
Bandwidth Constrained Coordinated HW/SW

Prefetching for Multicores

Sai Prashanth Muralidhara, Mahmut Kandemir, and Yuanrui Zhang

Department of Computer Science and Engineering
Pennsylvania State University, University Park, PA 16802, USA

{smuralid,kandemir,yuazhang}@cse.psu.edu

Abstract. Prefetching is a highly effective latency hiding technique
that can greatly improve application performance. However, aggressive
prefetching can potentially stress the off-chip bandwidth. The result-
ing bandwidth stalls can potentially negate the performance gain due
to prefetching. In this paper, focusing on a multicore environment, we
first study the comparative benefits of hardware and software prefetching
and analyze if the two are complimentary or redundant. This analysis
also evaluates different aggressiveness levels of hardware prefetching. Sec-
ondly, we weigh the positive performance benefits of prefetching against
the negative performance effects of bandwidth stalls. Thirdly, we propose
a hierarchical prefetch management scheme for multicores that controls
the prefetch levels such that the overall performance gain is improved.
Lastly, we show that our proposed off-chip bandwidth aware prefetch
management scheme is very effective in practice, leading to performance
gains of upto about 10% in system throughput over a bandwidth agnostic
prefetching scheme.

1 Introduction

Prefetching is a well-known memory latency hiding technique, which predicts
future memory accesses and proactively fetches the corresponding memory ele-
ments to the cache ahead of time in order to hide memory access latencies during
execution [7] [8] [9] [10]. Prefetching can either be implemented at the hardware
level [7] [8] [10] [9] or by the software [20] [18]. The effectiveness of a prefetching
scheme is directly dependent on the predictability of memory accesses, which is
an application characteristic. In a multicore system, each core prefetches data el-
ements independently into the cache. The benefits due to prefetching can poten-
tially be different for different cores depending on the application characteristics.
Further, each core/application can potentially be involved in both hardware and
software prefetching. There have been previous techniques proposed to throttle
inaccurate prefetchers and increase aggressiveness levels on more accurate ones
[28]. Also, when the last level cache is shared, aggressive prefetching can worsen
the cache interference problem, especially when it is inaccurate and/or ineffi-
cient. In such cases, it is helpful to throttle the prefetches that are inaccurate
and cause high interference in the shared cache space [11].

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 310–325, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Bandwidth Constrained Coordinated HW/SW Prefetching for Multicores 311

In this paper, we first study the comparative accuracies and benefits of soft-
ware prefetching and different levels of hardware prefetching. We then study
and analyze the impact of prefetching on the off-chip memory bandwidth per-
formance. Prefetching can lead to increased off-chip bus traffic, and can poten-
tially increase the pressure on the off-chip bandwidth. This can cause extensive
bandwidth stalls.We explore the tradeoff between extensive aggressive prefetch-
ing and bandwidth stalls. Further, we study if the performance degradation due
to bandwidth stalls wipe away the performance gains achieved as a result of
prefetching.

We propose a hierarchical bandwidth-aware coordinated prefetching scheme
that manages the prefetch aggressiveness levels of different cores such that the
performance gains due to prefetching are improved, while the performance losses
due to bandwidth stalls are reduced. This prefetch management scheme operates
dynamically and decisions are made at the end of each execution interval. More
specifically, a global prefetch manager considers the overall bandwidth delay and
the prefetch effectiveness of each core during each execution interval, and then
decides to increase or decrease the prefetch aggressiveness levels of the cores.
This decision to change the prefetch levels of the cores is made such that the
performance improvement due to prefetching is higher than the stall time due
to limited bandwidth and contention. It then directs the individual core-level
prefetch managers to change the prefetch levels correspondingly. At each core,
a core-level prefetch manager manages and enforces the prefetch aggressiveness
levels. This prefetch manager not only issues hardware prefetch requests but also
handles the software prefetch instructions. It decides whether to allow software
prefetching or hardware prefetching or both and also at what aggressiveness lev-
els. It is to be noted that prefetching on a core can be termed very aggressive
if both hardware prefetching at the highest aggressiveness level and software
prefetching is enabled. Aggressiveness can be downgraded by reducing the ag-
gressiveness of hardware or software prefetching or both. Overall, the main goal
of our approach is to reward useful prefetchers and punish the ones that hurt
bandwidth availability without any performance benefit. Lastly, we evaluate our
proposed scheme on set of workloads comprising of applications from the SPEC
2006 benchmark suite [1] on a simulation based setup, and show that our scheme
yields average system throughput benefits of about 8%, and up to about 10%
over an off-chip bandwidth unaware scheme. To summarize, we make the follow-
ing contributions in this paper:

• We evaluate the performance benefit of both hardware (different levels) and
software prefetching schemes. We later compare the performance improvement
due to prefetching against the performance degradation due to the extra pressure
it exerts on the off-chip bandwidth.

• We propose a hierarchical prefetch management scheme that tries to dy-
namically change the prefetch levels of the individual cores such that the perfor-
mance degradation due to bandwidth contention is reduced and the performance
improvement due to prefetching is improved.

312 S.P. Muralidhara, M. Kandemir, and Y. Zhang

• We present an extensive experimental evaluation of the proposed hierar-
chical prefetch management. Our results show that the proposed scheme is very
effective in practice and improves the system throughput by up to 10%, and by
an average of 8%.

2 Background and Methodology

2.1 Prefetching

Prefetching is a widely employed technique intended to improve on-chip cache
performance [7] [8] [9] [10] [20] [18]. Prefetching, however, is not always beneficial.
Some fraction of the predicted memory requests are never accessed. This is not
the only instance of wasted prefetching. A future memory request prediction
can turn out to be true but before the prefetched memory element is accessed, it
might be evicted from the cache. Also, a prefetched request may kick out a useful
data element from the cache. In these instances, prefetching increases the off-chip
bus traffic and possibly cause bandwidth stalls without any significant benefit.
Therefore, prefetch accuracy, which is an application characteristic determines
the overall performance benefit from prefetching.

