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Abstract. Data cleaning and ETL processes are usually modeled as
graphs of data transformations. The involvement of the users responsible
for executing these graphs over real data is important to tune data trans-
formations and to manually correct data items that cannot be treated
automatically. In this paper, in order to better support the user involve-
ment in data cleaning processes, we equip a data cleaning graph with data
quality constraints to help users identifying the points of the graph and
the records that need their attention and manual data repairs for rep-
resenting the way users can provide the feedback required to manually
clean some data items. We provide preliminary experimental results that
show the significant gains obtained with the use of data cleaning graphs.

1 Introduction

Data cleaning and ETL processes are commonly modeled as workflows or graphs
of data transformations. The logic underlying real-world data cleaning processes
is usually quite complex. These processes often involve tens of data transforma-
tions that are implemented, for instance, by pre-defined operators of the chosen
ETL tool, SQL scripts, or procedural code. Moreover, these processes have to
deal with large amounts of input data. Therefore, as pointed out in [14], in
general it is not easy to devise a graph of data transformations able to always
produce accurate data. This happens for two main reasons. First, individual data
transformations that consider all possible data quality problems are difficult to
write. Consequently, the underlying logic needs to undergo several revisions, in
particular when the cleaning process is executed over a new batch of data. Hence,
it is important that users responsible for executing the data cleaning processes
have adequate support for tuning data transformations. Second, a fully auto-
mated solution that meets the quality requirements is not always attainable. In
general, a portion of the cleaning work has to be done manually and, hence, it
is important to also support the user involvement in this activity.

When using ETL and data cleaning tools, intermediate results obtained af-
ter individual data transformations are typically not available for inspection or
eventual manual correction — the output of a data transformation is directly
pipelined into the input of the transformation that follows in the graph. The so-
lution we envisage for this problem is to support the specification of the points in
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the graph of data transformations where intermediate results must be available,
together with the quality constraints that this data should meet, if the upward
data transformations correctly transform all the data records as expected. Be-
cause assignment of blame is crucial for identifying where the problem is, the
records responsible for the violation of quality constraints are highlighted. This
information is useful both for tuning data transformations that do not handle
the data as expected and for performing the manual cleaning of records not
handled automatically by data transformations.

While the tuning of data transformations requires some knowledge about the
logic of the cleaning process, it is useful that manual data repairing actions can
also be performed in a black-box manner, namely by the application end-users.
As already advocated in the context of Information Extraction [4], in many
situations, data consumers have knowledge about how to correctly handle the
rejected records and, hence, can provide critical feedback into the data clean-
ing program. Our proposal is that the developer of the cleaning process has the
ability to specify, in the points of the graph of data transformations where inter-
mediate results are available, the way users can provide the feedback required
to manually clean certain data items. This may serve two different purposes:
for guiding the effort of the user that is executing the cleaning process (even if
he/she has some knowledge about the underlying logic) and for supporting the
feedback of users that are just data consumers.

In this paper, we put forward a notion of data cleaning graph (DCG, for
short) that supports the modeling of data cleaning processes that explicitly
define where and how user feedback is expected as well as which data should
be inspected by the user. The operational semantics of DCGs formally defines
the execution of a data cleaning process over source data and past instances of
manual data repairs. With this semantics it is possible to interleave the tuning
of data transformations with the manual data correction without requiring that
the user repeats his feedback actions. We present experimental results that show,
for a real-world data cleaning application modeled as a DCG, the gain in terms
of the accuracy of the data produced, and the amount of user work involved.

The paper is organized as follows. Section 2 presents the motivation and an
overview of the proposed approach. In Section 3, the elements of the approach
are presented in detail. In Section 4, we present a case study of a data cleaning
process and, in Section 5, we report on the experimental results obtained that
show the usefulness of our approach. In Section 6, we discuss the related work
and in Section 7 we summarize the conclusions and future work.

2 Motivation

Let us consider that the information required for computing the research perfor-
mance metrics for a given team is collected into a database with tables Team and
Pub as illustrated in Fig.1 (a simplification of the real database used in the CIDS
system [6]). The Team table is manually filled with accurate information about
the team members. The Pub table stores the information about the citations of
team members obtained through queries posed to Google Scholar.
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The relationship that exists between the two tables, through the foreign key
tId, associates all the publications to a team member. However, this association
may be incorrect, namely due to the existence of homonyms. In our example,
the first member in Team refers to a colleague of us and the Pub record with pid 4
is not authored by him, but by a homonym. Another problem that affects these
tables is the multitude of variants that author names admit. For instance, the
records of Pub shown in Fig.1 contain two synonyms of “Carriço, L.”.
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Fig. 1. Pub and Team tables.

