
Work Stealing for Multi-core HPC Clusters

Kaushik Ravichandran, Sangho Lee, and Santosh Pande

College of Computing, Georgia Institute of Technology, USA
kaushikr@gatech.edu, slee431@gatech.edu, santosh@cc.gatech.edu

Abstract. Today a significant fraction of HPC clusters are built from
multi-core machines connected via a high speed interconnect, hence, they
have a mix of shared memory and distributed memory. Work stealing al-
gorithms are currently designed for either a shared memory architecture
or for a distributed memory architecture and are extended to work on
these multi-core clusters by assuming a single underlying architecture.
However, as the number of cores in each node increase, the differences
between a shared memory architecture and a distributed memory archi-
tecture become more acute. Current work stealing approaches are not
suitable for multi-core clusters due to the dichotomy of the underlying
architecture. We combine the best aspects of both the current approaches
in to a new algorithm. Our algorithm allows for more efficient execution
of large-scale HPC applications, such as UTS, on clusters which have
large multi-cores. As the number of cores per node increase, which is
inevitable given today’s processor trends, such an approach is crucial.

Keywords: dynamic load balancing, unbalanced tree search, multi-core.

1 Introduction

Today, a large portion of HPC systems are built from multi-core machines con-
nected through high speed interconnects such as InfiniBand. This kind of archi-
tecture is seen in systems in the Top 500 list such as Jaguar (Oak Ridge National
Laboratory), Hopper (NERSC) and Kraken (National Institute of Computa-
tional Sciences). These systems have two distinct kinds of parallelism: intra-node
and inter-node. Intra-node parallelism (through shared memory) is due to the
existence of multiple cores in a single node, while inter-node parallelism (through
distributed memory) is due to the presence of a large number of such nodes. The
number of cores per node, and hence intra-node parallelism, is increasing as
larger and larger multi-cores become commonplace.

Work stealing algorithms are currently designed for either a shared mem-
ory architecture or for a distributed memory architecture and are extended to
work on these multi-core clusters in a straight forward manner. The distributed
memory implementations extend naturally into a multi-core cluster environment
by running separate tasks on different cores. Shared memory implementations
are typically extended by using PGAS (Partitioned Global Address Space) lan-
guages such as UPC (Berkley Unified Parallel C). PGAS languages present a

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 205–217, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

206 K. Ravichandran, S. Lee, and S. Pande

unified address space over the underlying distributed memory allowing the algo-
rithm to scale across the cluster. Termination detection algorithms are similarly
extended.

However, as the number of cores in each node increase (due to larger multi-
cores), the differences between a shared memory architecture and a distributed
memory architecture become more acute. Current approaches which extend a
completely shared memory paradigm or a distributed memory paradigm to a
cluster can be improved. Combining the best aspects of both approaches results
in a new algorithm which allows for a more efficient execution of large-scale
HPC applications, like UTS, which need efficient dynamic load balancing. As the
number of cores per node increase, which is inevitable given today’s processor
trends, such an approach is crucial.

The UTS (Unbalanced Tree Benchmark) [14] is representative of the class
of applications which process highly unbalanced workloads. We demonstrate
the effectiveness of our approach on the UTS benchmark and report significant
speedups on large multi-core clusters over current shared memory implementa-
tions and distributed memory implementations.

2 Work Stealing

A fundamental problem in achieving maximum performance from HPC applica-
tions is that of dynamic load balancing. Many applications exhibit a large vari-
ability in the amount of work they dynamically generate. This variability gives
rise to an imbalance in the parallel execution of these applications. Variability
could be caused by many reasons. For example, the random nature of input data
could cause imbalance between the workloads of different parallel processing el-
ements. The UTS (Unbalanced Tree Search) benchmark [14], is representative
of the class of parallel applications which require dynamic load balancing. The
benchmark has been carefully designed to be the optimal adversary to load bal-
ancing strategies. In this paper we shall focus on the UTS benchmark to test
our algorithm, both because of its popularity and because of its ability to stress
dynamic load balancing algorithms effectively.

Load balancing can be broadly divided into two categories: static and dy-
namic. Static approaches have been well studied [16,12]. These approaches, how-
ever, are not suitable for the kind of applications we are concerned about due
to the unpredictability of the problem space and dependence on the input pa-
rameters and dataset. Dynamic load balancing algorithms have been proposed
to address the types of applications we are looking at.