Hardware Prefetching. In the case of hardware prefetching, the future mem-
ory access prediction and the process of initiating requests to prefetch those
elements are carried out by the hardware at runtime. Due to costs and limits on
delay, hardware prefetchers generally implement a simple stride based prefetch-
ing or a stream based prefetching. A very aggressive hardware prefetcher would
typically predict a large number of future memory requests and prefetch them.
In comparison, a prefetcher with a lower aggressiveness level would be more
conservative, predicting and issuing fewer prefetches. In this paper, we refer to
and implement a stream prefetcher [28] [6] [24]. Aggressiveness level of a stream
prefetcher is defined by two parameters: prefetch distance and prefetch degree
[28] [6] [24]. Prefetch Distance dictates how far ahead of the demand access
stream the prefetcher can issue prefetch requests, and Prefetch Degree deter-
mines how many cache blocks to prefetch when there is a cache block access to
a monitored memory region.

Software Prefetching. In this case, the future memory access prediction is
made statically, at compile time or at the coding time, and specific instruc-
tions are inserted into the code body to prefetch those predicted elements at
the time of execution. Some applications render themselves to easy compile time
prediction in which case the software prefetching is very effective [20] [18] [19].
Software prefetching also has the ability to employ complex and time consuming
prefetching algorithms since the process is done apriori at compile time. Hard-
ware prefetching, on the other hand, employs simpler prediction mechanisms but
does well where software prefetching fails to analyze the code, e.g., as in the case
of pointer-based applications.

Bandwidth Constrained Coordinated HW/SW Prefetching for Multicores 313

2.2 Experimental Setup

Core architecture UltraSparc 3, 3.1 GHz
Operating system Sun Solaris 9
L1 caches private, 3 cycle latency, direct-mapped
L2 cache shared, 15 cycle latency, 16 way associative
Memory latency 260 cycles
Hardware Prefetcher 64 stream prefetcher per core, 4 prefetch levels
DRAM controller demand-prefetch equal priorities, on-chip,

128 entry req buffer, FR-FCFS
DRAM chip refer to Micron DDR2-800 [2]

Fig. 1. Default system parameters used

We model the off-
chip memory band-
width and implement
the prefetching infras-
tructure for multicores
using a Simics [3] based
in-house module. The
base system architec-
ture simulated in our

evaluations is a four-core multicore machine with a shared L2 cache and a shared
off-chip memory bandwidth. The shared L2 cache is assumed to be a partitioned
cache (i.e., its cache ways are distributed evenly across applications though in
principle we could use any partitioning strategy). The cores simulated in this
system are based on the UltraSparc 3 architecture [5]. The main architectural
details of the simulated system are shown in the table given in Figure 1. In the
evaluation of the proposed dynamic scheme later, we employ execution intervals
of 10 million instructions. The hardware prefetcher used in this paper is a stream
prefetcher [28] [6] [24] with 64 streams per prefetcher.

Benchmarks. For all the motivational and evaluation purposes, we use the ap-
plications from the SPEC 2006 benchmark suite [1], and construct our workloads
from the subsets of these applications. To enable software prefetching on the ap-
plications, they are compiled on a SUN compiler with the highest optimization
flag set.

Terminology. In this paper, by “prefetch level”, we mean the “aggressiveness
level” of the prefetcher. All types of prefetching mentioned in this paper are
implemented for the last level of cache in a multicore. Whenever we refer to
“software prefetching” in this paper, we mean the handling of the software-
inserted prefetch instructions in the hardware. We do not propose or implement a
new software prefetching algorithm. We compile the applications using a software
prefetch enabled compiler that inserts prefetch instructions into the executable.
We only refer to the way these instructions are handled in the hardware.

3 Empirical Motivation

3.1 Prefetching Benefits

The goal of this section is to compare the performance of various prefetching
techniques with different aggressiveness levels across different applications.

Hardware Prefetching. Figure 2 plots the performance of our applications
when different levels of prefetching are enabled compared to the case of no
prefetching. We experimented with four different prefetch levels: no prefetch-
ing, level 1, level 2 and level 3. Level 1 prefetching has a prefetch distance of
4 and prefetch degree of 1. Prefetch distance and prefetch degree of level 2 are

314 S.P. Muralidhara, M. Kandemir, and Y. Zhang

���

���

���

���

���

���

�
	

�
�

�
�
�
	

���������� ������� �

������� ������� !

Fig. 2. Performance comparisons of
different levels of hardware prefetch-
ing. The performance values are nor-
malized to that of the no prefetching
case.

"#$

%#%

%#&

%#'

%#(

%#$

)
*
+,
-
+.
/
0
1
*

234567689: ;<=6>6? @

A< A<B ;< =6>6?@

Fig. 3. Performance
comparisons of software
prefetching, hardware level
3prefetching,andbothwith
the case of no prefetching.
The performance values are
normalized to that of the no
prefetching case.

16 and 2
respectively,
and those
of level 3
are 64 and
4. In this
set of ex-
periments,
software
prefetching
is disabled,
which means
the prefetch
instructions
are ignored as no-ops. Since we are first interested in studying the performance
benefits of prefetching in isolation, the performance effects due to bandwidth
constraints are not considered in these experiments. From Figure 2, we can infer
that while some applications are prefetch sensitive and, therefore benefit from
more aggressive levels of prefetching, others do not exhibit large performance
gains as prefetch levels are increased. In the above scenario, the prefetch lev-
els can be reduced on applications that are not very prefetch-sensitive without
a high performance penalty. On the flip side, increasing the prefetch levels on
prefetch-sensitive applications can be very beneficial.

