contain hash tables, since combine would require travers-
ing both hash tables and merging corresponding buckets, thus having linear
complexity. We want to ensure that copying occurs as least as possible and that
it can be parallelized.

In the case of a ParArray, we parallelize the copying step by assigning dif-
ferent ranges to di�erent processes. We want to achieve the same with parallel
hash maps, to avoid synchronization. Given a set of elements, we want to con-
struct a hash table using multiple processors. Subsets of elements will have to
be assigned to di�erent processors and will have to occupy a contiguous block
of memory to avoid false sharing. To achieve this, elements are partitioned by
their hashcode pre�xes, which divide the table into logical blocks. This will
ensure that they end up in di�erent blocks, independently of the �nal table size.
The resulting table is �lled in parallel. We know describe this basic intuition in
more detail.

class TableCombiner[K](ttk: Int = 32) extends Combiner[K, ParHashTable[K]] {
val buckets = new Array[Unrolled[K]](ttk)
def +=(elem: K) = buckets(elem.hashCode & (ttk - 1)) += elem
def combine(that: TableCombiner[K]) = for (i <- 0 until ttk)
buckets(i) append that.buckets(i)

private def total = buckets.fold(0)(_ + _.size)
def result = exec(new Fill(buckets, new Array[K](nextPower2(total / lf)))

}

Combiners keep an array of 2k buckets, where k is a constant such that 2k

is greater than the number of processors to ensure good load balancing (from
experiments, k = 5 works well for up to 8 processors). Buckets are unrolled
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Figure 4: Hash code mapping

linked lists. Method += computes the element hashcode and adds it to the
bucket indexed by the k-bit hashcode pre�x. Unrolled list tail insertion amounts
to incrementing an index and storing an element into an array in most cases,
occasionally allocating a new node. We used n = 32 for the node size. Method
combine concatenates all the unrolled lists � for a �xed 2k, this is an O(1)
operation.

Once the �rst step of the computation completes and reaches the root of the
task tree, we have all the elements that will appear in the �nal hash map grouped
into buckets according to their hashcode pre�x. Method result is called at this
point � the total number of elements total is obtained from bucket sizes. The
required table size is computed by dividing total with the load factor lf and
rounding to the next power of 2. The table is allocated and the Fill task is
run, which can be split in up to 2k subtasks, each responsible for one bucket.
It stores the elements from di�erent buckets into the hash table. Assume table
size is sz = 2m. The position in the table corresponds to the �rst m bits of
the hashcode. The �rst k bits denote the index of the table block, and the
remaining m− k bits denote the position within that block (Fig. 4). Elements
of a bucket have their �rst k bits the same and are all added to the same block
� writes to di�erent blocks are not synchronized. With linear hashing, elements
occasionally �spill� to the next block. The Fill task records and inserts them
into the next block in the merging step. The average number of spills is equal
to average collision lengths � a few elements.

4.6 Parallel hash trie

A hash trie is an immutable map or set implementation with e�cient element
lookups and updates (O(log32 n)) [19]. Updates do not modify existing tries, but
create new versions which share parts of the data structure. Hash tries consist
of a root table of 2k elements. Adding an element computes the hash code and
takes the �rst k bits for the table index i. In the case of a collision a new array
is allocated and stored into entry i. Colliding elements are stored in the new
array using the next k bits. This is repeated as long as there are collisions. The
resulting data structure forms very shallow tree, so only log32 n indirections are
required to �nd the correct element. To ensure low space consumption, each
node has a 2k bitmap to index its table (typically k = 5) [19]. We found hash
tries to be comparable in performance to hash tables, providing faster iteration
and somewhat slower construction and lookup, additionally being a persistent
data structure. Hash tries have low space overheads and good cache-locality.
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Splitters maintain a reference to the hash trie data structure. Method split
divides the root table into 2 new root tables, assigning each to a new splitter
(an O(1) operation). This is shown in �gure 5. Since parallel hash tries are used
to implement maps and sets, and not sequences, there is no need to implement
the psplit method.

Combiners contain hash tries. Method combine could merge the hash tries
(�gure 5). For simplicity, the hash trie root nodes are shown to contain only
�ve entries. The elements in the root table are copied from either of the root
tables, unless there is a collision, as with subtries B and E which are recursively
merged. This technique turns out to be more e�cient than sequentially building
a trie � we observed speedups of up to 6 times. We compare the performance
recursive merging against hash table merging and sequentially building tries
in �gure 6. Recursive merging can also be done in parallel. Whenever two
subtries collide, we can spawn a new task to merge the colliding tries. Elements
in the two colliding tries have the property that they all share the common
hashcode pre�x, meaning they will all end up in the same subtrie � the merge
can be done completely independently of merging the rest of the tries. Parallel
recursive merging is thus applicable only if the subtries merged in a di�erent
task are large enough. A problem that still remains is that we do more work
than is actually necessary by merging more than once � a single element may be
copied more than once while doing 2 subsequent recursive merges. Backed by
experimental evidence presented in Fig. 6, we postulate that due to having to
copy single elements more than once, although recursive merging requires less
work than sequential construction, it still scales linearly with the trie size.