Many dynamic load balancing algorithms have been proposed. Two popular
algorithms used on both architectures (shared as well as distributed memory)
are work sharing and work stealing. Work sharing involves balancing of the
workload using a globally shared task queue. Work stealing on the other hand
follows a completely distributed approach where idle processing elements take
on the onus of finding work by looking around the system and has been found
to be more efficient [6]. Its effectiveness lies in the fact that it puts a majority
of the overhead on idle processors, minimizing the load on busy processors and

Work Stealing for Multi-core HPC Clusters 207

minimizing the need for global information. Work stealing has been proven to
be optimal for a large class of problems and has tight space bounds [2], thus,
making it the method of choice for large scale distributed clusters.

Termination detection is a critical postlude to work stealing algorithms. This
step allows programs to recognize when there is no more work in the system. As
we have described before, in the work stealing method, once a processing element
becomes idle, it looks around for work that it can steal from other processing
elements. Indeed, it is possible that all processing elements have completed their
work and are simply looking around for more work endlessly. The process of
detecting such a system state and ending the execution is termination detection.
Termination detection algorithms, akin to work stealing algorithms have different
implementations on shared memory architectures and on distributed memory
architectures.

Shared memory architecture. On shared memory architectures, work steal-
ing has been used to effectively parallelize unbalanced workloads. Implementa-
tions such as Cilk [9], have popularized work stealing by implementing it in the
runtime system. Typically, each processing element maintains a double ended
queue in shared memory. When it needs to process a task, it takes a task off
the front of its queue and processes it. Any new tasks are added to the front
of the queue. When a processing element completes all the tasks in its queue,
it becomes idle and begins work stealing. It looks for other processing elements
which have excess tasks in their task queues. Once it locates such a queue, it
takes tasks from the back of that queue and pushes it onto its own. Of course,
the implementation needs to be highly tuned to reduce excess locking overhead.
Methods like ”THE” [9] eliminate a majority of the situations in which locks are
needed. Such methods split the queues into private and public sections, elimi-
nating the need for locking in the private sections while still requiring locking in
the public section.

Termination detection in shared memory architectures can be achieved us-
ing special kinds of barriers, called cancellable barriers which allow threads to
”check-in” and ”check out”. These barriers are especially suited for shared mem-
ory work stealing algorithms.

Attempts have been made to extend such work stealing algorithms to HPC
clusters which contain both shared memory and distributed memory [6]. To
extend these algorithms to a cluster, an abstraction is needed to apply a shared
memory paradigm over the entire cluster. Partitioned Global Address Space
(PGAS) languages allow precisely this. These languages allow programmers to
write code, assuming a shared memory architecture and the PGAS programming
model takes care of the rest. It implicitly converts any cross machine memory
accesses into messages using interfaces such as MPI.

While this approach leads to a correct implementation, it is not necessarily
efficient, for several reasons. The cross machine memory accesses that are con-
verted into messages cause increased contention, runtime overhead and latency.
These overheads can be minimized to some extent by careful tuning of the mes-
sages that are sent by using one sided reads and writes and RDMA (Remote

208 K. Ravichandran, S. Lee, and S. Pande

Direct Memory Access). However, using one sided reads and writes is a much
more complicated affair and involves a lot more effort. A more serious disadvan-
tage of using RDMA is that often, the underlying system needs to dedicate one
core from each SMP to address these accesses transparently and efficiently [6].

Distributed memory architecture. Work stealing algorithms for distributed
memory architectures differ from shared memory architectures for several rea-
sons. For one, on shared memory architectures, synchronization primitives,
caching and coherence protocols are often taken for granted as the underly-
ing hardware takes care of these issues. Implementing these global operations
in a distributed memory architecture often results in high runtime overheads
and latencies. Another reason is that some algorithms simply do not scale. For
example, it is no longer feasible to allow different tasks to spin on a common
memory location, due to the absence of shared memory. Attempting to do so,
would introduce a terrible amount of contention at certain nodes due to mes-
saging. Clearly, different algorithms are needed which are suited for distributed
memory architectures.

Solutions which use direct management of communication operations using
explicit message passing have been shown to be viable [1]. Different algorithms
such as Dijikstra’s Termination Detection algorithm [4] are more suitable than
cancellable barriers for termination detection in a distributed setting.