Software Prefetching. Figure 3 compares software prefetching, hardware level
3 prefetching, combined software-hardware prefetching against the no-prefetching
case. One can see from this plot that, for some applications, hardware prefetch-
ing does much better than software prefetching, whereas for some others, it is
the other way around. More interestingly, in some cases, enabling both hardware
and software prefetching is much better than enabling just one of them, as in the
case of gcc and perl. In some other cases, although effective individually, enabling
both does not do any better than enabling only one of them, as in the case of
astar and h264. Therefore, in a multicore system, some applications perform
better when both hardware and software prefetching are enabled, while some
others perform equally well with just one of them enabled.

3.2 Off-Chip Bandwidth Effects

In this section, we study the effect of prefetching on off-chip bandwidth pres-
sure. We employ an off-chip bandwidth of 6.4 GB/s in these experiments. For
this purpose, we selected a workload of four applications: lbm, mcf, libquantum,
and milc. These four applications are executed on a four-core processor (one
application per core) with a shared, partitioned cache, and a shared off-chip
bandwidth.

One core prefetching. In the first run, we enabled prefetching only on the
first core which executed lbm, while disabling prefetching on all other cores. We

Bandwidth Constrained Coordinated HW/SW Prefetching for Multicores 315

���

���

���

���

�
�
	

��
�

��
��
�

��

��
��
��
��

��
��
��
��

��
��
��
��

��
�
�
�
��
��
��

�
�
	

��
�

��
��
�

��

��
��
��
��

��
��
��
��

��
��
��
��

��
�
�
�
��
��
��

�
�
	

��
�

��
��
�

��

��
��
��
��

��
��
��
��

��
��
��
��

��
�
�
�
��
��
��

�
�
	

��
�

��
��
�

��

��
��
��
��

��
��
��
��

��
��
��
��

��
�
��
��
��
��

��� � ! �"�# �"�

$
%
&'
(
&)
*
+
,%

"-!"-"./ 0123456

Fig. 4. Performance comparisons of
different prefetching schemes with
both the infinite bandwidth case
and a bandwidth of 6.4 GB/s, when
prefetching is enabled only on core
1 (lbm) and disabled for all others

789
78:
;8<
;8=
;8>

?
@
AB
CD
CE
FG
HI
J

KL

ML
NC
OC
PQ

ML
NC
OC
PR

ML
NC
OC
PS

KL
T
ML
NC
OC
PS

?
@
AB
CD
CE
FG
HI
J

KL

ML
NC
OC
PQ

ML
NC
OC
PR

ML
NC
OC
PS

KL
T
ML
NC
OC
PS

?
@
AB
CD
CE
FG
HI
J

KL

M
L
NC
OC
PQ

M
L
NC
OC
PR

M
L
NC
OC
PS

KL
T
ML
NC
OC
PS

?
@
AB
CD
CE
FG
HI
J

KL

M
L
NC
OC
PQ

M
L
NC
OC
PR

M
L
NC
OC
PS

KL
T
ML
NC
OC
PS

UVW WXY UZV[WZUX

\
]
_̂̀

â
b
c
d]

ZeYZeZfg hij klmn

Fig. 5. Performance comparisons of different
prefetching schemes with both the infinite
bandwidth case and a bandwidth of 6.4 GB/s,
when prefetching is enabled on all cores

fg

hg

ig

jg

klm mno kplq mpkn

r
s
t
u
vw
xx
yz

{
|}
}}
}}

~� ����������� ��
�� ����� � �� ����� �
�� ����� � �� � �� ����� �

Fig. 6. Contribu-
tions to the bus
traffic by different
applications

�

���

���

���

���

���

�
�
�
�
�
��
��
�
��
��
�

�
���
��
�
�

 ¡¢ ¢£¤
 ¥¡¦ ¢¥ £

Fig. 7. Bandwidth stalls (in
cycles) suffered by applica-
tions as the prefetching level
is increased

¦
¦§¨
¦§©
¦§�
¦§�
�

�§¨

��� ��� �	�
 �	��

�
�

�

��
�
�
��
�

�
������	��	�	�� ��������	���

Fig. 8. Comparison of
equal priorities for prefetch
and demand requests
versus a scheme where
demand requests are pri-
oritized over prefetch
requests in terms of the
number of useful prefetches

experimented with software prefetching, three levels of hardware prefetching,
and a combined hardware-software prefetching scheme. The results in Figure 4
show that lbm, which executed on core 1, achieves a performance benefit when
compared to the case of no prefetching. However, its benefits are reduced due to
the limited bandwidth constraint. Further, it degrades the performance of the
other applications due to the additional requests (prefetch requests from core 1)
and the resulting bandwidth stalls. When using the most aggressive prefetching,
the performance degradations on the other cores are significant. We also repeated
this by enabling prefetching on core 2, core 3 and core 4 alone, and observed
similar results. Therefore, prefetching can have different degrees of performance
degradation due to bandwidth constraints. Further, aggressive prefetching by one
core can adversely impact the performance of other applications due to bandwidth
contention and the resulting delays.

