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Abstract. Inrecent years, there has been a large increase in the amount
of spatial data obtained from remote sensing, GPS receivers, communi-
cation terminals and other domains. Data warehouses help in modeling
and mining large amounts of data from heterogeneous sources over an
extended period of time. However incorporating spatial data into data
warehouses leads to several challenges in data modeling, management
and the mining of spatial information. New multidimensional data types
for spatial application objects require new OLAP formulations to sup-
port query and analysis operations on them. In this paper, we introduce
a set of constructs called C® for defining data cubes. These include cat-
egorization, containment and cubing operations, which present a funda-
mentally new, user-centric strategy for the conceptual modeling of data
cubes. We also present a novel region-hierarchy concept that builds spa-
tially ordered sets of polygon objects and employs them as first class
citizens in the data cube. Further, new OLAP constructs to help define,
manipulate, query and analyze spatial data have also been presented.
Overall, the aim of this paper is to leverage support for spatial data in
OLAP cubes and pave the way for the development of a user-centric
SOLAP system.
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1 Introduction

Data warehouses and OLAP systems help to analyze complex multidimensional
data and provide decision support. With the availability of large amounts of
spatial data in recent years, several new models have been proposed to enable
the integration of spatial data in data warehouses and to help analyze such data.
This is often achieved by a combination of GIS and spatial analysis tools with
OLAP and database systems, with the primary goal of supporting spatial anal-
ysis dimensions, spatial measures and spatial aggregation operations. However,
this poses several new challenges related to spatial data modeling in a multidi-
mensional context, such as the need for new spatial aggregation operations and
ensuring consistent and valid results. Moreover, existing commercial geographic



data management systems force database designers to use logical data structures
heavily influenced by implementation concerns. This paper takes an unique ap-
proach to alter this implementation dependent view for modeling OLAP sys-
tems, by using a lattice theoretic approach based on the (hyper)cube metaphor
to model multidimensional data. We present a user-centric conceptual modeling
strategy that incorporates spatial data as first class citizens in data hierarchies.
The modeling and querying of complex hierarchical structured multidimensional
data in a large scale presents interesting challenges through the entire spectrum
of spatial data warehouse development from designing conceptual data models
accommodating complex aggregations on hierarchical, multidimensional spatial
data, to developing the logical schema and finally, storage and the physical im-
plementation. In this paper, we focus on the conceptual data model design that
would allow the user to easily yet effectively create spatial data cubes, and navi-
gate and analyze them. The model we present here is an extension of the BigCube
approach [1] that presents a strict type structured hierarchy of classes to model
the hierarchical data dimensions in data cubes. We start by introducing a new
region-hierarchy or regH representation for complex structured region objects
into a partially ordered lattice structure. Then, we introduce the C® constructs,
which stand for the three primary constructs required for data-cube creation and
maintenance, namely, Categorization, Containment and Cubing or Combination.
Categorization helps to organize base data values into meaningful categories,
containment helps to assign a hierarchy of ordering over the categories, and fi-
nally cubing forms an association between categories of different hierarchies in
order to signify a new subject of analysis (measure value). Further, we also in-
troduce new OLAP formulations to support the spatial data in cubes, such as
the geo_ construct operator which allows the creation of new spatial regions from
complex region hierarchies to facilitate analysis.

The rest of this paper is organized as follows. Section 2 reviews existing work
in spatial data warehousing and provides a case study in the form of a Product
Sales data cube that is used in the rest of the paper. Section 3 presents the regH
concept, which is a region-hierarchy specification to help incorporate complex
structured spatial objects in data warehouses for performing analysis. Section 4
presents the C3 constructs for spatial data cube definition and construction.
Section 5 presents new OLAP formulations such as geo_ construct, slice and
dice, and discusses spatial topological relations among complex regions using
the poset structures. Finally, Section 6 concludes the paper and mentions topics
for further research.

2 Related Work

Spatial data warehousing (SDW) has become a topic of growing interest in recent
years. This is primarily due to the explosion in the amount of spatial information
available from various sources such as GPS receivers, communication media,
online social networks and other geo-spatial applications. Consequently several
spatial OLAP tools are now available to help model and analyze such data.



An early approach to spatial online analytical processing (SOLAP) is [2],
which mentions essential SOLAP features classified into three areas of require-
ments. The first is to enable data visualization via cartographic (maps) and
non-cartographic displays (e.g., 2D tables), numeric data representation and the
visualization of context data. Second, data exploration requires multidimensional
navigation on both cartographic and non-cartographic displays, filtering on data
dimensions (members) and support for calculated measures. The third area dis-
cussed involves the structure of the data, for example, the support for spatial and
mixed data dimensions, support for storage of geometric data over an extended
time period, etc. The conceptual design models for spatial data warehouses are
extensions of ER and UML diagrams or ad-hoc design approaches. Among exten-
sions of ER models, [3] presents a clear integration of spatial data for OLAP by
extending the MultiDimER and MADS approaches. Among other ad-hoc design
approaches, [4] presents a formal framework to integrate spatial and multidimen-
sional databases by using a full containment relationship between the hierarchy
levels. In [5], the formal model from [6] is extended to support spatially over-
lapping hierarchies by exploiting the partial containment relations among data
levels, thus leading to a more flexible modeling strategy. For a comprehensive
review of spatial data warehouse design models the reader is referred to [7, §].

For modeling spatial data there are now several established approaches in the
database community. [9, 10] provide a robust discussion of spatial data types by
introducing types such as point, line and region for simple and complex spatial
objects and describe the associated spatial algebra. Composite spatial objects
(collections of points, lines and regions) are presented as spatial partitions or map
objects. Similarly, the Open GIS Consortium also provides a Reference Model
[11] as a standard for a representing geo-spatial information. Qualitative spa-
tial operations include topological relations [12] such as disjoint, meet, overlap,
equal, inside, contains, covers and coveredBy, and cardinal direction relations.
Quantitative relations on spatial objects include metric operations based on the
size, shape and metric distances between objects or their components. All these
operations can be used to query and analyze spatial data in the data warehouse.

3 Modeling Data Cubes With Complex Spatial Data

In this section, we describe a new approach to design and model cubes for com-
plex, hierarchical, multi-structured data. Spatial data such as points, lines and
polygons or regions often display such semantics. Consider for example, Figure 1
that illustrates a complex region object which consists of three regions with one
of them inside the hole of another. The figure also displays a single face of a re-
gion object (which can also be regarded as a simple region) with multiple holes.
To facilitate the handling of such complex data in multidimensional data cubes,
we introduce the regH or region-hierarchy concept that aims to provide a clear
hierarchical representation of a complex region that can be incorporated as first
class citizens into spatial data cubes.
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Fig. 1. Tllustration of (a) a complex region object with three faces and its interior,
boundary and exterior point sets, and (b) a single face, also denoted as a simple region
with holes.

The first step to accommodate complex spatial data in OLAP cubes is to
explore and extract the common properties of all structured objects. Unsurpris-
ingly, the hierarchy of a structured object can always be represented as a directed
acyclic graph (DAG) or more strictly, as a tree.

Figure 2a provides a more detailed visualization of a complex region object
with three faces labeled as F1, F2 and F3. The interior, exterior and boundary
point sets of the region are also displayed. After performing a plain-sweep op-
eration the cyclic order of the region’s boundary is stored to represent a each
face uniquely. Figure 2b shows such as tree structure of a region object. In the
figure, face[ |, holeCycle[ ], and segment[ | represent a list of faces, a list of hole
cycles and a list of segments respectively. In the tree representation, the root
node represents the structured object itself, and each child node represents a
component named sub-object. A sub-object can further have a structure, which
is represented in a sub-tree rooted with that sub-object node. For example, the
region object in Figure 2a consists of a label component and a list of face com-
ponents. Each face in the face list is also a structured object that contains a face
label, an outer cycle, and a list of hole cycles, where both the outer cycle and
the hole cycles are formed by segments lists.

Further, we observe that two types of sub-objects can be distinguished called
structured objects (SO) and base objects (BO) [13]. Structured objects consist of
sub-objects, and base objects are the smallest units that have no further inner
structure. In a tree representation, each leaf node is a base object while inter-
nal nodes represent structured objects. A tree representation is a useful tool
to describe hierarchical information at a conceptual level. However, to give a
more precise description and to make it understandable to computers, a for-
mal specification would be more appropriate. Therefore, we propose a generic
region-hierarchy as an alternative of the tree representation for describing the
hierarchical structure of region (or multi-polygon) objects. Thus, we can define
the structure of a region object from Figure 2b with the following structure
expression: (region : SO) := (regionLabel : BO){face : SO)[ ]. In the expres-
sion, the left side of := gives the tag declaration of a region object and the
right side of := gives the tag declarations of its components, in this case, the
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Fig. 2. Illustration of a complex structured region showing faces F1 (containing cycles
C1 and C2), F2 (cycle C3) and F3 (cycle C4), and a hierarchical representation for the
region (or multi-polygon) object.

region label and the face list. Thus, we say the region object is defined by this
structure expression. Using this representation, we can now recursively define
the structure of structured sub-objects until no structured sub-objects are left
undefined. A algebraic list of structure expressions then forms a specification.
We call such a region specification that consists of structure expressions and is
organized following some rules a region-hierarchy or regH.

It can be observed that the conversion from a tree representation to the
regH is simple. The root node in a tree maps to the first structure expression in
the region-hierarchy. Since all internal nodes are structured sub-objects and leaf
nodes are base sub-objects, each internal node has exactly one corresponding
expression in the regH, and leaf nodes require no structure expressions. The
regH for a region object corresponding to the tree structure as in Figure 2a is
thus defined as follows:

region : SO) := (regionLabel : BO)(face : SO)|[ |;

face : SO) := (faceLabel : BO)(outerCycle : SO){holeCycle : SO} ;
outerCycle : SO) := (segment : BO)| |;

holeCycle : SO) (segment : BO)| ];

o~ o~ o~ o~

The region-hierarchy provides a unique representation for complex multi-
structured regions. This can be incorporated into data hierarchies in OLAP
cubes by using the extract and union operators specified in section 5.

4 Data Model and C3 constructs

In this section, we present our data model for multidimensional data cubes sup-
porting complex hierarchical spatial objects. These are extensions to the BigCube
approach [1], which is a conceptual metamodel for OLAP data defined over sev-
eral levels of multidimensional data types.

To support complex objects in data warehouses we need new constructs that
can handle data with complicated structures. However to keep the data ware-
house modeling user-friendly, the approach taken for conceptual modeling and
for applying aggregations must be simple. The C® constructs presented here
satisfy both these requirements by providing the analyst with three simple and



logical operations to construct data cubes, namely categorization, containment
and cubing. Later by using classical OLAP operations such as slice, dice, rollup,
drilldown and pivot, users can navigate and query the data cubes.

Categorization helps to create groupings of base data values based on their
logical and physical relationships. Containment helps to organize the data cate-
gories into levels and place them in atleast a partial ordering in order to construct
hierarchies. Cubing or Combination takes different categories of data from the
various hierarchies an helps to create a data cube from them by specifying mean-
ingful semantics. This is done by associating a set of members defining the cube
to a set of measures placed inside the cube. Further, each of the C® constructs
have a set of analysis functions associated with them, called the A-set. An A-set
can include aggregation functions, query functions such as selections, and user-
defined functions (UDFs). Since aggregations are fundamental to OLAP cubes,
we first introduce the definition of an A-set in Definition 1.

Definition 1. Analysis set or A-set . An analysis set or A-set is a set of
functions defined on the components of a data cube that are available for aggre-
gation, querying and other user-defined operations. An A-set has the following
algebraic structure:

A=<{ay,....,an}, {ql,....;qn}, {ul, ..., un} >

where, a; represents the ith aggregation function available, q; the it" query
function available and u; the i*" user-defined function (UDF) available in that
particular cube component.

The A-set is available as part of every category, hierarchy, perspective (data
dimension) and subject of analysis (fact) in the data cube. The operations on the
constituent elements of these cube components are specified by its corresponding
A-set .

Next, to facilitate the development of the C® constructs and additional OLAP
formulations, we present some necessary terminology and definitions based on
lattice theory [14] and OLAP formalisms [15,1].

Definition 2. Poset and its Top and Bottom Elements A partially ordered
set or poset P is a set with an associated binary relation = that for any z, y and
z, satisfies the following conditions:

Reflexivity : <z
Transitivity : Vi<yandy<z=zx<z
Anti-Symmetry Ve <y andy<z=z=y

For any S C P, m € P is a maximum or greatest element of S if Vx € S :
(m > z), and is represented as maxP. The minimum or least element of P is
defined dually and represented as minP. A poset (P, <) is a totally or linearly
ordered set (also called chain) if Vz,y € P = x < yory < x With an induced
order, any subset of a chain is also a chain.
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Fig. 3. Product-Sales BigCube (a) structure shows three perspectives: Time, Product
and Location that define two subjects of interest: Sales-Quantity and Sales-Profit, and
a (b) sample instance.

The greatest element of P is called the top element of P and is represented
as T, and its dual, the least element of P is called the bottom element of P and
represented as L.

A non-empty finite set P always has a T element (by Zorn’s Lemma). OLAP
cubes often contain sparse data. To ensure that a bottom element exists and to
make the OLAP operations generically applicable to all multidimensional cube
elements, we perform a lifting procedure where given a poset P (with or without
1), take an element 0 ¢ P and define < on P| = PU{0}as:z <y iff e =0 or
x <yinP.

Definition 3. Lattice Let P be a poset and let S C P. An element u € P called
an upper bound of S if Vs € S : (s < w). Dually, an element [ in P is called
the lower bound of S if Vs € S : (s > 1). The set of all upper bounds and lower
bounds is represented as S* and S' respectively.

St={ueP|(VseS):s<u}
St ={leP|(Vs€8):s>1}

An element z is called the supremum or the least upper bound of S if: x € S
and Vx,y € S* : x < y. This is represented as supS or VS. The infimum or the
greatest lower bound of S is defined dually and represented as infS or NS. A
non-empty ordered set P is called a lattice if Vx,y € P:xVy and z Ay.

Ezxample: Consider the classical product-sales multidimensional dataset as shown
in Figure 3a. The data cube has product, location and time perspectives (or
data dimensions), and sales quantity and profit, for example, as the subjects
of analysis (or facts). There are several hierarchies on location perspective such
as {city,county,zone,country} and {city,state,country}. An instance of the data
cube is shown in Figure 3b.



The basic data that needs to be stored (and later analyzed) in the data
warehouse are values such as 1500 (of type int) for the profit in USD and
“Gainesuville” (of type string) for the City name. These are called the base data
values of the dataset. The base data type for each value is indicated within
parenthesis. According to their functionality, base data values can be either
members when used for analysis along data dimensions, or measures when used
to quantify factual data. Now we introduce the C® constructs and supporting
OLAP formulations.

Real-world data always has some form of symmetric and asymmetric nature
associated with its base data values. For e.g., all persons working in a University
can be employees (symmetric relationship). Employees could be students, faculty
or administrators (asymmetric relationship).

Definition 4. The first C in C3: Categorization. A categorization construct
defines groupings of base data values based on the similarity of data as: (C, A.)
where C is a category (collection of base values) and A is a set of analysis
functions that can be applied on the elements of C. The base data values can be
members or measures of the data warehouse.

The exact semantics of categorization relationships are defined in one of three
ways: arbitrary (for e.g., split 100 base values into 10 categories equally according
to some criteria), user-defined (for e.g., Gainesville, Chapel Hill and Madison
can be categorized as College Towns), or according to real-world behavior (such
as spatial grouping, for e.g., New Delhi, Berlin and Miami can be categorized
as Clities). Examples of A-set functions on such categories include string con-
catenation, grouping (nesting) and the multiset constructor.

Ezample: In our case study, two examples of categories are City={(“Gainesville”,
“Orlando”, “Miami”)} and Profit={ (“1500, “10000, “45000”)} for the profit in
USD. These are of types string and int respectively.

Definition 5. Category, Category Type and CATEGORY. A category
of elements c € S,S C BASE, is a grouping of base data values such that a
valid categorization relationship exists among the set of elements. A category
type, provides the multiset data types for each category. The set of all available
category types is defined as a kind CATEGORY.

Categories help us to construct higher levels of BigCube types, namely hierar-
chy, perspective and subject. Hierarchies are constructed using the containment
construct over the categories, and perspectives are defined as a combination of
hierarchies.

Definition 6. The second C in C3: Containment. The Containment con-
struct helps to define hierarchies in the data. These data hierarchies are modeled
as partially ordered sets (or posets) to use an extensible paradigm that supports
different kinds of ragged and unbalanced hierarchies. The containment construct



takes one or more data categories and builds a new partial ordering (data hierar-
chy) from it. These data hierarchies are part of the generalized lattice structure
that is established by the partial ordering of the constituent categories.

The containment construct is defined as a set inclusion from one level to
another as < P,Q,=, A >, where P and Q) represent the categories of data on
which = holds. The containment construct is analogous to a single path between
two levels in a poset. The set of analysis functions that are applicable on a
particular containment are available in A. These functions can be applied which
moving from the elements of one category to another. This helps to uniquely
define operations on specific hierarchical paths in the perspectives of the cube.

The semantics of the containment construct is defined by: (i) any arbitrary
containment, for e.g., fifteen base data values can be ordered into a four- level
hierarchy using the structure of a balanced binary tree, (ii) user-defined contain-
ment : for e.g., products can be ordered into a hierarchy based on their selling
price, (iii) according to real-world behavior: these reflect the fact that a higher
level element is a context of the elements of the lower level, it offers constraint
to the lower level values, it evolves at a lower frequency than the lower level
elements, or that it contains the lower level elements. To define the multidi-
mensional cube space we now need to third C in C® which is the cubing or
combination construct. Before arriving at this, we first need to define the direct
product of two lattices.

Definition 7. Direct Product. The direct product P x @QQ of two posets P and
Q is the set of all pairs (x,y),x € P and yin@ such that (x1,y1) < (x2,y2), iff
1 <wg in P andy; <ys in Q.

The direct product generates new ordered sets from existing posets. The
direct product Ly X L of two lattices Ly and Lo is a lattice with T := (x1,y1) A
(x2,y2) = (1 Ax2,y1 Ay2) and L := (z1,y1) V (z2,y2) = (x1 V22,31 Vy2) for all
x1,y1 € L1, xa,y2 € Lo and (z1,y1), (x2,y2) € L1 X La. The use of direct product
enables the creation of perspectives and subjects of analysis from a combination
of member and measure value lattices.

Definition 8. The third C in C?: Cubing or Combination. The Combi-
nation construct helps to map two semantically unique categories of data wval-
ues by a set of analysis functions. Given two ordered sets of categories P and
Q, we define a order-preserving (monotone) mapping ¢ : P — Q such that
ifr <yinP = ¢o(x) < p(y) in Q. Now, the combination construct is defined
as (P, Q, ¢, A), where A is the set of analysis functions that can be applied on
the combination relationship.

A collection of lattices are together taken as perspectives combine to deter-
mine the cells of the BigCube, each containing one or more subjects of analysis.
Semantically, subjects of analysis are thus unique, in that they are functionally
determined by a set of perspectives, however, they are structurally similar to
perspectives in being a collection of lattices.



Definition 9. BigCube. Given a multidimensional dataset, the BigCube cell
structure is defined as an injective function from the n-dimensional space defined
by the Cartesian product of n functionally independent perspectives P (identi-
fied by its members) to a set of r subjects (identified by its measures) S and
quantifying the data for analysis as:

fs: (P1 ®P2®--~®Pn)—>5i
wherei € {1,...r} A (S;,P) € BASE

The complete BigCube structure is now defined as a union of all its cells, given
as:

BigCube (B)= | ) S
iE{l,...’r‘}, fB

5 Spatial OLAP formulations with the C® Constructs

In this section, we present OLAP formulations that help to apply analysis oper-
ations on data cubes with complex spatial data by using the C® constructs on
the BigCube model.

First, we analyze how data cubes can be easily designed and modeled using
the C® constructs as follows. The basic, low-level data types are available in the
kind BASE. These include alphanumeric, time and geo-spatial data types. Ele-
ments of these types are the base data values which are first organized into Cat-
egories by using the categorization construct. This means that for e.g., “GNV”,
“LA”, “MIN” can be a category of cities. Analysis functions can be associated to
the domain of the categories. For e.g., we can define a union function that takes
the elements of cities and performs a union operation to yield a new polygon
(country). The geo_ construct operation allows to extract any face of the com-
plex region from the regH and construct a new region from it, for example, a
city (Gainesville) from the country (USA). This is done using three topological
operations interior, boundary and closure that remove possible anomalies such
as dangling points or lines in the structure of the region. The interior A° of a
region A is given by the set of points contained inside the region object. The
boundary 0A gives the set of points covering the object. Thus, A° U 0A gives
the closure A of A and this is used to construct the regH for the new spatial
object from the base segment lists.

The next step is to use the containment construct to define the hierarchical
nature of the elements within the categories. This allows for the creation of
explicit hierarchical paths between categories and the specification of analysis
operations on each of them on uniquely or as a whole. An e.g., of analysis being
using the containment construct is the often-used SUM aggregation operator on
Sales quantity defined from City to State level.

The final step is the creation of interacting lattice galaxies which is achieved
by using the combination construct. The combination construct maps the cat-
egories in different hierarchies to others in the galaxy to create the data cube



schema (cells). Elements of the data cube (objects within the cells) are identified
by their defining cube perspectives.

We now provide examples of OLAP formulations that can applied on the
BigCube types and their instances thus defined.

Consider a BigCube Bwith n perspectives and ¢ subjects of analysis. Let
mi,..., My, be members from each of the n perspectives defining the set of mea-
sures bi,...,b;. Then, the restrict operator returns the cell value by following
the cubing from upto n perspectives of the BigCube as ((mq,...,my),b1,...,b;).
For example, the sales quantity of iphones in Gainesville region in March 2011
is given by (( “iPhone”, “Gainesville”, “March2011”),50). The slice operation
removes one perspective and returns the resulting BigCube and dice performs
slice across two or more perspectives. The resulting cells have the structure
({mq,...,mg),b1,...,b;, A), where 1 < k < n and A provides the set of aggre-
gation functions applicable on the measures of this subcube. These operations
change the state of the BigCube, because any change in perspectives redefines
the cells (measures) in it. Pivot rotates the perspectives for analysis across axes
and returns a BigCube with a different ordering of subjects. Roll-up performs
specialization transformation over one or more constituent hierarchical levels,
and drill-down applies the generalization transformation over one or more hi-
erarchical levels. Given members m1j,...,mij, 1 < j < n denoting k levels of
ordering in each of the n perspectives, roll-up and drill-down operations yield a
different aggregated state of the cube, as, ((m17,...,mgj),s1,..., s, A;), where
s;i = fi(b1,...,b;), f € A. Drill-through obtains the base data values with highest
granularity. Drill-across combines several BigCubes in order to obtain aggregated
data across the common perspectives.

For spatial measures, spatial relationships can be given directly by checking
with the C® constructs and ordering in the poset. For example, to check for
containment of a region X in region Y, we check the containment construct on X
and Y. If (X, Y, <, A) exists with X <Y, then X is contained in Y. Similarly, the
largest area contained contained in one or more given areas X; is given by L x.
Dually, the smallest area containing one or more given areas Y; is given by Ty-.
In this manner, lattice ordering along with the categorization, containment and
cubing constructs provide a minimal set of formulations to create, manipulate
and query spatial data cubes in a user-friendly manner.

6 Conclusions and Future Work

In this paper, we present a novel modeling strategy to incorporate support for
complex spatial data in OLAP data cubes. First, we introduce a region-hierarchy
that helps to represent a complex region object (with several faces and multi-
ple holes) in a uniquely distinguishable manner. Then we present three new
constructs called C?, involving categorization, containment and cubing or com-
bination that together help to easily build data cubes in a multidimensional
environment. This provides a framework consisting of a user-friendly conceptual
cube model that abstracts over logical design details such as star or snowflake



schema and other implementation details. Later, new OLAP formulations are
specified for manipulating spatial data hierarchies (geo_ construct), and for query-
ing. Overall, this region-hierarchy provides a unique approach to include spatial
regions as first class citizens of data hierarchies in multidimensional data cubes.
In the future, we plan to provide the complete set of OLAP operations for ma-
nipulating and querying spatial data cubes, and to provide translations from
the hypercube to logical design (relational and multidimensional) to facilitate
implementation of the SOLAP system.
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