The computation of reliable research performance indicators for a team re-
quires a data cleaning process that, among other things, deals with the problems
of synonyms and homonyms pointed before. The Team table can be used as ref-
erence to identify and correct these problems. State-of-art procedures to solve
synonyms are based on the use of approximate string matching [12]. Names as
“Carriço, L.” in tuple 1 of Team table and “Carrico, L.” in tuple 2 of Pub table can
easily be found as matches. However, it may also happen that these procedures
find several possible correct names for the same author name. For example, “San-

tos, A.” and “Santos, A. L.” are the names of two team members and both match
the author name “Santos, A. L.” encountered in tuple 5 of the Pub table. That is
to say, both names in (“Santos, A.”,“Santos, A. L.”) and (“Santos, A. L.”, “Santos,

A. L.”) are similar enough so that both entries of the Team table are considered
as potential candidates of team member names for “Santos, A. L.”. The problem
that remains to be solved is which of the two to choose, or to decide if none of
them does in fact correspond to the individual “Santos, A. L.”. We believe that
this kind of domain knowledge can only be brought by a user that is aware of
the team members and their research work. The syntactic similarity value that
exists between the two pairs is not enough for automatically taking this decision.

The detection of homonyms in the context of names has been object of active
research. For instance, [13] has shown that the detection of homonyms among
author names can benefit from the use of knowledge about co-authorship. If this
kind of information is available, then a clustering algorithm can be applied with
the purpose of putting into the same cluster those author names that share a
certain amount of co-authors. In principle, the author names that belong to the
same cluster most probably correspond to the same real entity. The problem that
remains is how to obtain accurate co-authorship information. Clearly, automatic
methods for calculating this information from publications are also subject to
the problem of homonyms and, hence, the produced information in general is
not accurate. In this case, we believe that the problem of circularity can only
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be broken by involving the user in the cleaning of the co-authorship information
that was automatically obtained.

The example just presented shows the importance of being able to auto-
matically clean data while efficiently employing user’s efforts to overcome the
problems that were not possible to handle automatically. In this paper, we pro-
pose a way of incorporating the user involvement in these processes and present
a modeling primitive — the data cleaning graph, that supports the description
of data cleaning processes that are conceived having user involvement in mind.
A DCG encloses a graph of data transformations as used, for instance, in [17, 9].
The output of each transformation is explicitly expressed and associated with a
quality constraint. This constraint expresses the criteria that data produced by
the transformation should obey to and its purpose is to call the user attention for
quality problems in the data produced by the transformation. Additionally, the
DCG encloses the specification of the points where the manual data repairing
actions may take place. The aim of this facility is to guide the intervention of
the user (end-users included) and, hence, it is important to define which data
records can be subject to manual modifications and how. We have only consid-
ered actions that can be applied to individual data records for repairing data.
Three types of actions were found useful: remove a tuple, insert a tuple, and
modify the values of certain attribute of a tuple.

3 Data cleaning graphs

In this section we present the concept of data cleaning graph — the modeling
primitive we propose for describing data cleaning processes. We provide its op-
erational semantics through an algorithm that manipulates sets of tuples.

Terminology. We consider a set R of relations names and, for every R∈R, a
schema sch(R) constituted by an ordered set of attribute names. An instance of
a relation R is a finite set of sch(R)-tuples. We consider a set T of data transfor-
mations. Each T∈T consists of an ordered set IT of input relation schemas, an
output relation schema OT and a total function that maps a sequence of IT -tuples
to OT -tuples. We use IiT to denote the i-ary element of IT . If G is a direct acyclic
graph (DAG), we use •n and n• to denote, respectively, {m :(m,n)∈edges(G)}
and {m :(n,m)∈edges(G)} and ≤G to denote the partial order on the nodes of
G, i.e., n ≤G m iff there exists a directed path from n to m in G.

3.1 The notion of data cleaning graph

The notion of DCG builds on the notion of data transformation graph introduced
in [9]. These graphs are tailored to relational data and include data transforma-
tions that can range from relational operators and extensions (like the mapper
operator formalized in [3]) to procedural code. The partial order ≤G on nodes(G)
partially dictates the order of execution of the data transformations in the pro-
cess (transformations not comparable can be executed in any order).