All cores prefetching. We also considered a more realistic execution scenario,
where different applications prefetch memory elements individually and the cores
share the available off-chip bandwidth. In this case, prefetching is enabled on all

316 S.P. Muralidhara, M. Kandemir, and Y. Zhang

the cores. In Figure 6, we plot the comparative contributions to the bus traffic
by the applications when prefetching is enabled on all the cores. The bus traffic
increases rapidly when the prefetch level is increased for some applications, while
for others, the increase is not that steep (for instance milc). Figure 7 shows how
this increase in bus traffic translates into stalls due to limited bandwidth. Note
that, even if the bus traffic increase is small, bandwidth stalls can be significant.
The above two graphs plot absolute values of bus traffic increase and bandwidth
stall cycles. Figure 5, on the other hand, illustrates how these factors affect the
performance of applications when different prefetch variants are enabled for both
the infinite bandwidth case and a more realistic case of 6.4 GB/s bandwidth.
In the limited bandwidth case, prefetching aggressively in a bandwidth unaware
manner on all the cores results in some performance improvement only on core
3 (libq). In all other applications/cores, performance degradation due to lim-
ited bandwidth completely wipes out all the benefits from prefetching and in
some cases results in a net performance degradation. This effect increases with
increasing prefetch levels. Also, for some applications, while absolute values of
bandwidth stalls in Figure 7 increase sharply with prefetch levels, performance
degradation is not that steep. Therefore, some applications are more bandwidth-
stall resistant (tolerant). In modeling the performance effects later in Section 4.3,
we take this into account. We do not just consider prefetch accuracies and the
resulting bus traffic as the basis as done previously [28] [11] but also consider
the bandwidth stalls and the actual impact of bandwidth stalls on application
performance as the basis.

To summarize, while prefetching aggressively can improve performance, it can
also hurt the performance due to bandwidth constraints. Therefore, it is impor-
tant to enable prefetching without increasing bandwidth delays extensively.

3.3 Prefetch Request Priority

Increase in bandwidth delays due to prefetching typically occurs only if prefetch
requests are treated on par with demand memory requests. If normal load/store
(demand) memory requests have a higher priority than the prefetching requests,
then additional bus traffic due to prefetch requests may not lead to any addi-
tional bandwidth delay. It is to be noted here that bandwidth delays might still
be present in the system but those delays are due to the normal (demand) mem-
ory requests, and will be present irrespective of whether prefetching is turned on
or not. Prioritizing demand requests and prefetching requests equally leads to
increased performance improvement from prefetching as can be seen in Figure 8.
This is due to the fact that if the prefetch requests have a lower priority than
the demand requests, then the prefetch requests can get delayed inordinately
and these increased bandwidth delays can render most of prefetch requests use-
less (since prefetched data would be brought into the cache late). This leads
to decreased prefetch efficiency and, therefore, decreased positive performance
impact of prefetching [16]. Therefore, our proposed scheme employs equal prior-
ities, and tries to keep the number of useful prefetches high, while at the same
time, mitigating the additional bandwidth stalls due to prefetch requests.

Bandwidth Constrained Coordinated HW/SW Prefetching for Multicores 317

4 Bandwidth Aware Prefetching

Figure 9 summarizes the operation of our proposed scheme. A global prefetch
manager makes decisions on whether to increase or decrease the prefetching
levels on the individual cores and the decisions are communicated to the core-
level prefetch manager.

������ ���	�
��

��������������

����������

���������

�����

 !"# $
%"#&'
()*"'

+,,
 !"# -
%"#&'
()*"'

 !"#)
%"#&'
()*"'

Fig. 9. Hierarchical band-
width aware prefetching
scheme that includes a global
prefetch manager and a
set of core-level prefetch
managers

./01 21314 50161789

:;<;=10

>;0?@;01

5016178910

ABCDEFGEHIECDEFGE
JDEKELCM NEOEN

PQRSRTUV
QRWXRYTY

Z/67@;01

5016178910

PQRSRTUV
QRWXRYTY

[\]^YRQTR_
`QRSRTUV
]^YTQXUT]a^Y

ABCDEFGEHIECDEFGE
JDEKELCM NEOEN

Fig. 10. Details of a core-
level prefetch manager,
which controls the prefetch
levels of both hardware and
software prefetchers of a
core

The details on
how these deci-
sions are made
are presented in
Section 4.3. After
the global man-
ager directs a core-
level prefetch man-
ager to either in-
crease or decrease
the prefetch level
of the core, the
core-level manager
applies the prefetch-level changes locally (i.e., to the core it is attached to), as
described in Section 4.1. This prefetch management scheme works dynamically,
making decisions on prefetch level changes and applying those changes at the
end of each execution interval. This scheme is also history based, in the sense
that all the relevant statistics, which include the total bandwidth stall-time and
the prefetch efficiency counters of individual cores, collected during an execution
interval are used to make decisions for the next execution interval.

Implementation. Hardware support is needed to maintain the performance
counters. The prefetch management scheme itself is implemented in the runtime
system/OS, which reads these hardware performance counters.

4.1 Core-Level Prefetch Manager

The core-level prefetch manager sets and enforces the prefetch aggressiveness
level at the core level. It can either increase or decrease the prefetch level based
on the directions from the global prefetch manager.

increase prefetch level()
begin

accuracyHW =
prefhitsSW

prefetchesHW

accuracySW =
P refhitsSW

prefetchesSW
if accuracyHW > accuracySW

//Increase HW prefetch level
increase prefetch distanceHW
increase prefetch degreeHW

else
//Increase SW prefetch level
increase prefetch distanceSW
increase prefetch degreeSW

end

Fig. 11. Prefetch level increase func-
tion

The core-level prefetch manager han-
dles the changes in prefetch levels of the
hardware prefetcher similar to that pro-
posed in [11]. In addition to the hard-
ware prefetcher, our proposed prefetch man-
ager also employs a software prefetcher,
which is an engine that handles all the
software prefetch instructions issued by the
core (compiler-inserted or programmer in-
serted). A prefetch instruction, when is-
sued, results in a prefetch request. All such

318 S.P. Muralidhara, M. Kandemir, and Y. Zhang

prefetch requests are routed through our proposed software prefetcher. When
the global prefetch manager directs the core-level manager to either increase
or decrease the prefetch level, the core-level manager can increase or decrease
the prefetch level of either the hardware prefetcher or the software prefetcher.
What we mean by “prefetch levels” in hardware and software prefetchers is ex-
plained later in detail. The role of the core-level prefetch manager in controlling
the prefetch levels of both hardware and software prefetches is illustrated in
Figure 10. The global prefetch manager either increases or decreases prefetch
level, and does not set absolute values. The decision of whether to change the
prefetch level of the hardware prefetcher or the software prefetcher is determined
by calculating the corresponding prefetch accuracies. More accurate prefetcher is
always preferred. This way, we prioritize either hardware or software prefetching
based on their accuracies (the prefetch increase function is shown in Figure 11,
prefetch decrease function is on similar lines).

