Skip to main content

A Bio-inspired Approach to Self-organization of Mobile Nodes in Real-Time Mobile Ad Hoc Network Applications

  • Chapter
  • 1702 Accesses

Abstract

In this chapter, we study the applicability and effectiveness of an evolutionary computation approach to a topology control problem in the domain of mobile ad hoc networks (manets). We present formal and practical aspects of convergence properties of our force-based genetic algorithm, called fga, which is run by each mobile node to achieve a uniform spread. Our fga is suitable for manet environments since mobile nodes, while running the fga, only use local neighborhood information. An inhomogeneous Markov chain is used to analyze the convergence speed of our bio-inspired algorithm. To demonstrate our topology control algorithm’s applicability to real-life problems and to evaluate its effectiveness, we have implemented a simulation software system and two testbed platforms. The simulation and testbed experiment results indicate that, for important performance metrics such as the normalized area coverage and convergence rate, the fga can be an effective mechanism to deploy mobile nodes with restrained communication capabilities in manets operating in unknown areas. Since the fga adapts to the local environment rapidly and does not require global network knowledge, it can be used as a real-time topology controller for realistic military and civilian applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Boston (1998)

    MATH  Google Scholar 

  2. Yuret, D., de la Maza, M.: Dynamic hill climbing: Overcoming the limitations of optimization techniques. In: The Second Turkish Symposium on Artificial Intelligence and Neural Networks, pp. 208–212 (1993)

    Google Scholar 

  3. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Dordrecht (1997)

    Book  MATH  Google Scholar 

  4. Holland, J.H.: Evolutionary swarm robotics: Evolving Self-organizing Behaviors in groups of Autonomous Groups. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  5. Bekey, G., Agah, A.: A genetic algorithm-based controller for decentralized multi-agent robotic systems. In: Proc. of the IEEE International Conference of Evolutionary Computing, pp. 431–436 (1996)

    Google Scholar 

  6. Miryazdi, H.R., Khaloozadeh, H.: Application of genetic algorithm to decentralized control of robot manipulators. In: ICAIS 2002: Proceedings of the 2002 IEEE International Conference on Artificial Intelligence Systems (ICAIS 2002), p. 334. IEEE Computer Society, Washington, DC, USA (2002)

    Chapter  Google Scholar 

  7. Ping-An, G., Zi-Xing, C., Ling-Li, Y.: Evolutionary computation approach to decentralized multi-robot task allocation. In: International Conference on Natural Computation, vol. 5, pp. 415–419 (2009)

    Google Scholar 

  8. Song, P., Li, J., Li, K., Sui, L.: Researching on optimal distribution of mobile nodes in wireless sensor networks being deployed randomly. In: International Conference on Computer Science and Information Technology, pp. 322–326 (2008)

    Google Scholar 

  9. Heo, N.: An intelligent deployment and clustering algorithm for a distributed mobile sensor network. In: Proceedings of the IEEE International Conference on Systems Man And Cybernetics, pp. 4576–4581 (2003)

    Google Scholar 

  10. Chen, Y.M., Chang, S.-H.: Purposeful deployment via self-organizing flocking coalition in sensor networks. International Journal of Computer Science & Applications 4(2), 84–94 (2007)

    Google Scholar 

  11. Cayirci, E., Coplu, T.: Sendrom: Sensor networks for disaster relief operations management. Journal Wireless Networks 13, 409–423 (2007)

    Article  Google Scholar 

  12. Heo, N., Varshney, P.K.: A distributed self spreading algorithm for mobile wireless sensor networks. IEEE Wireless Communications and Networking (WCNC) 3(1), 1597–1602 (2003)

    Google Scholar 

  13. Wang, H., Crilly, B., Zhao, W., Autry, C., Swank, S.: Implementing mobile ad hoc networking (manet) over legacy tactical radio links. In: Military Communications Conference, MILCOM 2007, pp. 1–7. IEEE, Los Alamitos (2007)