Practical solutions are typically designed assuming a completely distributed
memory, using MPI or a similar message passing interface. A typical multi-core
HPC cluster, however, has both shared and distributed memory. It is extremely
straight forward to extend the implementation to an entire multi-core cluster
by simply running different tasks on different cores, irrespective of whether or
not they share any common memory. This is not an optimal solution, since
communicating via MPI is certainly slower than through shared memory when
it exists. However, this solution is still correct and allows for the execution of
these work stealing algorithms across an entire cluster.

Our approach. Though extending the shared memory paradigm or the dis-
tributed memory paradigm to an entire multi-core cluster maybe correct, it is
not necessarily efficient. As multi-core machines become more and more preva-
lent it is crucial to recognize the differences between shared memory architec-
tures and distributed memory architectures. Our approach uses aspects from
both methodologies to come up with a new more efficient algorithm.

Our approach uses two different load balancing strategies. One inside a multi-
core node and one across multi-core nodes. For intra-node load balancing we
use a popular algorithm which uses lockless task queues in shared memory and
cancellable barriers for termination detection, while for inter-node load balanc-
ing we switch over to a pure MPI implementation and a termination detection
algorithm similar to Dijikstra’s. We show that such an approach is more efficient
than previous approaches when there are a larger number of cores per node.

The ideas behind our approach can also be used to improve previous imple-
mentations. We would like to stress, that our ideas are orthogonal to previous
approaches and they too can benefit from our techniques.

Work Stealing for Multi-core HPC Clusters 209

3 Design for Our Approach

3.1 Shared Memory Design

Our approach uses a popular algorithm for work stealing in shared memory
multi-cores [6]. Split queues are used to alleviate locking overhead and a can-
cellable barrier is used to detect termination. Each core runs a single thread
which is responsible for executing tasks.

The task queues are accessed very frequently and hence operations on them
must provide efficient access. Each thread has one local task queue that it uses
to maintain its list of tasks. When a thread generates more tasks and needs to
add it to its local task queue, it enqueues the tasks at the front of the queue.
When a thread needs to remove tasks from the queue, it dequeues them, again,
from the front of the queue. When threads become idle, they search other task
queues for work. If they find work in some other task queue, they will steal it
by dequeue-ing it from the back of the queue.

First and foremost, this task queue should provide efficient access to the local
thread, since it is on the critical path of execution. Any delays on task queue op-
erations will directly be reflected in the execution time of the application. Other
threads also need access to the task queue to enable work stealing. Concurrent
access can be achieved by using a simple locking mechanism on the task queue.
This would however add locking overhead for the local thread as well with every
enqueue and dequeue operation. To alleviate the locking overhead we can use a
single queue, but divide it into two distinct regions: a local region and a global
region. The local region would remain lock free for access by the local thread
and the global region would be synchronized through a lock. This is called a
split queue (Figure 1).

Fig. 1. Split queues alleviate lock-
ing overhead

Split queues need additional operations on
top of the regular enqueue and dequeue oper-
ations to function properly. A thread contin-
uously inserts tasks into the local portion of
the task queue. If there is a sufficient amount
of work in the local region it can choose to ex-
pose the excess work into the global region of
the task queue. This operation involves invok-
ing the lock of the global region of the queue.
This operation of moving work into the global
region of the queue is called the release operation. The release operations must
be performed periodically ensuring enough work for other threads to steal. Corre-
spondingly, when work in the local region of the split queue has been completed,
it is then necessary to get some of the work from the global region of the queue
(if it exists) back into the local part of the queue. This can be accomplished by
simply moving the boundary between the local and global regions of the queue,
further towards the global region. This operation must also be locked and is
known as the reacquire operation. The reacquire operation is only performed
when the work in the local portion is exhausted. Using the release and reacquire
operations, locking is minimized to the global portions of the queue and the

210 K. Ravichandran, S. Lee, and S. Pande

accesses to the local region are lock free, except for the release and reacquire
operations. This contributes minimally to the critical path overhead.

This kind of work stealing follows the depth-first work and breadth-first steal
technique [2] that is used by many implementations including Cilk [9]. Our shared
memory design is implemented in OpenMP.

Termination detection. Termination detection is achieved using a cancellable
barrier. Cancellable barriers allow threads to check-in and also check-out when
more work has been released into the system. Once a thread finds that the global
regions are empty, it checks into the cancellable barrier. Indeed, this does not
mean that there is no work in the system, it simply means that there is no
work in the global region of any of the task queues. Other threads could be
processing tasks and they could have tasks in their local regions which have not
yet been released into the global region. Barriers can be canceled by another
thread when it releases work into the system by performing a release operation.
This kind of cancellable barrier does not scale across nodes in a cluster because
of its centralized nature.