4.2 Prefetch Levels

Hardware Prefetch Levels. We implement a stream prefetcher for hard-
ware prefetching [6]. As mentioned earlier, the aggressiveness level of a stream
prefetcher is defined by two parameters: prefetch distance and prefetch degree.
Our hardware prefetcher design is similar to that implemented in [28] and further
details on implementation can be found in [28] [6] [24]. In essence, the prefetch
distance determines how far ahead of the memory stream the prefetch requests
are issued and the prefetch degree determines how many prefetch requests are
issued each time. We implement four prefetch levels in this work: no prefetch,
low prefetch, medium prefetch, and high prefetch. No prefetch level performs no
prefetching. Low prefetch level performs prefetching with a prefetch distance
of 4 and prefetch degree of 1. Medium prefetch performs prefetching with a
prefetch distance of 16 and a prefetch degree of 2, while the high prefetch level
has prefetch distance of 64 and prefetch degree of 4.

Software Prefetch Levels. The software prefetcher implements the software
prefetch levels by filtering the prefetch requests. As mentioned before, the soft-
ware prefetcher receives all the prefetch requests that are issued by the software
(compiler inserted or programmer inserted) instructions. The four aggressiveness
levels of software prefetching are: no prefetch, low prefetch, medium prefetch, and
high prefetch. When the level is set to no prefetch, all the prefetch requests are
dropped. In the case of low prefetch level, two in every four prefetch requests are
dropped, while only one in every four is dropped in the case of medium prefetch
level. When the level is set to high prefetch, all prefetch requests coming from
the software inserted prefetch instructions are issued by the software prefetcher
without dropping any of them.

Bandwidth Constrained Coordinated HW/SW Prefetching for Multicores 319

4.3 Global Prefetch Manager

As shown in Figure 9, the two main inputs to the global prefetch manager are
the total bandwidth stall-time and the prefetch statistics.

Bandwidth stall-time. A demand request stalls in the memory controller
queue if there are other requests ahead which are being serviced or waiting to be
serviced. While the prefetch requests may also wait, they do not contribute to
performance degradation (a higher wait-time for prefetch requests can of course
limit the benefits due to prefetching). We define “bandwidth stall” as the total
stall-time (in cycles) experienced by the demand requests in a given execution
interval. It is the sum of all individual demand request stall-times in that exe-
cution interval. Observe that “stall-time” in this context refers to wait-time in
the queue due to bandwidth constraint. It does not include the time for a de-
mand request to get serviced (to perform the memory operation). We compute
bandwidth stall using a simple counter in the memory controller. Since the off-
chip bandwidth is a single resource shared across all the cores, bandwidth stall
is a single value, which is the sum of bandwidth stalls of all requests of all cores
serviced by the off-chip bandwidth during the given execution interval.

Prefetch Statistics. As described in Section 4.1, each core has a hardware
prefetcher and a software prefetcher associated with it. We define “prefetchesi”
to be the total number of prefetches issued by core i. It is the sum of the number
of prefetches issued by the hardware prefetcher and those issued by the software
prefetcher. The metric “prefhitsi” is defined as the total number of prefetch
requests (both hardware and software) that turned out to be hits for core i. These
values are calculated using the prefetch bit of the cache line and by employing
counters in the prefetchers.

Benefit Estimation. The performance improvement on core i due to prefetch-
ing is quantified by a parameter called “benefiti”. This improvement is specif-
ically due to the avoidance of a fraction of core i cache misses. The metric
benefiti is computed for each core i using the prefetch statistics collected dur-
ing the execution interval as follows: benefiti = Reduction in cache miss stall timei

instructionsi
.

Therefore, accounting for this reduction in cache misses, we obtain:
benefiti = (misses oldi−misses newi)×avg miss penalty

instructionsi
= prefhitsi×avg miss penalty

instructionsi
,

where instructionsi is the number of instructions executed in the current execu-
tion interval, misses oldi is the estimated number of cache misses if prefetching
was not enabled, misses newi is the number of cache misses with prefetching,
and avg miss penalty is the average cache miss penalty in cycles.

Cost Estimation. Prefetching leads to additional memory requests (in addi-
tion to the normal load/store demand requests). The measure of performance
degradation suffered by core i due to memory bandwidth stall-time resulting
from these prefetch requests it issues is quantified by the metric costi. Due to
the fact that memory bandwidth is shared, the additional prefetches issued by
core i can cause bandwidth stalls for not only core i but also for all other cores
as well. As a result, costi should take all these stalls into account. Firstly, the

320 S.P. Muralidhara, M. Kandemir, and Y. Zhang

total bandwidth stall caused by the prefetches issued by all the cores can be esti-
mated as below: total prefetch stall = Σn

i=0prefetchesi

total requests × bandwidth stall, where
Σn

i=0prefetchesi is the sum of prefetches issued by all the cores during the in-
terval, total requests is the total number of requests that reached the memory
controller during the execution interval (i.e., sum of the demand and prefetch
requests), and bandwidth stall is the total bandwidth stall time as defined ear-
lier. We can now estimate the stall caused by core i (due to the prefetches issued
by core i) as follows: prefetch stalli = prefetchesi