A data cleaning graph is a DAG, where nodes correspond to data transfor-
mations or relations, and edges connect (input and output) relations to data
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transformations. In order to support the user involvement in the process of data
cleaning, each relation R in a cleaning graph has associated a constraint express-
ing a data quality criteria. If the constraint is violated, it means that there is a
set of tuples in the current instance of R that needs to be inspected by the user.
Quality constraints can include the traditional constraints developed for schema
design, such as functional dependencies and inclusion dependencies, as well as
constraints specifically developed for data cleaning, such as conditional func-
tional dependencies [7]. Each relation R in a cleaning graph has also associated
a set of manual data repairs. These represent the actions that can be performed
by the user over the instances of that relation in order to repair some quality
problems, typically made apparent by one or more quality constraint labelling
that relation or a relation “ahead” of R in the graph. For the convenience of the
user, it might be helpful to filter the information available in R and, thus, we
have considered that data repair actions are defined over updatable views of R1.
They can range from SQL expressions to relational lenses [2]. The examples of
manual data repairs provided in this paper consider an updatable view defined
as an SQL expression.

Definition 1. A Manual Data Repair m over a relation R(A1, ..., An) consists
of a pair 〈view(m), action(m)〉, where view(m) is an updatable view over R and
action(m) is one of the actions that can be performed over view(m):

action ::= delete | insert | update Ai
In the case where the action is update Ai, we use attribute(m) to refer to Ai.

Definition 2. A Data Cleaning Graph G for a set of input relations RI and a
set of output relations RO is a labelled directed acyclic graph 〈G, 〈Q,M〉〉 s.t.:

– nodes(G)⊆R∪T . We denote by rels(G) and trans(G) the set of nodes of G
that are, respectively, relations and data transformations.

– RI ∪RO⊆rels(G).
– n∈RI if and only if •n = ∅, and n∈RO if and only if n• = ∅ and •n 6= ∅.
– if (n,m)∈edges(G), then either (n∈R and m∈T ) or (n∈T and m∈R).
– if T ∈ trans(G) then IT={sch(R) : R ∈•T} and OT={sch(R) : R ∈T •}.
– if R ∈ rels(G) then •R has at most one element.
– Q is a function that assigns to every R∈rels(G), a quality constraint over the

set of relations behind R in G or in RI , i.e., Q(R)∈L(RI ∪ {R′ ∈ rels(G) :
R′ ≤G R}) such that Q(R) is monotonic w.r.t. R, i.e., given a set of relation
instances that satisfies Q(R), the removal of an arbitrary number of tuples
form the instance of R does not affect the satisfaction of Q(R).

– M is a function that assigns to every R∈rels(G), a set of manual data
repairs over R.

The conditions imposed on DCGs ensure that RI and RO are input and out-
put relations of the graph; relations are always connected through data trans-
formations; the input and output schemas of a data transformation are those
1 For a definition of an updatable view, see [11], for instance.
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determined by their immediate predecessors and successors nodes in the graph;
the instances of a relation in the graph result, at most, from one data trans-
formation; the quality constraints over a relation in the graph can only refer to
relations that are either in RI or behind that node in the graph and must be
monotonic w.r.t. to the relation of the node. This last condition is necessary to
ensure that quality constraints can be evaluated immediately after the data of
the relation is produced, i.e., does not depend on data that will be produced
later, by transformations ahead in the graph.

R1(pId, aId, aName, -tle) 

R3(aId, aName, tId, 
tName, -tle) 

T1: Extract all authors of each publica5on 

T3: Approximate lookup 
of author names in Team 

Team(tId,…, tName) 

R4 

R4(pId, aId, aName, tId) 

T4: Join author names  
with corresponding pId 

Clean
Pub 

R1 

… 

Mdr3:V(aId, aName, tName, 5tle):   
 select aId, aName, tName, 
       5tle 
 from blamed(Qc3) 
 delete on V; 

Team 

Pub 

Qc3: unique (aId, 5tle) 

Pub(pId, tId, -tle, authors, year, event, link, cits, citsNs) 

CleanPub(pId, tId, -tle,…,citsNs) 

T3 

T1 

T2 

R2 

R3 

R2(aId, aName, -tle) 