3.2 Distributed Memory Design

So far we have described the design of a shared memory implementation of
work stealing. To expand this across the cluster we need a way to steal across
nodes. We could have used a programming model like PGAS to convert any
shared memory steals across nodes into messages sent through the underlying
interconnect. However, due to remote locking latencies and overheads of the
PGAS language and runtime, we found that co-ordinating cross node steals
through MPI was much more efficient.

Hence, MPI is used to achieve load balancing across nodes. MPI provides for
efficient message passing which is under our control rather than a PGAS language
[14,7]. One important consideration which guided our design was that stealing
from a thread in the same node is many times faster than stealing from another
node in the cluster (in our experiments, about 50 times faster). Hence, we always
perform work stealing inside a node before we cross the node boundary. This
important guiding principle can be applied to any work stealing algorithm for
improved performance.

One approach to enable work stealing across nodes would be to allow individ-
ual threads to send MPI steal requests to different nodes when they detect that
there is no more work in the local node. This design requires a multi-threaded
implementation of MPI and introduces locking overheads in the MPI runtime.
To avoid any locking overhead and to maximize portability of our implementa-
tion we needed to use a single threaded implementation. This led us to choose a
design in which we designate one thread per node to be in charge of cross node
MPI steal requests. This designated thread will send cross node steal requests
only when all the work on the local node has completed since stealing intra-node
is much more quick than stealing across nodes. The designated thread (hereafter
referred to as thread0) is also in charge of responding to steal requests from other
nodes as well as termination detection.

Work Stealing for Multi-core HPC Clusters 211

thread0 will begin sending out cross node steals when it has exhausted all
the tasks on its task queue and when all the other threads have checked into
the cancellable barrier. We provide a special check-in mechanism for thread0 so
that it can ”peek” into the current state of the barrier and wait till all the other
threads have arrived at the barrier. By using this ”peek” check-in,thread0, can
determine when all the other threads have finished. If some thread generates
work or if thread0 finds work, the barrier gets canceled and all the other threads
resume work stealing.

thread0 of a given node will choose a victim and send out a steal request to
that victim. The thread0 of every node processes tasks from its task queue just
like every other thread, but in addition, it also periodically checks for any new
steal messages it might need to service. If it has work in its local task queue, it will
dequeue several nodes (controlled by parameter chunksize) it and send it out the
thief. If it has no work, it will respond with the fact that it has no work. If thread0
of a node, sends out a steal request and it gets back work, it will enqueue it onto its
local task queue and cancel the barrier to wake all other thread up. If on the other
hand, it gets a message saying that there is no work at the victim node, it will
choose another victim and proceed. Using this approach, the maximum number
of outstanding messages in the system will be bounded by the number of nodes
since each node sends out steal requests one at a time. Different methodologies
can be adopted for choosing the order in which victims are selected, however, we
employ random work stealing which has been proven to be optimal [2].

If we had used a shared memory paradigm (a PGAS language like UPC) the
steal operations will disturb the working threads in other nodes because these
threads will be forced to wait for the global regions of these task queues to
be unlocked to perform any release or reacquire operations. The cost of these
interfering remote locking operations is typically an order of magnitude greater
than the cost of a shared variable reference [15]. However, our implementation
using MPI similar to [7], enables the thread to perform operations on their local
task queues without waiting for locks from threads external to the node (which
have the highest latency). They simply service steal requests at regular intervals
removing the necessity of locks from external threads. Our distributed memory
design is implemented in MPI.

Termination detection. The described techniques enable efficient work steal-
ing across nodes in a HPC cluster, but this is not enough. We also need to detect
termination across all the nodes in the cluster. If after attempting to steal from
other nodes, thread0 does not find any work in other nodes it will begin the
global (across cluster nodes) termination detection process.

For termination detection in a single node we employed a cancellable barrier.
This approach is simply not scalable to an entire cluster for reasons explained
previously. We need a different algorithm to detect termination across the cluster.
Many algorithms have been proposed in literature. We chose to use a modified
version of the well known Dijikstra’s termination detection algorithm [5] similar
to [7] which is a token based termination detection algorithm. We refrain from
describing the algorithm here due to a lack of space. Details can be found in [5].

212 K. Ravichandran, S. Lee, and S. Pande

Recall, that for thread0 to have participated in the global termination detec-
tion process, it must have finished sending out all its cross node steal requests.
And to have sent out cross node steal requests, it must have been the case
that the other threads in the node are still waiting on the cancellable barrier.
Once, thread0 determines that global termination has been reached, it performs
a complete check-in to the cancellable barrier on the node (as against a ”peek”
check-in that it normally performs). Once, thread0 checks in, threads waiting at
the cancellable barrier are notified that global termination has been reached and
all threads terminate execution.

3.3 Combined Approach

The combination of the above schemes provides for a very efficient work steal-
ing approach for HPC clusters. To summarize, we prioritize intra-node steals
over inter-node steals and use a different algorithm for intra-node steals (asyn-
chronous steals and cancellable barriers) and for inter-node steals (polling for
steal requests and Dijikstra’s termination detection). Note that while better vic-
tim selection in the previous approaches would improve their performance it is
insufficient and the use of two different algorithms is vital. Figure 2 depicts all
the interactions in the form of a state diagram.

Fig. 2. Interactions of the algorithm

4 Evaluation

4.1 UTS

The Unbalanced Tree Search benchmark has been designed to be representative
of a class of HPC applications which require substantial dynamic load balance
[14]. Applications that fit this category include many search and optimization
problems that must enumerate a large state space of unknown or unpredictable
structure. UTS has become the benchmark with which load balancing algorithms
are benchmarked. The benchmark is itself based on a simple problem - the
parallel exploration of an unbalanced tree. The problem is to count the total
number of nodes that this tree generates. The tree is generated through an
implicit construction that is parametrized in shape, depth, size and imbalance.
The tree is generated by traversing down the tree from the root node. When we
process the root, its children (nodes) are generated. Now, each of these nodes

Work Stealing for Multi-core HPC Clusters 213

are recursively processed to generate the entire tree. While the processing time
of each node is fairly constant, there is a high amount of variance in the sizes of
each of the sub-trees leading to imbalance in workloads. [14] can be referred for a
more detailed explanation. Figure 3 depicts an unbalanced tree showing a weblog
file [10]. There are two types of trees that are used as part of the benchmark:
Geometric Trees and Binomial Trees. Details can be found in [14].

4.2 Results

Fig. 3. Unbalanced tree showing a weblog

In this section we compare our imple-
mentation with two highly tuned state
of the art implementations: one which
extends a shared memory paradigm
to a multi-core cluster using UPC
[15] and another which extends a dis-
tributed memory paradigm to a multi-
core cluster using purely MPI [7].

The UPC implementation extends
a shared memory paradigm to the en-
tire multi-core cluster. Accesses to re-
mote memory are converted under the hood into cross node MPI messages. It
has been found that simply using UPC and extended a shared memory algo-
rithm is simply not scalable [15,14,7] and the authors of this implementation
had to use several techniques such as polling instead of asynchronous stealing to
improve performance to an acceptable level. In our experiments we have found
this tuned UPC implementation to be faster than the MPI version, consistent
with previous findings [15]. Our approach is significantly faster than the current
implementations at higher thread/node counts. In this section we will refer to
the three implementations as: the Combined approach (our method), the UPC
approach and the MPI approach.

For our experimentsweused a 15-node, 120-core IBMBladeCenterHLinux clus-
ter with 2 socket x Core2 quad processors. Each node supported the parallel exe-
cution of up to 8 threads. This allowed us to observe the behavior of the three im-
plementations as we increased the number of threads on each core from 1 to 8. The
nodes in the cluster were connected using Ethernet and we used MPI for message
passing across nodes. The UPC implementation was compiled with Pthreads sup-
portwhich enabled intra-node communication to happen through sharedmemory.

Tests were performed using 3 trees generated by the UTS benchmark. We
used two geometric trees (GEO1 and GEO2) and one binomial tree (BIN1)1.
We increased the number of threads running per core from 1 to 8 hence scaling

1 For reproducibility we provide the exact parameters used to generate the tree.
GEO1 (1635119272 nodes): Geometric (Fixed), d = 15, b0 = 4, rootseed = 29.
GEO2 (4230646601 nodes): Geometric (Fixed), d = 15, b0 = 4, rootseed = 19.
BIN1 (1060980001 nodes): Binomial, b0 = 2000, q = 0.024999999975, m = 40,

rootseed = 316.

214 K. Ravichandran, S. Lee, and S. Pande

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 15 30 45 60 75 90 105 120

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Number of threads

Combined
UPC
MPI

(a) Execution time for GEO1

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 15 30 45 60 75 90 105 120

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Number of threads

Combined
UPC
MPI

(b) Execution time for GEO2

 5

 10

 15

 20

 25

 30

 35

 40

 15 30 45 60 75 90 105 120

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Number of threads

Combined
UPC
MPI

(c) Execution time for BIN1

Fig. 4. Execution Time

Table 1 Inter-node Intra-node

Combined 5233 132919

UPC 13128 1501

MPI 800501 N/A

Table 2 Inter-node Intra-node

No. steals 5233 132919

Total time 0.25923 0.13852

Time/steal (s) 0.000049539 0.000001042

(a) Table 1: Number of steals for different approaches. Table 2: Time taken for each
steal in the Combined Approach in sec.

Fig. 5. Steals Breakdown

the implementation from 15 threads (one on each node) to 120 threads (8 on
each node). Figure 4 shows the results we obtained.

Discussion. Our implementation which combined the use of two different al-
gorithms consistently performed better than the two other implementations at
higher core counts on GEO1, GEO2 and BIN1. The MPI implementation is
slower than both the combined approach and the UPC approach in all the tests.
Let us consider the case when only 1 thread runs on each node of the cluster. We
call this the baseline case. Each additional test increases the number of threads
on the node by 1. In the baseline case, the Combined approach is slower than

Work Stealing for Multi-core HPC Clusters 215

the UPC approach by as much as up to 23%. With 2 threads running per node,
the Combined approach is slower than the UPC approach by approximately
2%. However, as we increase the number of threads per node, the Combined ap-
proach consistently performs better, with almost a 20% improvement when using
4 threads/node which only increases as we increase the number of threads/node.

The fact that the Combined approach is slower than the UPC implementation
when using a smaller number of threads points to two facts. That at lower
thread counts, the overheads of using two separate termination detection and
stealing algorithms slows down the overall execution and also that the base
UPC implementation is highly tuned and performs very well on machines with
low threads/node. However, we observe that at higher threads/node counts the
Combined approach provides significant speedups over the UPC approach and
the MPI approach.

Table 1 in 5(a) shows the breakdown of the number of inter-node and intra-
node steals performed by the various approaches. These numbers were obtained
by running GEO2 with a total of 90 threads on 15 nodes. The Combined ap-
proach prioritizes intra-node steals over inter-node steals. The UPC implemen-
tation however, performs a much higher number of inter-node steals while com-
pared to intra-node steals (however, roughly the same proportion considering
that there are 15 nodes). The MPI implementation performs only inter-node
steals since we assume a completely distributed memory. Table 2 in 5(a) points
to the fact that inter-node steals are almost 50 times slower than intra-node
steals!

The underlying reason behind the speedups is the fact that we use two different
algorithms for inter-node steals and intra-node steals. The speedup cannot be
attributed to the use of shared memory alone, since the UPC implementation
was compiled with Pthreads support which enables use of shared memory for
threads which are collocated on the same node. Similarly the speedup cannot be
attributed to improved victim selection (based on locality). In our experiments
we found that tuning victim selection in the UPC and MPI approach improved
performance by only a modest 2% (at 8 threads/node). We conclude that the
most important factor in the speedup is the use of a different algorithm for inter-
node steals and intra-node steals. Retrofitting either a shared memory paradigm
or a distributed memory paradigm on top of a multi-core cluster does not perform
as well at higher thread/node count.

5 Related Work

A large amount of effort has been invested in studying different kinds of load
balancing algorithms. Load balancing methods have been broadly classified into
static methods and dynamic methods. Static methods such as [16,12] are suit-
able in situations where work can be divided fairly before execution. Task graph
scheduling [13] finds a schedule given a set of tasks which are organized as a
graph. Dynamic approaches so far have focused on using a distributed memory
approach using MPI [7] and techniques like RDMA [17] or using a shared mem-
ory approach [14] using OpenMP. PGAS languages extend the shared memory

216 K. Ravichandran, S. Lee, and S. Pande

paradigm across an entire cluster (containing nodes with distributed memory)
hence allowing load balancing algorithms to work across an entire cluster. Cer-
tain languages like X10 [3], Cilk [9] employ dynamic load balancing techniques.
Hierarchical techniques have been proposed in ATLAS [11]. Work stealing tech-
niques, in general, have been well studied and have been shown to be applicable
to various applications on distributed memory machines such as [17,8].

6 Conclusion and Future Work

In this paper we propose an algorithm which uses different algorithms for inter-
node and intra-node steals and demonstrate marked improvements on the UTS
benchmark over current implementations. Future work involves optimizing our
implementation using various techniques such as work pushing and using smarter
victim identification schemes. We strongly believe that the concepts that are
presented in this paper can be applied to current implementations and can be
used in designing work stealing algorithms in the future. We would like to thank
the anonymous reviewers for their comments. We also gratefully acknowledge
the support of NSF grants CCF-1018544 and CCF-0916962.

References

1. Berlin, K., Huan, J.: Evaluating the impact of programming language features on
the performance of parallel applications on cluster architectures. In: Rauchwerger,
L. (ed.) LCPC 2003. LNCS, vol. 2958, pp. 194–208. Springer, Heidelberg (2004)

2. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work
stealing. J. ACM 46, 720–748 (1999)

3. Charles, P., Grothoff, C., Saraswat, V.: X10: an object-oriented approach to non-
uniform cluster computing. SIGPLAN Not. 40, 519–538 (2005)

4. Scholten, C.S., Dijikstra, E.W.: Termination detection for diffusing computations
(1980)

5. Dijkstra, E.W., Scholten, C.S.: Termination detection for diffusing computations.
Information Processing Letters 11(1), 1–4 (1980)

6. Dinan, J., Larkins, D.B., Sadayappan, P., Krishnamoorthy, S., Nieplocha, J.: Scal-
able work stealing. In: Proceedings of the Conference on High Performance Com-
puting Networking, Storage and Analysis, SC 2009, pp. 53:1–53:11. ACM, New
York (2009)

7. Dinan, J., Olivier, S., Sabin, G., Prins, J., Sadayappan, P., Tseng, C.-W.: Dynamic
load balancing of unbalanced computations using message passing. In: IPDPS 2007,
IEEE International, pp. 1–8 (2007)

8. Dowaji, S., Roucairol, C.: Load balancing strategy and priority of tasks in dis-
tributed environments (1994)

9. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the cilk-5 multi-
threaded language. SIGPLAN Not. 33, 212–223 (1998)

10. Isenberg, P.: Phyllotactic patterns for tree layout, http://pages.cpsc.ucalgary.
ca/~pneumann/wiki/pmwiki.php?n=MyUniversity.PhylloTrees

11. Eric Baldeschwieler, J., Blumofe, R.D., Brewer, E.A.: Atlas: An infrastructure for
global computing (1996)

http://pages.cpsc.ucalgary.ca/~pneumann/wiki/pmwiki.php?n=MyUniversity.PhylloTrees
http://pages.cpsc.ucalgary.ca/~pneumann/wiki/pmwiki.php?n=MyUniversity.PhylloTrees

Work Stealing for Multi-core HPC Clusters 217

12. Kim, C., Kameda, H.: An algorithm for optimal static load balancing in distributed
computer systems. IEEE Trans. Comput. 41, 381–384 (1992)

13. Kwok, Y.-K., Ahmad, I.: Static scheduling algorithms for allocating directed task
graphs to multiprocessors. ACM Comput. Surv. 31, 406–471 (1999)

14. Olivier, S., Huan, J., Liu, J., Prins, J., Dinan, J., Sadayappan, P., Tseng, C.-W.:
Uts: an unbalanced tree search benchmark. In: Almási, G.S., Caşcaval, C., Wu, P.
(eds.) KSEM 2006. LNCS, vol. 4382, pp. 235–250. Springer, Heidelberg (2007)

15. Olivier, S., Prins, J.: Scalable dynamic load balancing using upc. In: ICPP 2008,
pp. 123–131. IEEE Computer Society, Washington, DC, USA (2008)

16. Tantawi, A.N., Towsley, D.: Optimal static load balancing in distributed computer
systems. J. ACM 32, 445–465 (1985)

17. van Nieuwpoort, R.V., Kielmann, T., Bal, H.E.: Efficient load balancing for wide-
area divide-and-conquer applications. SIGPLAN Not. 36, 34–43 (2001)

	Work Stealing for Multi-core HPC Clusters
	Introduction
	Work Stealing
	Design for Our Approach
	Shared Memory Design
	Distributed Memory Design
	Combined Approach

	Evaluation
	UTS
	Results

	Related Work
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