In a typical invocation of a parallel operation, combine method is invoked
more than once (see �gure 3), so invoking a recursive merge would still yield
an unacceptable performance. This is why we use the two-step approach shown
for hash tables, which results in better performance. Combiners maintain 2k

unrolled lists, holding elements with the same k-bit hashcode pre�xes (k = 5).
The di�erence is in the method result, which evaluates root subtries instead
of �lling table blocks. Each unrolled linked lists is a list of concatenated array
chunks which are more space-e�cient, cache-local and less expensive to add
elements to. Adding an element amounts to computing its hashcode, taking its
k bit pre�x to �nd the appropriate bucket and appending it to the end � an
array index is incremented and the element is stored in most cases. Occasionally,
when an array chunk gets full, a new array chunk is allocated. To be able to
append elements we keep a pointer to the end of the list. In general, unrolled
lists have the downside that indexing an element in the middle has complexity
O(n/m) where n is the number of elements in the list and m is the chunk size,
but this is not a problem in our case since we never index an element - we only
traverse all of the elements once.

Combiners implement the combine method by simply going through all the
buckets and concatenating the unrolled linked lists that represent the buckets,
which is a constant time operation. Once the root combiner is produced the
resulting hash trie is constructed in parallel � each processor takes a bucket and
constructs subtrie sequentially, then stores it in the root array. We found this
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technique to be particularly e�ective, since adding elements to unrolled lists is
very e�cient and avoids merging hash tries multiple times. Another advantage
that we observed in benchmarks is that each of the subtries being constructed is
on average one level less deep. Processor working on the subtrie will work only
on a subset of all the elements and will never touch subtries of other processors.
This means it will have to traverse one level less to construct the hash trie.

4.7 Parallel range

Most imperative languages implement loops using for -statements. Object-oriented
languages such as Java and C# also provide a foreach statement to traverse the
elements of a collection. In Scala, for-statements like:

for (elem <- list) process(elem)

are translated into a call to the foreach method of the object list, which
does not necessarily have to be a collection:

list.foreach(elem => process(elem))

For-statements in Scala are much more expressive than this and also al-
low �ltering, mapping and pattern matching the elements. See [7] for a more
complete list of for-comprehensions.

To traverse over numbers like with ordinary for-loops, one must create an
instance of the Range class, an immutable collection which contains information
about the number range. The only data Range class has stored in memory
are the lower and upper bound, and the traversal step. Scala provides implicit
conversions which allow a more convenient syntax to create a range and traverse
it:

for (i <- 0 until 100) process(i)

The ParRange collection is used to parallelize for-loops. To perform the loop
in parallel, the user of can write:

for (i <- (0 until 100).par) process(i)

The ParRange is an immutable collection which can only contain numbers
within certain bounds and with certain steps. It cannot contain an arbitrary
collection of integers like other sequences, so it does not implement a combiner.
It only implements the split which simply splits the range iterator into two
ranges, one containing the integers in the �rst half of the range and the other
integers in the second. The re�ned split method is implemented in a similar
fashion.
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4.8 Parallel views

Assume we increment numbers in a collection c, take one half and sum positives:

c.map(_ + 1).take(c.size / 2).filter(_ > 0).reduce(_ + _)

Each operation produces an intermediate collection. To avoid this we provide
views. For example, a Filtered view traverses elements satisfying a predicate,
while a Mapped view maps elements before traversing them. Views can be stacked
� each view points to its parent. Method force evaluates the view stack to a
collection. In the example, calling view and the other methods on c stacks views
until calling reduce. Reducing traverses the view to produce a concrete result.
Splitters call split on their parents and wrap the subsplitters. The framework
provides a way to switch between strict and lazy on one axis (view and force),
and sequential and parallel on the other (par and seq), as illustrated in Fig. 7.

Parallel views reimplement behaviour of regular views in the Scala collec-
tion framework to do these non-stacking operations in parallel. They do so by
extending the ParIterable trait and having their splitters implement the split
method. Since their tranformer methods return views rather than collections,
they do not implement combiners nor their combine method. Method force is
also reimplemented to evaluate the collection represented by the view in parallel.