T4 

T2: Projects aId, aName  
and 5tle 

Fig. 2. Excerpt of a data cleaning graph for cleaning Pub table

The example sketched in Fig.2 illustrates an excerpt of the DCG required for
cleaning the Pub table introduced in Section 2. It mainly makes use of SQL for
expressing constraints and updatable views. The input relations of this DCG are
Team and Pub and there is a single output relation, CleanPub that contains only
publications authored by a member of Team. In the part of the graph that
is shown, we can see that the node R3 is labelled with the quality constraint
unique(aId, title). It is not difficult to conclude this is indeed a monotonic con-
straint over relations ≤G R. The reason for imposing this quality constraint, at
this point, is because we want to have at most one matching team member, for
each author of a publication in Pub. Since transformation T3 applies a string
similarity function to decide if two names (one from Pub and the other from
Team) are the same, it might happen that some data produced by T3 violates
this constraint. For instance, both Team members “Santos, A.” and “Santos, A. L.”

are found similar to Pub author “Santos, A. L.”. The quality constraint will call
the attention of the user to the tuples blamed for the violation.

Moreover, the functionM of this DCG assigns to the node R3 a single manual
data repair, Mdr3, that consists in the view V defined over R3 that returns only
the tuples blamed for the violation of Qc3 (this is formally defined in the next
section) and the action delete. The view V projects almost all the attributes of
the relation but we could use the view to exclude non relevant information and,
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in this way, limit the amount of information the user has to process in order to
decide which are the appropriate manual data repairs to apply.

3.2 Operational Semantics

DCGs specify the quality criteria that the instances of each relation should
meet. The records responsible for the violation are identified through the notion
of blame assignment for quality constraints.

Definition 3. Let φ be a quality constraint over a set of relations R1, ...., Rn that
is assigned to relation R. Let r and r1, ..., rn be instances of these relations s.t.
r, r1, ..., rn2φ. The blame of the violation is assigned to the set blamed(φ), which
is defined as the union of all subsets rp of r that satisfy: (1) r\rp, r1, ..., rn�φ;
(2) rp does not have a proper subset o s.t. r\o, r1, ..., rn�φ.

Each subset rp of r that satisfies the two conditions above represents a way
of “repairing” r through the removal of a set of tuples that, all together, cause
the violation of φ (a particular case of data repairs as introduced in [1]). Hence,
all tuples in r that have this type of “incompatibility” share the blame for the
violation of φ. For instance, suppose that R3 in Fig.2 has the tuples (1,“Santos, A.

L.”,“Santos, A. L.”, 2,“Managing...”) and (1,“Santos, A. L.”, “Santos, A.”, 3,“Manag-

ing...”). These tuples are blamed for the violation of the quality constraint Qc3.
Notice that this form of blame assignment is only appropriate if constraints are
monotonic in R and this is why we limit constraints to be of this type.

Data cleaning of a source of data tends to be the result of numerous iterations,
some involving the tuning of data transformations and others involving manual
data repairs. Even if the DCG developed for the problem was subject to a strict
validation and verification process, it is normal that when it is executed over the
real data, small changes in the DCG, confined to specific data transformations,
are needed. Because we do not want to force the user to repeat the data repairs
previously done that, in principle, are still valid, we define that the execution
of a DCG takes as input not only the data that needs to be cleaned but also
collections of instances of manual data repairs (mdr, for short). These represent
mdr actions enacted at some point in the past. For convenience, we consider that
instances of mdrs keep track of their type.

Definition 4. Let m be a manual data repair. If action(m) is delete or insert,
an m−instance ι is a pair 〈m, tuple(ι)〉 where tuple(ι) is a view(m)-tuple. If
action(m) is update A, an m−instance ι is a triple 〈m, tuple(ι), value(ι)〉 where
tuple(ι) is a view(m)-tuple, value(ι) is a value in Dom(A).

For instance, still referring to Fig.2, after analyzing the violation of the qual-
ity constraint Qc3 and taking the title into account, the user could conclude that
the author “Santos, A. L.” does not correspond to the team author “Santos, A.”

and decide to delete the corresponding tuple from 0R3. This would generate the
Mdr3-instance 〈mdr3, (1, “Santos, A. L.”, “Santos, A.”, “Managing...”)〉.

The execution of a DCG is defined over a source of data (instances of the
graph input relations) and what we call a manual data repair state M — a
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state capturing the instances of mdrs that have to be taken into account in
the cleaning process. Because the order of actions in this context is obviously
relevant, this state registers the order by which the instances of mdrs associated
to each relation should be executed (what comes in first is handled first).