Σn
i=0prefetchesi

× total prefetch stall.
For each core i, we now have prefetch stalli, which is the estimated absolute
bandwidth stall-time caused by the prefetch requests issued by core i. Since
the off-chip bandwidth is a shared resource, prefetch stalli, caused by core i
can affect demand requests of any of the cores. We define band stalli,j as the
bandwidth stall caused by the prefetches from core i on the performance of core
j (on the demand requests of core j). This value estimates the fraction of the
bandwidth stall of core j, due to the prefetch requests issued by core i. We can
estimate band stalli,j as follows: band stalli,j = demandj

Σn
i=0demandk

× prefetch stalli,
where demandj is the total number of demand requests issued by core j, which
in this case is approximately equal to the number of L2 cache misses on core j,
Σn

i=0demandk is the total number of demand requests issued by all cores.These
band stalli,j values estimated above are the absolute stall times in cycles and
not the impact on performance. Therefore, we now estimate costi, which is a
measure of the total performance degradation caused by the prefetches issued
by core i on the performance of all cores including core i. Note that performance
degradation considered above is just the effect of bandwidth stalls. The value
of costi can be estimated as follows: costi = Σn

j=0
band stalli,j

instructionsj
. It is important

to note that, we do not consider prefetch accuracies or the absolute bandwidth
stalls in our estimation of benefiti and costi values. We estimate both these
values in terms of the net effect on the application performance.

Algorithm. The global prefetch manager manages the prefetch levels for each
core with the goal of improving the overall performance gains due to prefetching.
In order to do so, global manager employs a cost/benefit analysis based scheme.

global prefetch manager()
begin
for each execution interval:

read bandwidth stall
for each i from 0 to numcores:

read instructionsi, prefetchesi and prefhitsi
compute benefiti and costi
if (benefiti − costi) >= costi × α then

//increase the prefetch level of core i
core level manager i.increase prefetch level()

else if (benefiti − costi > 0 and
benefiti − costi < costi × α)

//do not change the prefetch level of core i
else (benefiti − costi) <= 0 then

//decrease the prefetch level of core i
core level manager i.decrease prefetch level()

end for
end

Fig. 12. The algorithm executed by the global
prefetch manager

A prediction based dy-
namic scheme is employed
by the global manager, i.e.,
the algorithm works by com-
puting and making prefetch
level changes for cores at
the end of each execution
interval. To begin with, all
cores prefetch at the high-
est aggressiveness levels. The
benefiti and costi values are
estimated for every core i at
the end of each interval after

Bandwidth Constrained Coordinated HW/SW Prefetching for Multicores 321

reading the relevant performance counter values. For each core i, the prefetch
level is increased if the benefiti−costi is greater than the costi×α (i.e., if benefiti
is greater than costi by α percentage). If, on the other hand, the benefiti−costi
is lower than the costi × α but greater than zero, then the prefetch level is left
unchanged. Finally, if benefiti is less than the costi value, then the prefetch level
is decreased for core i. The global prefetch manager enforces the prefetch level
change for a given core i by directing the core-level manager of the correspond-
ing core. The reason for reducing the prefetch level for a given core is obvious
since the estimated benefit is lower than the estimated cost. On the other hand,
increasing the prefetch level is more nuanced. The level is increased only if the
estimated benefit is greater than the cost by a pre-defined threshold value (α).If
the benefit is not greater than the cost by α percentage, the prefetch level is left
unchanged. This algorithm can reduce the prefetch level of a core i gradually
to zero (which means no prefetches are issued) when benefiti continues to be
lesser than costi after continuous prefetch level decrements. In this case, when
the prefetch level is zero, benefiti will always be zero and the prefetch level will
potentially be stuck at zero without being increased. To avoid this scenario, the
core-level prefetch manager increments the prefetch level of a core to level 1 if the
prefetch level is stuck at zero for more than two execution intervals. In this al-
gorithm, since we consider benefit and cost values in terms of estimated changes
in application performance, the goal is always to improve the performance of
applications and improve the overall system throughput.

α values. The α values are tunable to make the prefetching scheme more con-
servative or more aggressive. We experimented with a lot of α values and finally
determined that a value of 0.2 is reasonable. Therefore, in our implementation,
if the benefit exceeds the cost by 20%, we increase the prefetch level.

5 Experimental Evaluation

Our evaluation setup is described in Section 2. A four-core machine with a
shared, partitioned L2 cache was modeled as the underlying multicore archi-
tecture. We built several workloads that consist of four applications, each from
the SPEC 2006 suite [1]. In all our evaluations, we collect results and data for
a period of 1 billion cycles. Cache is however warmed up for a period of 500
million instructions prior to collecting results. We consider execution intervals
of 10 million instructions. Our proposed prefetching scheme is called Dyn Band
throughout the experimental section.

Average Throughput. Figure 13 presents the throughput gain acheived by
our proposed scheme (Dyn Band) over other prior prefetching schemes when
averaged over 10 different workloads we experimented with. Different work-
loads might benefit differently from the prior prefetching schemes. Our proposed
scheme recognizes this and enables only those prefetching schemes and levels that
benefits the workloads, also taking into account the bandwidth pressure exerted
by the extra prefetch memory requests. Our proposed scheme yeilds an average

322 S.P. Muralidhara, M. Kandemir, and Y. Zhang

system throughput gain of about 8% over the best of the previous prefetching
schemes.

���
���
���
�

���
���

�
	

�
�

��
�

�
�
�

Fig. 13. Comparison
of workload through-
put averaged across
multiple workloads

���

���

�

���

���

�
�
��
�
�
�
�
�

Fig. 14. Throughput
comparison for the
workload (lbm, mcf,
libquantum, and milc).