    Chapter  Google Scholar 

  14. Sahin, C.S., Urrea, E., Umit Uyar, M., Conner, M., Ibrahim, G.B., Pizzo, C.: Genetic algorithms for self-spreading nodes in manets. In: GECCO 2008: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, pp. 1141–1142. ACM, New York (2008)

    Chapter  Google Scholar 

  15. Urrea, E., Sahin, C.S., Umit Uyar, M., Conner, M., Hokelek, I., Bertoli, G., Pizzo, C.: Bioinspired topology control for knowledge sharing mobile agents. Ad Hoc Netw. 7(4), 677–689 (2009)

    Article  Google Scholar 

  16. Sahin, C.S., Urrea, E., Umit Uyar, M., Conner, M., Bertoli, G., Pizzo, C.: Design of genetic algorithms for topology control of unmanned vehicles. International Journal of Applied Decision Sciences 3(3), 221–238 (2010)

    Article  Google Scholar 

  17. Sahin, C.S., Urrea, E., Umit Uyar, M., Conner, M., Hokelek, I., Bertoli, G., Pizzo, C.: Uniform distribution of mobile agents using genetic algorithms for military applications in manets. In: IEEE International Conference on Military Communications Conference (IEEE/MILCOM), pp. 1–7 (2008)

    Google Scholar 

  18. Hokelek, I., Umit Uyar, M., Fecko, M.A.: A novel analytic model for virtual backbone stability in mobile ad hoc networks. Wireless Networks 14, 87–102 (2008)

    Article  Google Scholar 

  19. Sahin, C.S., Gundry, S., Urrea, E., Umit Uyar, M., Conner, M., Bertoli, G., Pizzo, C.: Markov chain models for genetic algorithm based topology control in mANETs. In: Di Chio, C., Brabazon, A., Di Caro, G.A., Ebner, M., Farooq, M., Fink, A., Grahl, J., Greenfield, G., Machado, P., O’Neill, M., Tarantino, E., Urquhart, N. (eds.) EvoApplications 2010. LNCS, vol. 6025, pp. 41–50. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  20. Sahin, C.S., Gundry, S., Urrea, E., Umit Uyar, M., Conner, M., Bertoli, G., Pizzo, C.: Convergence analysis of genetic algorithms for topology control in manets. In: 2010 IEEE Sarnoff Symposium, pp. 1–5, 12–14 (2010)

    Google Scholar 

  21. Sahin, C.S.: Design and Performance Analysis of Genetic Algorithms for Topology Control Problems. PhD thesis, The Graduate Center of the City Univeristy of New York (2010)

    Google Scholar 

  22. Hu, Y., Yang, S.X.: A knowledge based genetic algorithm for path planning of a mobile robot. In: Proc. of the 2004 IEEE Int. Conference on Robotics & Automation (2004)

    Google Scholar 

  23. Ma, X., Zhang, Q., Lip, Y.: Genetic algorithm-based multi-robot cooperative exploration. In: Proceedings of the IEEE International Conference on Control and Automation, pp. 1018–1023. IEEE Computer Society Press, Guangzhou (2007)

    Google Scholar 

  24. Leigh, R., Louis, S.J., Miles, C.: Using a genetic algorithm to explore a*-like path finding algorithms. In: IEEE Symposium on Computational Intelligence and Games, pp. 72–79. IEEE, Honolulu (2007)

    Chapter  Google Scholar 

  25. Winfield, A.F.: Distributed sensing and data collection via broken ad hoc wireless connected networks of mobile robots. Distributed Autonomous Robotic Systems 4, 273–282 (2000)

    Google Scholar 

  26. Howard, A., Mataric, M.J., Sukhatme, G.S.: Mobile sensor network deployment using potential fields: A distributed, scalable solution to the area coverage problem. In: Proceedings of the International Conference on Distributed Autonomous Robotic Systems, pp. 299–308 (2002)

    Google Scholar 

  27. Tang, F., Parker, L.: Asymtre: Automated synthesis of multi-robot task solutions through software reconfiguration. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1501–1508 (2005)