The execution of a DCG consists in the sequential execution of each data
transformation in accordance with the partial order defined by the graph: if
T <G T

′, then T ′ is executed after T . The execution of a data transformation T
produces an instance of the relation R in T •. This relation is then subject to the
mdr instances in M(R). Then, the set of tuples in the resulting relation instance
that are blamed for the violation of the quality constraint associated to R, Q(R)
is calculated. Formally, the execution of a DCG can be defined as follows.

Definition 5. Let G = 〈G, 〈Q,M〉〉 be a data cleaning graph for a set R1, ..., Rn
of input relations. Let r1, ..., rn be instances of these relations and M be a manual
data repair state for G, i.e., a function that assigns to every relation R ∈ rels(G),
a list of instances of manual data repairs over R. The result of executing G over
r1, ..., rn and M is {〈tuples(R), tuplesbl(R)〉 : R ∈ rels(G)} calculated as follows:

1: for i = 1 to n do
2: for each∗∗ ι∈M(Ri) do
3: vr ← compute view(view(ι), tuples(Ri))
4: apply mdr(ι, vr)
5: tuples(Ri)← propagate(vr)
6: end for
7: end for
8: for i = 1 to n do
9: tuplesbl(Ri)← blamed(tuples(ri))

10: end for
11: for each∗ T ∈ trans(G) do
12: let {R′1, ..., R

′
k} = •T

13: tuples(T•)← T (tuples(R′1), ..., tuples(R
′
k))

14: for each∗∗ ι∈M(T•) do
15: vr ← compute view(view(ι), tuples(T•))
16: apply mdr(ι, vr)
17: tuples(T•)← propagate(vr)
18: end for
19: tuplesbl(T•)← blamed(tuples(T•))
20: end for

21: apply mdr(mdrInstances, vr)
22: for each∗∗ ι ∈ mdrInstances do
23: if action(mdr(ι)) = delete then
24: vr ← vr \ {tuple(ι)}
25: else if action(mdr(ι)) = insert then
26: vr ← r ∪ {tuple(ι)}
27: else if action(mdr(ι)) = update then
28: newt← tuple(ι)
29: newt[attribute(action(mdr(ι)))]← value(ι)
30: vr ← (vr \ {tuple(ι)}) ∪ {newt}
31: end if
32: end for

∗Assuming that the underlying iteration will traverse the set in ascending element order. ∗∗Assuming
that the underlying iteration will traverse the list in proper sequence.

The procedure compute view(view,setOfTuples) encodes the application of
the view to the base table constituted by the setOfTuples whereas propagate(view)
encodes the propagation of the updates applied to the tuples returned by view
to the base table. Although this algorithm defines an operational semantics for
DCGs, it must not be regarded as a proposal for the implementation of an engine
that supports the execution of DCGs. The sole purpose of this algorithm is to
formally define what is the result of executing a DCG over a source of data and
a manual data repair state.

4 Case Study

We have developed and implemented in full depth the process to clean publica-
tion citation data retrieved from the web, introduced in Section 2. The goal of
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this process is to clean the Pub table and produce a table containing only the
publications authored by at least one team member, with duplicate entries for
the same real world publication organized in clusters. The process: (i) extracts
the author names independently of the publication they are associated to; (ii)
matches each of these author names against the names stored in the Team table,
and tries to find synonyms (i.e., approximate similar names); (iii) builds the list
of co-authors for each author; (iv) removes those publications that are not au-
thored by any team member; and (v) detects and clusters approximate duplicate
publication records.

The DCG that models this process is presented in Fig. 3 and in the two tables
presented in Fig. 4. It presents slight differences with respect to the excerpt
presented in Fig. 2, because therein we made some simplifications (more details
can be found in [10]). The condition that an author of each publication can
only match one team member is now checked through the quality constraint
Qc6 that is imposed after the user gives feedback about the co-authorship tuples
(through Mdr5). The data transformation T5 was introduced for gathering the co-
authorship information about each author. The co-authorship information, after
being validated by the user, can provide additional knowledge that is helpful
for automatically deciding whether an author name in a publication refers to a
team member.

Based on the matching name pairs produced by T3 and T4, and on the co-
authorship tuples produced by T5, the transformation T6 is able to distinguish,
among the set of authors for each publication, those who belong to the team from
those who do not. The user feedback provided through Mdr6 confirms whether the
information automatically produced is true. Finally, T7 discards the publication
records whose list of authors does not contain a team member. Besides producing
Pub records that concern only team members, the goal of the graph is also to
put together Pub records that concern the same real world publication. To this
end, the publication records must be compared in order to identify entries that
constitute approximate duplicates. For this purpose, transformations T9 and T10

match pairs of publications, and cluster the matched publications.

Other quality constraints were introduced in the graph to call the user’s
attention for anticipated data problems. Qc0 and Qc8 call the user attention
for analyzing and correcting tuples that have the word “others” in its authors

attribute value, and tuples that correspond to single-author publications (i.e.,
by checking if the author attribute value does not contain the conjunction “and”,
which connects two or more authors names), respectively. Quality constraints
Qc3 and Qc9 are imposed on the result of the matching operations encoded in T3

and T9, respectively, that consider the existence of two threshold values. Pairs of
records whose computed similarity is below the inferior threshold are considered
as non-matches and discarded by the transformations. Pairs of records whose
similarity is above the inferior threshold are considered as candidate matches
and returned as a result of the data transformations. Those resulting records
whose similarity value (stored in the sim attribute) is inferior to the superior
threshold violate the corresponding quality constraints (Qc3 and Qc9). These
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Fig. 3. Data cleaning graph for the case study.

records do not have a sufficiently high value nor a sufficiently low value of the
sim attribute, so the user must analyze them. Then, through Mdr3 and Mdr9, the
user may decide whether the corresponding pairs of author names or publications
are considered as matches, by modifying the sim value accordingly (1 for matches,
and 0 for no matches).
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Fig. 4. Quality constraints and manual data repairs of the DCG.

5 Experiments

We performed a set of experiments to evaluate the benefits of involving the user
in the data cleaning process described in Section 4. We focused on two different
aspects: the data quality obtained at the end of the data cleaning process and
the cost of the manual activities that have to be performed by the user.

The experiments were performed with the AJAX data cleaning prototype[8],
over a subset of the database of the CIDS[6]. These experiments required to
implement two data cleaning programs: P1 complying with the data transforma-
tion graph presented in Fig.3 and P2 complying with the data transformation
graph presented in Fig.3 and capturing, as closest as possible with the means
available, the quality constraints presented in the first table presented in Fig.4.
Quality constraints in P2 were encoded inside transformations, making use of
exceptions as supported by AJAX. As a result, the tuples available for user in-
spection are not those blamed for the violation but those that originate a blamed
tuple. Moreover, the tuples that raise exceptions are not available as input for
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the transformations ahead in the graph. However, for the evaluation purpose at
hand, these differences were considered to be neglectable.

We performed the following cleaning tasks. Task1: the manual cleaning of
the Pub table. Task2: the execution of P1 and the manual intervention of the
user over the produced data in the output CleanPub table so that it contains
all publications that are authored by at least one team member with duplicates
organized in clusters. Task3: the execution of the P2 and the manual intervention
of the user over the produced data in the CleanPub table guided by the rejected
tuples in the different points of the program. Task4: the execution of the data
cleaning program and, after receiving user feedback, the re-execution of parts
of it — with the user involvement guided by the rejected tuples and the mdrs
presented in the second table presented in Fig.4.

The metrics used to evaluate the quality of the CleanPub records produced are
recall and precision. TD Recall (TD R) is given by the number of CleanPub tuples
that are authored by the team (i.e., authored by at least one team member)
divided by the number of CleanPub tuples authored by the team that should have
been produced. TD Precision (TD P) is given by the number of CleanPub tuples
that are authored by the team divided by the number of CleanPub tuples that
were produced. DD Recall (DD R) is given by the number of pairs of CleanPub

tuples that were correctly identified as duplicates (i.e., the ones with the same
value of the clusterId attribute and that correspond to the same real publication)
divided by the total number of pairs of CleanPub tuples that should have been
identified as duplicates. DD Precision (DD P) is given by the number of pairs
of CleanPub tuples that were correctly identified as duplicates divided by the
number of pairs of CleanPub tuples that were identified as duplicates.

To evaluate the cost associated to the user feedback, we consider the following
metrics that we believe can capture the most relevant aspects of user interaction:
the number of characters the user needs to visualize in order to decide which data
corrections need to be undertaken; the maximum number of characters that may
need to be updated, when attribute values are modified; the maximum number
of characters that may need to be deleted or inserted, when tuples are deleted or
inserted; and the number of tuples that need to be updated, deleted or inserted.
The number of characters is given by the multiplication of the number of tuples
by the sum of the sizes of each attribute.