!"#

$

$"%

$"&

'())*+ ',(-),'*

.
/
01
2
03
4
5
6/

789:;< => ?>@ ?>A
?>B =>C ?>B DEFGHIFJ

Fig. 15. Performance com-
parisons of the applications
in the workload (lbm, mcf,
libquantum, and milc).

Workload Instance. In order to understand our proposed scheme in more
detail, we now present the results for a single workload instance that consists of
lbm, mcf, libquantum, and milc. The corresponding throughput results are shown
in Figure 14. In this case, our proposed dynamic bandwidth-aware prefetching
scheme improves throughput by 15% over the no prefetching scheme. Among the
other prefetching schemes, hardware level 2 prefetching does better than others
because of lower pressure on off-chip bandwidth. Our dynamic bandwidth-aware
scheme has a throughput gain of about 8% over this hardware level 2 prefetching.
Figure 15 shows the individual application performance values. We observe that
the application milc gains about 40% in performance over the no prefetching
scheme and mcf gains about 20%.

Dynamics of the system. In order to analyze the working of our proposed
scheme, we consider the execution of a workload comprising of bzip2, libq, sphinx
and gromacs applications, and focus on the performances of libq and gromacs.
We track how our scheme works dynamically, and adjusts the prefetch levels of
these two applications based on their benefit and cost values (note here that our
scheme works and adjusts the prefetch levels of all four applications; we focus
on just two for clarity).

Figures 16 and 17 plot the observed benefit and cost values for these two
applications for 11 execution intervals, when our scheme is used. In the case of
libq, the benefit value is consistently higher than the cost value, while in the case
of gromacs, the values are very close together. In order to study how our scheme
dynamically changes the prefetch levels in accordance with the above values, we
plot the benefit−cost

cost values for the two applications for the same 11 execution
intervals in Figure 18. Recall that, in the global prefetch management algorithm
presented earlier in Figure 12, the equation benefiti − costi > costi × α is used
to decide whether to increase the prefetch level or not. If the value benefit−cost

cost
is greater than α (0.2), then the prefetch level is increased and so on. Figure 19
plots the prefetch level changes made by our proposed scheme for both the
applications. Note that, at execution interval 3, the prefetch level of gromacs

Bandwidth Constrained Coordinated HW/SW Prefetching for Multicores 323

�

���

���

���

���

���

��	

� � �
 � � � 	 � ����

�
������� ���������

������� !"�

Fig. 16. Benefit
and cost values
of libq during
execution

#

#$#%

#$#&

#$#'

#$#(

#$)

#$)%

) % * & + ' , (-)#))

./0123456 �630�����

��	�
��
���

Fig. 17. Benefit
and cost values of
gromacs during
execution

����
�

���
�

���
�

���
�

���
�

� � � � � ��

�
�
�

�
!
�
"#
�

$%&'()*+, -,)&./012

3456789 :;<=

Fig. 18. Net
benefit values of
libquantum and
gromacs during
execution

7

8

9

:

;

<

8 : < = > 88

?
@A
BA
CD
E
FA
G
A
HI

JKLMNOPQR SROLTUVWX

YZ[\]^_ `abc

Fig. 19. Prefetch
levels of libquan-
tum and gromacs
during execution

is reduced to 2 because the benefit − cost value is less than zero (circled in
Figures 18 and 19). Also, at execution interval 10, when benefit−cost

cost becomes
greater than 0.2 for gromacs, the prefetch level is increased to 4. However, it is
reverted back because it was not highly benefitial. On the flipside, the prefetch
level of libq is maintained at 4 since its benefit−cost

cost values are consistently greater
than 0.2.

Sensitivity analysis. We increased the memory bandwidth from 6.4 GB/s to
12.8 GB/s and executed the workloads. An average throughput improvement of
about 7% over the best other prefetching scheme was observed. Therefore, even
with higher bandwidth, our scheme achieves significant throughput improve-
ment. We also experimented with different α values and found that a value of
0.2 provides the right balance.

6 Related Work

Hardware Prefetching. Hardware-controlled prefetching is an efficient way to
implement prefetching [15] [7] [8] that tries to mitigate the negative effect of
cold misses. Sequential prefetching automatically prefetches several consecutive
data blocks into the cache upon a miss in the cache [9] [10]. Palacharla and
Kessler investigate advanced stream buffers and filtering techniques to enhance
the prefetching efficiency [24]. Hur and Lin discuss a dynamic stream detection
technique that adapts the aggressiveness levels of prefetching in order to improve
prefetching performance [13].

Software Prefetching. Seminal work related to software prefetching was au-
thored by Mowry et al in [20], where they propose to use software controlled
prefetch instruction insertion to enable prefetching. Other software prefetching
schemes include [18] [20].

Prefetch Control. Srinath et al propose to use feedback control to improve
the positive impact of prefetching and mitigate the adverse impact of harmful
prefetches [28]. In [11], Ebrahimi et al investigate a control mechanism that can
dynamically adjust the prefetch aggressiveness levels.

324 S.P. Muralidhara, M. Kandemir, and Y. Zhang

Off-Chip Bandwidth Studies. Rixner et al [27] introduce a scheduling pol-
icy that favors requests that hit in the row buffer over other requests. Nesbit
et al suggest to prioritize memory requests of applications in accordance to their
QoS requirements [23]. Rafique et al propose to adaptively change the fraction
of memory bandwidth allocation for each thread [25]. In [14], Ipek et al study
a machine learning approach in which a reinforcement learning based scheme is
used to dynamically adapt scheduling decisions in the memory controller. Mutlu
and Moscibroda proposed a stall time fair memory access scheduling in [21] and
a parallelism-aware batch scheduling scheme in [22]. Liu et al study the effects
of memory bandwidth partitioning on system performance [17].

Prefetching and Off-Chip Bandwidth. Lee et al propose to dynamically
increase and decrease the priorities of prefetch requests at the memory controller
in order to improve the benefits due to prefetching and decrease the penalties
of inaccurate prefetchers [16]. In [12], Ebrahimi et al introduce a cooperative
hardware/sofwtare approach to prefetch linked date structures in a bandwidth-
efficient way.

In this paper, we considered the off-chip bandwidth as an important con-
straint, based on which, the prefetching levels of different cores are adjusted
such that the prefetch benefits are improved. We considered the off-chip band-
width stalls instead of the inter-core interferences [11] as the constraint. We did
so because inter-core interferences are not prefetch specific and can result from
demand accesses as well. We also modeled the benefits and costs of prefetching
in terms of performance changes in this work, which makes our scheme through-
put driven, and evaluated the comparative benefits of hardware and software
prefetching.

7 Concluding Remarks

In this paper, we proposed a smart prefetch management scheme that exploits
the performance benefits of prefetching while mitigating the performance degra-
dation due to bandwidth stalls. Our proposed scheme is very effective in practice
yielding a performance benefit of up to 8% in throughput over a bandwidth un-
aware prefetching strategy.

References

1. http://www.spec.org/spec2006
2. Micron: 1GB DDR2 SDRAM component: MT47H128M8HQ-25,

http://download.micron.com/pdf/datasheets/dram/ddr2/1GbDDr2.pdf
3. Magnusson, P.S., et al.: Simics: A full system simulation platform. Computer 35(2),

50–58 (2002)
4. Xie, Y., Loh, G.H.: Dynamic Classification of Program Memory Behaviors in

CMPs. In: CMP-MSI (2008)
5. Hetherington, R.: The UltraSparc T1 processor. SUN (2005)

http://www.spec.org/spec2006
http://download.micron.com/pdf/datasheets/dram/ddr2/1GbDDr2.pdf

Bandwidth Constrained Coordinated HW/SW Prefetching for Multicores 325

6. Tendler, J., et al.: Power4 System Microarchitecture. IBM Technical White Paper
(October 2001)

7. Baer, J.-L., Chen, T.-F.: An effective on-chip preloading scheme to reduce data
access penalty. In: Proc. SC (1991)

8. Charney, M.J., Puzak, T.R.: Profetching and memory system behavior of the
spec95 benchmark suite. IBM J. Res. Dev. (1997)

9. Dahlgren, F., et al.: Fixed and adaptive sequential prefetching in shared memory
multiprocessors. In: Proc. ICPP (1993)

10. Dahlgren, F., et al.: Sequential hardware prefetching in shared-memory multipro-
cessors. IEEE Trans. Parallel Distrib. Syst. (1995)

11. Ebrahimi, E., et al.: Coordinated control of multiple prefetchers in multi-core sys-
tems. In: Proc. MICRO (2009)

12. Ebrahimi, E., et al.: Techniques for bandwidth-efficient prefetching of linked data
structures in hybrid prefetching systems. In: Proc. HPCA (2009)

13. Hur, I., Lin, C.: Memory prefetching using adaptive stream detection. In: Proc.
MICRO (2006)

14. Ipek, E., et al.: Self-optimizing memory controllers: A reinforcement learning ap-
proach. In: Proc. ISCA (2008)

15. Jouppi, N.P.: Improving direct-mapped cache performance by the addition of a
small fully-associative cache and prefetch buffers. SIGARCH Comput. Archit. News
(1990)

16. Lee, C.J., et al.: Prefetch-aware dram controllers. In: Proc. MICRO (2008)
17. Liu, F., et al.: Understanding how off-chip memory bandwidth partitioning in chip

multiprocessors affects system performance. In: Proc. HPCA (2010)
18. Mowry, T., Gupta, A.: Tolerating latency through software-controlled prefetching

in shared-memory multiprocessors. J. Parallel Distrib. Comput. (1991)
19. Vanderwiel, S., Lilja, D.: Data Prefetch Mechanisms. ACM Computing Surveys,

CSUR (2000)
20. Mowry, T.C., et al.: Design and evaluation of a compiler algorithm for prefetching.

In: Proc. ASPLOS (1992)
21. Mutlu, O., Moscibroda, T.: Stall-time fair memory access scheduling for chip mul-

tiprocessors. In: Proc. MICRO (2007)
22. Mutlu, O., Moscibroda, T.: Parallelism-aware batch scheduling: Enhancing both

performance and fairness of shared dram systems. In: Proc. ISCA (2008)
23. Nesbit, K.J., et al.: Fair queuing memory systems. In: Proc. MICRO (2006)
24. Palacharla, S., Kessler, R.E.: Evaluating stream buffers as a secondary cache re-

placement. In: Proc. ISCA (1994)
25. Ebrahimi, E., et al.: Fairness via source throttling: a configurable and high-

performance fairness substrate for multicore memory systems. In: Proc. ASPLOS
(2010)

26. Rafique, N., et al.: Effective management of dram bandwidth in multicore proces-
sors. In: Proc. PACT (2007)

27. Rixner, S., et al.: Memory access scheduling. In: Proc. ISCA (2000)
28. Srinath, S., et al.: Feedback directed prefetching: Improving the performance and

bandwidth-efficiency of hardware prefetchers. In: Proc. HPCA (2007)

	Bandwidth Constrained Coordinated HW/SW Prefetching for Multicores
	Introduction
	Background and Methodology
	Prefetching
	Experimental Setup

	Empirical Motivation
	Prefetching Benefits
	Off-Chip Bandwidth Effects
	Prefetch Request Priority

	Bandwidth Aware Prefetching
	Core-Level Prefetch Manager
	Prefetch Levels
	Global Prefetch Manager

	Experimental Evaluation
	Related Work
	Concluding Remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