Every view iterator has a reference to the parent iterator it was created from.
It's next and hasNext methods are implemented in terms of its parent iterator.
For example, the iterator of the Mapped view calls the next method of the parent
iterator to obtain an element and applies a user-de�ned function to it before
returning. Splitters have to implement the split method in addition. We now
give a summary of how to implement the split method in terms of the parent
splitter for di�erent view types.
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The Mapped splitters are trivial � they start by splitting the parent splitter
and then using the resulting splitters to produce a mapped splitter from each
of them. Taken view splitters are parametrized by a parameter n which denotes
how many initial elements of the parent collection are seen by the view. They
split the parent into subsplitters, taking initial subsplitters that have the total
of n or less elements. The next splitter is wrapped to return only the elements
up to n, and the rest are ignored. Sliced and Dropped splitters are implemented
in a similar manner. Appended views give an abstract view over the elements
of two appended collections � their splitters implement split by simply return-
ing two splitters, each traversing one of these two collections. Patched splitters
are implemented in a similar manner. Zipped view splitters iterate over corre-
sponding pairs of the elements from two collections and are split by splitting
the parent splitters and zipping the subsplitters together.

parallelsequential

lazy

strict
par

par

seq

seq

force force

view view

Figure 7: Strict-lazy and parallel-sequential conversions

4.9 Integration with the Scala collection framework

In terms of inheritance, parallel collections mirror the regular collection frame-
work with corresponding traits. Parallel collection base trait ParIterable has
descendants such as the ParSeq, ParSet and ParMap traits. These traits exist
in the root parallel collection package scala.collection.parallel, and both in
its mutable and immutable subpackages.

Although parallel collections should be integrated as tightly as possible with
sequential collections to allow straightforward substitution of sequential collec-
tions, in a language which is not referentially transparent, a parallel collection
should not be a subtype of a sequential collection. Programs written in lan-
guages that support side-e�ects within closures may in general (and in most
cases will) produce di�erent results depending on the order of elements the
closure is invoked with. Consider the following example:

var num = -1
var set = false
for (x <- (0 until 100).par) if (CAS(set, false, true)) {

num = x
}

Recall that this gets translated into the following:
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var num = -1
var set = false
(0 until 100).par.foreach { x =>

if (CAS(set, false, true)) {
num = x

}
}

The closure used within the for-comprehension, that is the foreach method,
has a potential side-e�ect of writing to the variables num and set which are in
scope. Using a sequential range in the for comprehension would always end the
program so that num is set to 0. With a parallel collection, this is not so, as
some processor may have started to concurrently process a di�erent part of the
range, setting num to something else.

One might assume that this di�erence is only crucial for parallel sequences
and collections which guarantee traversal order, but side-e�ects pose a problem
more generally � in a parallel collection closures are not only invoked out of
order, but also concurrently by di�erent processors, so their side-e�ects should
be synchronized, as shown by the following example:

val ab = ArrayBuffer()
for (x <- (0 until 100).par) ab += x

As the array bu�er class is not synchronized and it's accessed by di�erent
processors concurrently, this program may produce an array bu�er in an invalid
state.

Assuming that sequential collections guarantee one-at-a-time access, refer-
ential transparency is the necessary condition for allowing a parallel collection
to be a subtype of a sequential collection and preserving correctness for all
programs. Since Scala is not referentially transparent and allows side-e�ects,
it follows that the program using a sequential collection may produce di�er-
ent results than the same program using a parallel collection at some point.
If parallel collection types are subtypes of sequential collections, then this vio-
lates the Liskov substitution principle, as clients having references to sequential
collections might not be able to use side-e�ects in closures freely.

For these reasons, in order to be able to have a reference to a collection which
may be either sequential or parallel, there has to exist a common supertype of
both collection types. We implemented a general collection class hierarchy com-
posed of GenTraversable, GenIterable, GenSeq, GenMap and GenSet traits which
don't guarantee in-order or one-at-a-time traversal. Corresponding sequential or
parallel traits inherit from these. For example, a ParSeq and Seq are both sub-
types of a general sequence GenSeq, but they are in no inheritance relationship
with respect to each other.

The new hierarchy is shown in Fig. 8, with maps and sets trait omitted for
clarity.

Clients can now refer to sequential sequences using the Seq trait like before
and to parallel sequences using the ParSeq trait. To refer to a sequence whose
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implementation may be either parallel or sequential, clients can use the GenSeq
trait. Note that this approach preserves source compatibility with existing code
� the meaning of all existing programs remains the same.

The general collection traits provide the same methods as ordinary collec-
tions, but with fewer guarantees. Additionally, general collection traits intro-
duce methods seq and par which return the corresponding sequential or parallel
version of the collection, respectively.

Parallel collections require combiners de�ned by trait Combiner which ex-
tends the Builder trait. When used by regular collection methods, combiners
have the same behaviour as normal builders do. Furthermore, as a counterpart
to builder factories of type CanBuildFrom [8] [18], parallel collections have com-
biner factories of type CanCombineFrom which extends it, but returns combiners
instead of ordinary builders. A combiner factory can be used anywhere in place
of a builder factory.

5 Experimental results

Parallel collections were benchmarked and compared to both sequential ver-
sions and other currently available parallel collections, such as Doug Lea's
extra166.ParallelArray for Java. We show here that their performance improves
on that of regular collections and that it is comparable to di�erent parallel
collection implementations.

To measure performance, we follow established measurement methodolo-
gies [27]. Tests were done on a 2.8 GHz 4 Dual-core AMD Opteron and a
2.66 GHz Quad-core Intel i7. We �rst compare two JVM concurrent maps
� ConcurrentHashMap and ConcurrentSkipListMap (both from the standard li-
brary) to justify our decision of avoiding concurrent containers. A total of n
elements are inserted. Insertion is divided between p processors. This process is
repeated over a sequence of 2000 runs on a single JVM invocation and the aver-
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age time is recorded. We compare against sequentially inserting n elements into
a java.util.HashMap. The results are shown in �gure 9 (no. processors vs. time
in milliseconds), where a performance drop due to contention is observable. Con-
current data structures are general purpose and pay a performance penalty for
this generality. Parallel hash tables are compared against java.util.HashMap
in �gure 10 I (mapping with a few arithmetic operations) and L (the identity
function) � when no time is spent processing an element and entire time spent
creating the table (L), hash maps are faster for 1 processor. For 2 or more, the
parallel construction is faster.

Microbenchmarks A-L shown in Fig. 10 use inexpensive operators (e.g
foreach writes to an array, map does a few arithmetic operations and the find
predicate does a comparison). Good performance for �ne-grained operators
compared to which processing overhead is high means they work well for com-
putationally expensive operators (shown in larger benchmarks M-O). Parallel
array is compared against Doug Lea's extra166y.ParallelArray for Java.

Larger benchmarks5 are shown at the end. The Coder benchmark brute-force
searches a set of all sentences of english words for a given sequence of digits,
where each digit corresponds to letters on a phone keypad (e.g. '2' represents
'A', 'B' and 'C'; '43' can be decoded as 'if' or 'he'). It was run on a 29 digit
sequence and around 80 thousand words. The Grouping benchmark loads the
words of the dictionary and groups words which have the same digit sequence.

6 Related work

General purpose programming languages and platforms provide various forms
of parallel programming support. Most have multithreading support. However,
starting a thread can be computationally expensive and high-level primitives for
parallel computing are desired. We give a short overview of the related work in

5Complete source code is available at: http://lampsvn.epfl.ch/svn-repos/scala/scala/
trunk/
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the area of data parallel frameworks, which is by no means comprehensive.
There exists a body of work on data structures which allow access from

several threads, either through locking or wait-free synchronization primitives
[21]. They provide atomic operations such as insertion or lookup. Operations
are guaranteed to be ordered, paying a price in performance � ordering is not
always required for bulk parallel executions [26].

.NET langugages support patterns such as parallel looping, aggregations
and the map/reduce pattern [9]. .NET Parallel LINQ provides parallelized
implementations query operators. On the JVM, one example of a data structure
with parallel operations is the Java ParallelArray [10], an e�cient parallel array
implementation. Its operations rely on the underlying array representation,
which makes them e�cient, but also inapplicable to other data representations.
Data Parallel Haskell has a parallel array implementation with bulk operations
[22].

Some languages recognized the need for catenable data structures. Fortress
introduces conc-lists, tree-like lists with e�cient concatenation [25] [28] [13] [14].
We generalize them to maps and sets, and both mutable and immutable data
structures.

Intel TBB for C++ bases parallel traversal on iterators with splitting and
uses concurrent containers. Operations on concurrent containers are slower than
their sequential counterparts [23]. STAPL for C++ has a similar approach �
they provide thread-safe concurrent objects and iterators that can be split [24].
The STAPL project also implements distributed containers. Data structure
construction is achieved by concurrent insertion, which requires synchronization.

7 Conclusion

We provided parallel implementations for a wide range of operations found in
the Scala collection library. We did so by introducing two divide and conquer
abstractions called splitters and combiners needed to implement most opera-
tions.

In the future, we plan to implement bulk operations on concurrent con-
tainers. Currently, parallel arrays hold boxed objects instead of primitive in-
tegers and �oats, which causes boxing overheads and keeps objects distributed
throughout the heap, leading to cache misses. We plan to apply specialization to
array-based data structures in order to achieve better performance for primitive
types [20].
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