We used an instance of the CIDS database, that contains 509 and 24 tuples
in the tables Pub and Team, respectively. It includes all the publication records
returned by Google Scholar for five members of the team, chosen beforehand.
First, we performed Task1 and obtained the cleaned version of this instance by
manually cleaning it. This process was performed by retrieving information from
the member’s home pages and DBLP. Then, the cleaned Pub table obtained was
checked and eventually corrected by each team member. The manually cleaned
publication table, named CleanPub1, was used as a reference for computing the
quality of the data cleaned automatically and the impact of user feedback.

Data accuracy. To compute the gain of data quality obtained when incorpo-
rating the user feedback, we performed Task2, Task3 and Task4. The resulting
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publication records obtained in each of these cases were stored in tables named,
CleanPub2, CleanPub3, and CleanPub4, respectively. The recall and precision (both
TD and DD) of the CleanPub3 and CleanPub4 tables were 100%. We recall that, in
both cases, the manual corrections applied by the user are guided by rejected tu-
ples. In the case of CleanPub2, 70% of TD R, 78% of DD R and 100% of precision
were obtained. In fact, in Task2, the user only has access to the data produced
at the end of the data cleaning process and so there is no way of recovering
the data tuples that were not properly handled by some data transformations.
Overall, these data accuracy values can be considered as good, but there is a
trade-off between data accuracy and the cost of user feedback required.

In the case of Task4, to analyze the effect of the different mdrs in the final
result, we measured the values of precision and recall after applying each mdr.
We considered that after the mdr instances were applied, the remaining of the
DCG was re-executed and the precision and recall of CleanPub4 data was re-
computed. The results obtained are summarized in Table 1. We notice that the
precision and recall values greatly improved with the user’s feedback via mdrs.
The non-increasing values of DD P when Mdr8 is applied are justified by the
existence of pairs of tuples that correspond to the same single-author publication
but whose similarity is inferior to 0.8. These pairs of tuples violated Qc8 and,
because we use AJAX exception mechanism for “simulating” quality constraint
violation, they were not delivered to transformation T9.

mdr TD P TD R DD P DD R

none 0.83 0.70 0.98 0.76

Mdr0 0.83 0.70 0.98 0.76

Mdr3 0.85 0.80 0.98 0.91

Mdr5 1 0.92 0.98 0.91

Mdr6 1 0.92 0.98 0.91

Mdr8 1 1 0.93 0.93

Mdr9 1 1 1 1

Table 1. Precision and Recall for
CleanPub4 table.

Cost/Task Task1 Task2 Task3 Task4

Visualization 200,000 137,000 115,000 32,000

# deleted tuples 164 56 56 134

Deletion 33,500 11,500 11,500 7,500

# updated tuples 121 2 32 21

Updating 2,600 40 800 150

# inserted tuples 0 0 68 0

Insertion 0 0 14,000 0

Table 2. Cost of user feedback.

Cost of user feedback. We also wanted to find out whether the approach of
incorporating the user feedback into the DCG (embodied by Task4) facilitates
the work of the user when compared to other approaches. For this purpose, we
measured the cost associated to the user actions performed in the four tasks
referred above. The results obtained are presented in Table 2. The cost of data
visualization, updating, deletion and insertion are approximate values.

In Table 2, we observe that the use of quality constraints and mdrs in Task4

greatly decreases the cost of data visualization with respect to the other tasks.
Notice that this result is even true when comparing the cost of data visualization
incurred in Task2, which only considers the data produced at the end of the
data cleaning process. This result can be explained by the existence of quality
constraints that were specified in such a way that only the set of tuples blamed
by constraint violations are shown to the user. In other cases, the mdrs define
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judiciously the data the user needs to analyze in order to decide which action
must be applied.

In what concerns the cost of the user feedback incurred in each task, we also
observe that the use of mdrs also decreases substantially the number and cost
of user actions that must be applied to manually correct data. In comparison
to Task1 and Task3, the results obtained by Task4 are significantly improved.
Although in Task4 the user deletes a higher number of tuples than in Task3, the
cost of delete in Task4 is lower than the corresponding cost in Task3 because
the user has to analyse a smaller amount of data in order to apply each delete
action. With respect to Task2, the obtained results are slightly better than
Task4 because in Task2 the user actions are only applied over data produced at
the end of the data cleaning process and, therefore, the rejected tuples are not
analyzed, resulting in significantly worst recall values (70% of TD R and a 78%
of DD R). Overall, the results show that the use of the new primitives addressing
the user feedback (Task4) may significantly improve a data cleaning process.

6 Related work

Error handling in ETL and data cleaning tools. In current commercial
ETL and data cleaning tools, the developer can specify that input records not
handled by some pre-defined operators are written into a log file whose contents
can be later analyzed by the user. However, no user feedback provided on the
data stored in these files can be re-integrated in the flow of data transformations.
In some tools (e.g. SQL Server Integration Services), it is possible to partially
overcome this limitation, by explicitly specifying an error output flow for some
data operators that can be later analyzed by the user or considered as input of
further data operators.

Support for error handling in the context of data cleaning was investigated
in the context of prototypes AJAX [9] and ARKTOS [18] through the notion of,
respectively, exception and rejection. Both notions correspond to input tuples
that are not properly handled by a given data transformation. Rejected tuples
and exceptions are stored in a specific table whose schema is the same as the
input schema of the transformation (in ARKTOS) or contains the key of the
input tuples (in AJAX). The purpose of this information is to call the user’s
attention for data items not correctly handled in specific points of the graph of
data transformations. However, these solutions do not provide the support we
believe should be available at the modelling level of data cleaning processes. For
instance, AJAX exceptions rely on relational technology to detect the occurrence
of integrity constraint violations. As a result, in many situations it is not possible
to predict which are the tuples that will be identified as exceptions because it will
depend on the order in which tuples of the input tables are processed (typically
not under the control of the developer). Other initiatives to encode data quality
rules and store the records that violate them have taken place (e.g., [16]).
User feedback. The incorporation of user feedback has shown to be useful
in several automatic tasks. For example, Chai et al [4] propose a solution to
incorporate the end-user feedback into Information Extraction programs. An
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Information Extraction program is composed by a set of declarative rules. The
developer writes some of these rules with the purpose of specifying the items of
data the users can edit and the user interfaces that can be used. Analogously,
we are proposing a way of specifying the exact points in the graph of data
transformations where the user can provide feedback to improve the quality of
the produced data. Moreover, we are limiting the amount of information the user
can visualize and provide some guidance for the manual modification of data.
In the context of data cleaning, Potter’s Wheel [15] offers a graphical interface
through which the developer can specify and quickly debug data cleaning rules
that are applied to samples of data.
Data repairs. In [5], Cong and colleagues propose a framework for data cleaning
that supports algorithms for finding repairs for a database and a statistical
method to guarantee the accuracy of the repairs found. As noted in Section 3,
the notion of blamed tuples introduced in this paper is based on the concept
of database repair (considering that repair operations are limited to deletion of
tuples). We consider as blamed for the violation of a data quality constraint
associated to a relation of a database, those tuples in the relation instance that
belong to some repair of the database.

Recently, [19] puts forward a system for guiding data repairing that explic-
itly involves the user in the process of checking the data repairs automatically
produced by the algorithms introduced in [5]. In particular, the authors focused
on ranking the repairs in such a way that the user effort spent in analyzing use-
less information is minimized. In this paper, we aim at reaching the same goal:
to minimize the user effort when providing feedback in a data cleaning process.
However, in the current version of our research, we do not provide any method
for clustering or ranking the tuples that violate constraints. For the moment,
we claim that by disclosing a limited set of records to the user, we are able to
reduce the amount of data that he/she needs to analyze and eventually modify.

7 Conclusions

In this paper, we address the problem of integrating the user feedback in an
automatic data cleaning process. We propose the notion of data quality constraint
that may be associated to any of the intermediate relations produced by data
transformations in a DCG. We also propose that a DCG specifies manual data
repairs, that to some extend can be regarded as a kind of wizard-based form
that limits the amount of data that can be visualized and modified. We have
performed preliminary experiments with a real-world data set that show the
gain of data quality achieved when the user feedback is incorporated and that
the overhead incurred by the user, when providing feedback guided by quality
constraints and mdrs, is significantly inferior to the effort involved in cleaning
rejected records in an ad-hoc manner.

As future work, we plan to modify the definition of updatable view that
is used in the definition of mdrs so that the join of base relations is possible.
Special care must be taken so that the view remains updatable in the sense that
the updates can always be propagated to the base relations. In addition, the
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concept of DCG and corresponding operational semantics must be adequately
supported by a software platform that should efficiently compute the set of
blamed tuples for a given quality constraint violation, enable the automatic re-
application of past user actions, and support the incremental execution of data
transformations.
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