    Google Scholar 

  28. Franchi, A., Freda, L., Oriolo, G., Vendittelli, M.: A randomized strategy for cooperative robot exploration. In: Proceedings of the IEEE International Conference on Robotics and Automation, Roma, Italy, pp. 768–774 (2007)

    Google Scholar 

  29. Stewart, R.L., Russell, A.: A distributed feedback mechanism to regulate wall construction by a robotic swarm. Adaptive Behavior 14, 21–51 (2006)

    Article  Google Scholar 

  30. Joordens, M.A., Shaneyfelt, T., Nagothu, K., Eega, S., Jaimes, A., Jamshidi, M.: Applications and prototype for system of systems swarm robotics. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Singapore, pp. 2049–2055 (2008)

    Google Scholar 

  31. Xue, S., Zeng, J.: Sense limitedly, interact locally: the control strategy for swarm robots search. In: Proceedings of the IEEE International Conference on Networking, Sensing and Control, pp. 402–407 (2008)

    Google Scholar 

  32. Werfel, J.: Robot search in 3d swarm construction. In: Proceedings of the First International Conference on Self-Adaptive and Self-Organizing Systems, pp. 363–366. IEEE Computer Society, Washington, DC, USA (2007)

    Chapter  Google Scholar 

  33. Saska, M., Macas, M., Preucil, L., Lhotska, L.: Robot path planning using particle swarm optimization of ferguson splines. In: Proceedings of the IEEE Conference on Emerging Technologies and Factory Automation, Prague, pp. 833–839 (2006)

    Google Scholar 

  34. Jarvis, J.P., Shier, D.R.: Graph-theoretic analysis of finite Markov chains. CRC Press, Cambridge (2000)

    Google Scholar 

  35. De Jong, K.A., Spears, W.M., Gordon, D.F.: Using markov chains to analyze gafos. In: Foundations of Genetic Algorithms, vol. 3, pp. 115–137. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  36. Horn, J.: Finite markov chain analysis of genetic algorithms with niching. In: Proceedings of the 5th International Conference on Genetic Algorithms, pp. 110–117. Morgan Kaufmann Publishers Inc., San Francisco (1993)

    Google Scholar 

  37. Suzuki, J.: A markov chain analysis on a genetic algorithm. In: Proceedings of the 5th International Conference on Genetic Algorithms, pp. 146–154. Morgan Kaufmann Publishers Inc., San Francisco (1993)

    Google Scholar 

  38. Baras, J.S., Tan, X.: Control of autonomous swarms using gibbs sampling. In: CDC – 43rd IEEE Conference on Decision and Control, vol. 5, pp. 4752–4757. IEEE, Los Alamitos (2004)

    Google Scholar 

  39. Camp, T., Boleng, J., Davies, V.: A survey of mobility models for ad hoc network research. Wireless Communications and Mobile Computing (WCMC): Special issue on Mobile Ad Hoc Networking: Research, Trends and Applications, 483–502 (2002)

    Google Scholar 

  40. Rudolph, G.: Convergence analysis of canonical genetic algorithms. IEEE Transactions on Neural Networks 5 (1994)

    Google Scholar 

  41. Winkler, G.: Image Analysis, Random Fields and Markov Chains Monte Carlo Methods. Springer, Heidelberg (2006)

    Google Scholar 

  42. Dogan, C., Sahin, C.S., Umit Uyar, M., Urrea, E.: Testbed for node communication in manets to uniformly cover unknown geographical terrain using genetic algorithms. In: Proc. of the NASA/ESA Conference on Adaptive Hardware and Systems (AHS 2009), pp. 273–280 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Şahin, C.Ş., Urrea, E., Uyar, M.Ü., Gundry, S. (2012). A Bio-inspired Approach to Self-organization of Mobile Nodes in Real-Time Mobile Ad Hoc Network Applications. In: Chiong, R., Weise, T., Michalewicz, Z. (eds) Variants of Evolutionary Algorithms for Real-World Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23424-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23424-8_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23423-1

  • Online ISBN: 978-3-642-23424-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics