
Conjunctive Wildcard Search
over Encrypted Data

Christoph Bösch, Richard Brinkman, Pieter Hartel, and Willem Jonker

University of Twente,
Enschede, The Netherlands

Abstract. Searchable encryption allows a party to search over encrypted
data without decrypting it. Prior schemes in the symmetric setting deal
only with exact or similar keyword matches. We describe a scheme for
the problem of wildcard searches over encrypted data to make search
queries more flexible, provide a security proof for our scheme and com-
pare the computational, communication and space complexity with exist-
ing schemes. We develop an efficient scheme, using pseudorandom func-
tions and Bloom filters, that supports wildcard searches over encrypted
data. The scheme also supports conjunctive wildcard searches, efficient
and secure updates and is more efficient than previous solutions. Besides,
our construction is independent of the encryption method of the remote
data and is practical to use in real world applications.

Key Words. Searchable Encryption, Bloom filter, Wildcard.

1 Introduction

Nowadays, remote storage is ubiquitous and widely used for services like out-
sourcing data to reduce operational costs or private backups. To securely store
outsourced data on an untrusted server, the data should be encrypted which
makes it impossible for inside and outside attackers to access the data, but at
the same time the data owner loses all searching capabilities. It is desirable to
support (full) searching functionality on the server side, without decrypting the
data, and thus, without any loss of data confidentiality. This is typically called
searchable encryption (SE).

Over the last decade there has been active research in the symmetric [7, 8,
10, 16] and the public key setting [4, 6]. To construct efficient schemes we focus
on searchable symmetric encryption (SSE), where the same client stores and
retrieves encrypted documents. Prior SSE schemes support only exact keyword
matches or similarity searches, where keyword similarity is measured in the Ham-
ming or edit distance. To get more flexibility in the search queries, we create a
new construction that supports wildcard searches over encrypted data, where
a wildcard may represent any number of characters. We present a construction
that supports conjunctive wildcard searches, where a conjunction is the union
of any number of keywords.



Protocol. We consider a user U who stores a set of encrypted documents on an
honest-but-curious [11] database server S that can be trusted to adhere to the
protocol, but which tries to learn as much information as possible. U later wants
to retrieve some of the documents containing a specific keyword. To do so, U
first generates an index over his documents and then stores the index and the
encrypted documents on the server. The index allows U to search the encrypted
documents. To search for a specific keyword in the document collection, U creates
a trapdoor for that keyword and sends this trapdoor to the server which then
returns the result indicating which documents match the query and which not.
U then decides which of the documents she wants to retrieve and sends the
document ids to S. The server returns the requested documents.

Related Work Searchable encryption can be achieved by using the works of
Ostrovsky and Goldreich [12,14,15] on oblivious RAMs from 1990, which hide all
information including the access pattern, from a remote server. Unfortunately
the scheme is not efficient in practice. The scheme needs a logarithmic number
of rounds of interaction for each read and write.

The first practical scheme for searching in encrypted data in the symmetric
setting was proposed by Song et al. [16] in 2000. They use a special two-layered
encryption construct which is known as a sequential scan. Unfortunately, the
scheme is not secure against statistical analysis across multiple queries and can
leak the positions of the queried keywords in a document. The scheme has to
use fix-sized words and the complexity of the encryption and search is linear
in the number of words. Also it is not compatible with existing file encryption
standards and has to use their specific encryption method which can be used
only for plaintext data and not for example on compressed data.

Some of the above problems are addressed by Goh [10] by introducing a
Bloom filter index to each document. The index makes the scheme independent
of the document encryption. Goh also introduced the formal indistinguishability
against chosen keyword attack (IND-CKA) and a slightly stronger IND-CKA2
adversary model.

Chang and Mitzenmacher [7] developed two index schemes, similar to Goh
[10], using pre-build dictionaries. Their search schemes are independent of the
encryption method and use one index per document.

Curtmola et al. [8] propose new adversarial models for searchable encryption:
a non-adaptive and an adaptive one. They construct two schemes which are
provably secure in these new models. The first scheme (SSE-I) is only secure
against non-adaptive adversaries, but more efficient than the second scheme
(SSE-II), which is also secure against adaptive adversaries.

Our Contribution. In this paper we present the first conjunctive wildcard
search scheme in the symmetric setting. The scheme is proven secure against
adaptive adversaries.



a=FLOWER
h1

a

h3

a

h2

a

h4

a

b=BUTTER

h3

b

h2

b

h4
b

h1

b

(a) normal

a=FLOWER

a

h1
h3 h2

h4

0
0

1
0

0
1

0
0

1
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

1
1

0
0

0
0

0
1

0
0

1
0

b=BUTTER

b

h3

h2 h4
h1

(b) alternative

Fig. 1. Bloom filter with storage.

Structure. The rest of the paper is organized as follows. Section 2 describes
the building blocks necessary for our constructions. We summarize the security
definitions from Curtmola et al. [8] in Section 3. For sake of simplicity we explain
an easy basic search scheme in Section 4.1, before we describe our new masked
index scheme in Section 4.2. We then present the wildcard add-on for our search
scheme in Section 5. Section 6 analyses the security of our masked scheme and
in Section 7 we take a look at the efficiency of the constructions. We conclude
the paper in Section 8.

2 Preliminaries

Bloom filters. A Bloom filter (BF) [3] is a data structure which is used to
answer set membership queries. It is represented as an array of b bits which are
initially set to 0. In general the filter uses r independent hash functions ht, where
ht : {0, 1}∗ → [1, b] for t ∈ [1, r], each of which maps a set element to one of
the b array positions. For each element e in the set S = {e1, . . . em} the bits at
positions h1(e), . . . , hr(e) are set to 1. To check whether an element x belongs
to the set S, we check if the bits at positions h1(x), . . . , hr(x) are set to 1. If
so, x is considered a member of set S. Bloom filters have a possibility of false
positives, because the positions of an element may have been set by one or more
other elements. With appropriate parameters the false positive probability can
be reduced to a desired error rate.

Instead of r different hash functions we use a single HMAC-SHA1 [2, 13]
function with r different and independent keys to create a trapdoor. This allows
only legitimate users in possession of the keys to construct the correct Bloom
filter and thus to add and search documents on a server.

In our constructions we use a Bloom filter with storage, as introduced by
Boneh et al. [5]. Figure 1 shows two different versions of a Bloom filter with
storage. Our constructions use the type (b).

Pseudorandom generators. A pseudorandom bit generator g : {0, 1}α →
{0, 1}β is a deterministic algorithm which, given a seed of length α, outputs a
binary sequence of length β � α that is computationally indistinguishable from
a random string.



Notation. Throughout this paper we use the following notation. Let D be a
document collection D = {did1

, . . . , didn}, consisting of n documents. The size of
a document did is denoted |did |, where id is a unique document identifier. Each
document did consists of a set of words Wid. Let ∆id = u(did) be a dictionary of
distinct words in a document did . The function u(·) extracts the unique words
of a document. The number of distinct words per document is denoted by |∆id |.
We refer to D(w) as all the document ids containing word w and the sequence
D(w1), . . . ,D(wc) as the access pattern of a client.

3 Definitions

Index scheme. Our index schemes consist of the following four algorithms:

Keygen(s): Given a security parameter s, Keygen outputs the master private
key K. This algorithm is run by the client.

BuildIndex(K,D): Given the master key K and a document collection D, the
algorithm outputs an index I. This algorithm is run by the client.

Trapdoor(K, w): Given the key K and a keyword w, Trapdoor outputs the trap-
door Tw for w. This algorithm is run by the client.

SearchIndex(Tw, I): Given a trapdoor Tw for word w and the index I, the al-
gorithm outputs a bit string which indicates the matched documents. This
algorithm is run by the server.

3.1 Security definitions

We use the security definitions for searchable symmetric encryption (SSE) from
Curtmola et al. [8] which we summarize in this section. For detailed information
we refer to the original paper [8].

Before stating the security definition for semantic security for SSE, we intro-
duce three auxiliary notions: the history, the view and the trace.

History. The history defines the user input to the scheme. It is an interaction
between the client and the server, which is determined by a document collection
and a set of words that the client wishes to search for (and that we wish to hide
from the adversary).

Definition 1. (History). A history Hu, is an interaction between a client and
a server over u queries, consisting of a document collection D and the keywords
wi used for u consecutive search queries. The partial history Hτ

u of a given history
Hu = (D, w1, . . . , wu), is the sequence Hτ

u = (D, w1, . . . , wτ ), where τ ≤ u.

View. The server’s view consists of all the information the server can gather
during a protocol run. In particular, the view will consist of the index (of the
document collection) and the trapdoors (of the queried words). It will also con-
tain some additional common information, such as the number of documents in



the collection and their ciphertexts. However the view should not reveal any in-
formation about the history besides the outcome and the pattern of the searches.
Let I be the index of a document collection generated under key K, and Twi ,
1 ≤ i ≤ u, be the trapdoors for the words wi queried in Hu.

Definition 2. (View). Let D be a collection of n documents and Hu = (D,
w1, . . . , wu) be a history over u queries. An adversary’s view of Hu under secret
key K is defined as

VK(Hu) = (id1, . . . , idn, E(did1
), . . . , E(didn), I, Tw1

, . . . , Twu) .

The partial view V τK(Hu) of a history Hu under secret key K is the sequence

V τK(Hu) = (id1, . . . , idn, E(did1
), . . . , E(didn), I, Tw1

, . . . , Twτ ) ,

where τ ≤ u.

Note that K refers only to the secret key for the SSE scheme and not to the
encryption key of the documents.

Trace. The trace consists of exactly the information we are willing to leak or
that the server is allowed to learn. This information includes the identifiers of
the documents that contain each query word in the history and information
that describes which trapdoors in the view correspond to the same underlying
words in the history. The encrypted documents are also stored on the server,
so the document sizes and identifiers will be leaked. We add also the sequence
(D(w1), . . . ,D(wn)) which denotes the access pattern of a client and the search
pattern Πu of a client as any information that can be derived from knowing
whether two arbitrary searches were performed for the same word or not to the
trace. More formally, Πu can be thought of as a symmetric binary matrix where
Πu[i, x] = 1 if wi = wx, and 0 otherwise, for 1 ≤ i, x ≤ u.

Definition 3. (Trace). Let D be a collection of n documents and Hu = (D,
w1, . . . , wu) be a history over u queries. The trace of Hu is the sequence

Tr(Hu) = (id1, . . . , idn, |did1
|, . . . , |didn |,D(w1), . . . ,D(wu), Πu) .

Semantic security. We now present the simulation-based definition for seman-
tic security from Curtmola et al. [8]. We assume that the client initially stores
a number of documents and afterwards performs an arbitrary number of search
queries. For all queries 0 ≤ τ ≤ u, we require the simulator, given only a partial
trace of the history, to simulate the adversary on a partial view of the same
history.

Definition 4. (Adaptive Semantic Security for SSE). An SSE scheme is
adaptively semantically secure if for all u ∈ N and for all (non-uniform) prob-
abilistic polynomial-time adversaries A, there exists a (non-uniform) probabilis-
tic polynomial-time algorithm (the simulator) S such that for all traces Tru of



length u, all polynomially samplable distributions Hu over {Hu : Tr(Hu) = Tru}
(i.e., the set of histories with trace Tru), all functions f : {0, 1}m → {0, 1}v(m)

(where m = |Hu| and v(m) = poly(m)), all 0 ≤ y ≤ u and all polynomials p and
sufficiently large s:

|Pr [A (V τK(Hu)) = f(Hτ
u)]− Pr [S (Tr(Hτ

u)) = f(Hτ
u)]| < 1

p(s)
,

where Hu
R←− Hu,K ← Keygen(s), and the probabilities are taken over Hu and

the internal coins of Keygen, A, S and the underlying BuildIndex algorithm.

4 Constructions

In this section we describe two index based constructions similar to Goh [10]. We
first introduce the basic construction, which stores a keyed Bloom filter index
on an untrusted server. The second construction stores a masked index on the
server side. We refer to our basic search scheme as (B) and to our masked index
search scheme as (M). Both constructions use a Bloom filter per document. The
index can thus be represented as an n× b binary matrix where n is the number
of documents and b the size of a single Bloom filter in bits. We use the words
index and matrix interchangeably.

4.1 The Basic Index Scheme

To create a searchable index, we use one Bloom filter per document. We insert
all distinct words of a document did in its Bloom filter BFid by applying the
HMAC-SHA1 function r times with r independent keys on each distinct word.
All the BFs and the encrypted documents are then stored on the server.

To search in the database a trapdoor is required. This trapdoor for finding
a specific keyword w in the database is derived by applying r times HMAC-
SHA1 on the keyword to search for. The outcome of each HMAC-SHA1 denotes
a specific position in a Bloom filter. After receiving the trapdoor, the server
looks up the columns of the index specified in the trapdoor, handles them as bit
strings and computes the bitwise AND on the columns. The resulting bit string
indicates a match with a 1 and a non-match with a 0.

Our construction consists of the following four algorithms:

Keygen(s): Given a security parameter s, generate a secret master key K =
{k1, . . . , kr}, consisting of r independent secret keys.

Trapdoor(K,w): Given the key K = {k1, . . . , kr} and a word w, calculate the
positions pt = hkt(w) for t ∈ [1, r] in a Bloom filter and output the trapdoor
Tw = {p1, . . . , pr}, where pt ∈ [1, b].

BuildIndex(K,D): The input is the master secret key K and a document collec-
tion D comprising of a set of n documents.



1. For each id ∈ [1, n], create the list of unique words ∆id = u(did) and
compute for each word wi ∈ ∆id:
(a) the trapdoor: Twi = {p1, . . . , pr}
(b) and set the bits at the positions Twi in BFid to 1.

2. Output the index I = (BF1, . . . ,BFn)T .

We define I[p] as the column vector [BFid[p]]id∈[1,n] of the matrix I.

SearchIndex(Tw, I): Given the trapdoor Tw = {p1, . . . , pr} for word w and the
index I, take the set of columns {I[pt]}t∈[1,r] of the matrix I. Consider each
column as a bit string and output the bitwise AND of the columns.

It is easy to see, that this construction is vulnerable to correlation attacks
which leak the similarity of documents upfront. This is because each word is
represented by the same r positions in all Bloom filters. Another disadvantage
of Bloom filters is the fact, that the number of 1’s is dependent on the number
of entries, in this case the number of distinct keywords per document. As a
consequence, the scheme gives a good guess on the number of keywords in each
document. To conceal this information we can use padding, where we add random
strings to a documents distinct word list, so that the number of entries per BF
is equal. To gain a higher level of security we mask the index before it is stored
on an untrusted server as seen in the next section.

4.2 The Masked Index Scheme

To mask the index we use a pseudorandom generator g(KG, p, id) which takes a
secret generator key KG and the exact position of the bit to mask in the matrix
(p, id) as input.

Our construction consists of the following four algorithms:

Keygen(s): Given a security parameter s, generate a secret master key K =
〈KH ,KG〉, with KH = {kt}t∈[1,r] being r independent keys to compute the
HMAC and KG ∈ {0, 1}∗ the key for the pseudorandom generator.

Trapdoor(KH , w): Given the key KH = {k1, . . . , kr} and a word w, output the
trapdoor Tw = {p1, . . . , pr}, where p ∈ [1, b].

BuildIndex(K,D): The input is the master secret key K and a document collec-
tion D comprising of a set of n documents.
1. For each id ∈ [1, n], create the list of unique words ∆id = u(did) and

compute for each word wi ∈ ∆id :
(a) the trapdoor: Twi = {p1, . . . , pr}
(b) and set the bits at the positions Twi in BFid to 1.

2. Create the index I = (BF1, . . . ,BFn)T .
3. For each position BFid [p], with p ∈ [1, b], compute g(KG, p, id) and create

the masked index

M[p][id ] = {I[p][id ]⊕ g(KG, p, id)} .



4. Output the masked index M.

SearchIndex(Tw,M): Given the trapdoor Tw = {p1, . . . , pr} for word w and the
masked indexM, send the set of columns {M[pt]}t∈[1,r] of the matrixM to
the client. The client computes the set of decrypted columns

I[pt][id ] = {M[pt][id ]⊕ g(KG, pt, id)}t∈[1,r] ,

and outputs the bitwise AND of the columns. The resulting bit vector indi-
cates the matched documents.

This interactive construction allows a user to decide which documents from
the list of matched documents she wants to retrieve. By having a two-round
protocol the scheme becomes more flexible. This is comparable with an internet
search, where the search engine gives a list of results and the user can decide,
which sites to download/visit. Most of the times not all of the matching docu-
ments are interesting for a user. By downloading only the desired documents,
instead of all the matched documents, we do not produce unnecessary traffic.
This is important for mobile users with limited bandwidth or expensive data
usage fees.

4.3 Properties

Boolean queries. As an additional feature our scheme supports conjunctive
search queries, which means a boolean AND combination of two or more key-
words. This is done by sending the union of several trapdoors to the server,
which then sends back the result associated to those keywords. The resulting bit
string indicates the documents including all of the searched words.

Secure updates. Our search scheme supports efficient and secure updates on
a document collection D, in the sense that the client is able to Add and Delete
documents from the database. A document is added by simply running the
BuildIndex algorithms with the new documents as input. The resulting index can
then be appended to the existing index stored on a server. To delete a document
in our constructions, the document and the corresponding row of the index can
be deleted from the server.

Adding a document can be done with the following algorithm:

Add(K,D): This Algorithm is equal to BuildIndex. The resulting index is ap-
pended to the existing index.

Deleting a document in the unmasked index scheme can be done with the
following algorithm:

Delete(id): Given a document id , delete did and BFid from the server.



Complexity. The complexity of an update operation (add, delete) depends on the
number of documents processed. The communication overhead is O(n), where
n is the number of documents U wants to add. Per document U has to transfer
the Bloom filter of size b bit to the server. To delete a document in our schemes,
U can simply delete the document and the corresponding row from the index by
sending the id to the server.

Security. During an update operation, U reveals only the number of documents
processed. The newly added BFs look like random strings.

5 Wildcard Add-on

In this section we introduce a simple wildcard add-on that can be used with most
search schemes. The main idea behind our wildcard search is to pre-process the
words that will be inserted into the index: for each distinct word we create all
the wildcardified variants of the word as shown in Algorithm 1. The individual
characters of a word are denoted by wi[j]j∈[1,λ] where wi[x : y] denotes the
characters x to y.

For example, the keyword flower will be represented in a single wildcard
scheme as {flower, *flower, flower*, *lower, . . ., flowe*, *ower, . . .,
flow*, *wer, f*er, fl*r, flo*, *er, f*r, fl*, *r, f*}. Thus all possi-
ble variations of the word are created.

The number of all these single wildcard combinations per distinct word is
computed by  λ∑

j=1

j

 + 2 =
λ(λ+ 1)

2
+ 2,

where λ is the length of the word wi.

Algorithm 1 Algorithm for Wildcardifying Words

Input: A word wi

Output: Ωi: all wildcardified versions of the word wi

1: wild carded words = [wi, ∗wi, wi∗]
2: for wild card size = 1 to wordLength do
3: for v = 1 to (wordLength - wild card size +1) do
4: wild carded words.append(wi[1 : v] + ∗+ wi[v + wild card size : λ])
5: end for
6: end for

For our wildcard search scheme we insert not only the keywords, but all the
wildcardified versions of a word into the index. Hence the scheme transforms the
problem of a wildcard search into a lookup for an exact match. The scheme still
supports conjunctive search queries.



Example 1. A search for the word chin* will return all the document ids con-
taining a word starting with chin*, like china, chinatown, chinaware, chinchilla,
chine, chinese, chinked, chinless, ... .

Multiple wildcards. If desired, it is possible to add multiple wildcards at the
cost of more pre-processing and server storage space. Thus it is possible, to add
the support for two or more wildcards (e.g., *owe* or f*o*r).

6 Security Proof

We now provide the security proof for our masked index scheme. At this point
we do not take updates and conjunctive queries into account. HMAC-SHA1 is
used as the hash function for the Bloom filter. Bellare [1] proved, that HMAC
is a pseudorandom function.

Theorem 1. If h and g are secure pseudorandom functions, our masked search
scheme described in Section 4.2 including the wildcard add-on explained in Sec-
tion 5 is an adaptively secure SSE scheme.

Proof. Let u ∈ N, and let A be a probabilistic polynomial-time adversary. We de-
scribe a probabilistic polynomial-time simulator S such that for all polynomially-
bounded functions f and all distributions Hu, S can simulate the partial view
of an adversary A(V τK(Hu)) given only the trace of a partial history Tr(Hτ

u) for
all 0 ≤ τ ≤ u with probability negligibly close to 1. For all 0 ≤ τ ≤ u, we show
that S(Tr(Hτ

u)) can generate a simulated view Vτ
u that is indistinguishable from

V τK(Hu). Let

Tr(Hτ
u) = (id1, . . . , idn, |did1

|, . . . , |didn |, b,D(w1), . . . ,D(wτ ), Πτ ).

be the trace of an execution after τ search queries and let Hu be a history
consisting of u search queries such that Tr(Hu) = Tru. The simulator S works
as follows:

With the information from the trace, S chooses n random values R1, . . . , Rn
such that |Ri| = |di| for all i = 1, . . . , n. S also includes the document identifiers,
known from the trace, in the partial view. Then the simulator S generates a
simulated index M = (B1, . . . , Bn)T with random Bi ∈ {0, 1}b, for i ∈ [1, n]. M
will be included in all partial views Vτ

u used to simulate A. Next S simulates the
trapdoor for query τ, (1 ≤ τ ≤ u) in sequence. If Πτ [j, τ ] = 1 for some 1 ≤ j < τ
set Tτ = Tj . Otherwise S picks a random value rnd , calculates pt = hkt(rnd)
for t ∈ [1, r] and sets Tτ = {p1, . . . , pr}, such that for 1 ≤ j < τ,Tτ 6= Tj . Then
S constructs for all τ a simulated view

Vτ
u = (id1, . . . , idn, E(R1), . . . , E(Rn),M,T1, . . . ,Tτ ) ,

and eventually outputs A(Vτ
u). We now claim that Vτ

u is indistinguishable from

V τK(Hu) = (id1, . . . , idn, E(did1), . . . , E(didn),M, T1, . . . , Tτ ) .



Therefore we state that for all i ∈ [1, n], id i in V 0
K(Hu) and V0

u are iden-
tical and thus indistinguishable. Also, E(·) is a semantically secure encryp-
tion algorithm, thus E(di) is indistinguishable from E(Ri) of the same length.
Given the BuildIndex algorithm, it is clear that M is indistinguishable from
M. Otherwise one could distinguish between a random string B of size b and
[BF [p]⊕g(KG, p)]p∈[1,b], the bitwise XOR of a Bloom filter of size b and the out-
put of the pseudorandom generator g(·). It is easy to see that the trapdoors are
indistinguishable, otherwise one could distinguish hk(Ω) from hk(rnd). Thus,
Vτ
u is indistinguishable from V τK(Hu), for all 0 ≤ τ ≤ u. ut

Updates. In our scenario, intermixing queries and updates is equivalent to first
update and then query. Incremental updates can be aggregated to one BuildIndex
over a larger document set. Thus we can proceed with the proof of Theorem 1.

Conjunctive queries. The above proof also holds if we search for a conjunctive
set of words. Imagine that we substitute the words w0 and w1 with the two sets
(w0,1, . . . , w0,l) and (w1,1, . . . , w1,l). Then proceed with the proof of Theorem 1.

Stronger security. Note that to gain a higher level of security it is possible
to split the large Bloom filter into several smaller parts and store the parts on
different non communicating servers. Another way of increasing the security by
not revealing the access pattern is to store the index and the documents on two
different non communicating servers.

7 Performance

We now consider the efficiency of our constructions where the efficiency is mea-
sured in terms of the computation, communication and space complexity.

Computational complexity. Table 2 shows the efficiency of our schemes com-
pared to others in terms of computational complexity. The Trapdoor, BuildIndex
and SearchIndex columns describe the computational complexity of the algo-
rithms. The column Server gives the computation on the server side, whereas
Client shows the computational complexity on the client.

The Trapdoor algorithm is a constant time operation. The BuildIndex algo-
rithm has to process each distinct word per document. Thus the complexity is
O(n|∆|). Because the index is stored as a Bloom filter with storage (see Figure
1(b)), the SearchIndex algorithm is a simple table lookup and takes time O(1).
However the table lookup does not give us the result of the query. Thus after
a basic index search the server has to compute a bitwise AND of the matrix
columns labelled by the trapdoor, which is a O(n) operation. With the masked
index the server is not able to compute the result and has to send the matrix
columns to the client, which is then able to decrypt the columns by an XOR op-
eration and then performs the AND on the unmasked columns. Thus the client



computation is O(n). Note that in both of our schemes the server and client
computations are AND and/or XOR operations and thus are efficient. Table 2
shows that in the big O notation the scheme of Curtmola et al. is more effi-
cient than our schemes but in practice n AND operations are more efficient than
|D(w)| encryptions.

The scheme of Song et al. (SWP) [16] does not use an index. Thus the
BuildIndex field is marked with a “-”. The SearchIndex algorithm denotes the
search through the encrypted documents. In the SWP scheme all the words per
document have to be searched and so the complexity is O(nq) where n is the
number of documents and the q the number of words per document.

Communication and space complexity. Table 3 compares the space com-
plexity of different search schemes. Index describes the storage space for the
index on the server side. The Trapdoor column shows the size of a trapdoor and
the Result column describes the size of the results that have to be transferred
to the client. In both of our schemes the index can be seen as a n × b-matrix,
where n is the number of documents and b the size of the Bloom filter. Thus the
server has to store nb bits, where b is a constant. The trapdoor has a constant
size O(1) and the size of the result vector is O(n) because it is dependent on the
number of documents in the database.

Example 2. Assume a user who wants to search for 1000 keywords. The average
word length in the English language is 5 characters per word. Thus we end up
with 17,000 wildcardified words. To achieve a false positive rate of 0.01, we set
k = 6 and b = 153000. The resulting sizes for different document collections can
be found in Table 1.

8 Conclusion

We examined the problem of wildcard searches over encrypted data in the sym-
metric setting and proposed a searchable encryption scheme similar to Goh [10]
which supports wildcards that can be either any single character or a string of
characters inside a word. The scheme also supports conjunctive search queries
with any number of keywords. We proposed two variants of our scheme which
differ in the security of the index and the communication overhead. The first
scheme is more efficient in terms of computation and communication, while the
second scheme is more secure in the sense that we leak less information about
the index. Our masked scheme is proven secure against adaptive adversaries.
Our schemes are more efficient than previous search schemes and are practical
to use in real world applications.

References

1. Mihir Bellare. New Proofs for NMAC and HMAC: Security Without Collision-
Resistance. In Cynthia Dwork, editor, Advances in Cryptology - CRYPTO ’06, 26th



Table 1. Number example of communication and space complexity. Parameters: Key-
words to search = 1000, average word length = 5, FP-rate = 0.01, k = 6, b = 153000.
CM: t = 2030, *depending on the number of matched documents. SSE: max = 500, p
= 160.

Scheme Documents Index Trapdoor Result

1000 18.24 MB 960 b 750 B
Goh [10] 5000 91.21 MB 960 b 3.66 kB

10000 182.42 MB 960 b 7.32 kB

1000 3.9 MB 2542 b *
CM2 [7] 5000 19.5 MB 2542 b *

10000 39 MB 2542 b *

1000 95.37 MB 80000 b 625 B
SSE-2 [8] 5000 619.9 MB 80000 b 813 B

10000 1.3 GB 80000 b 875 B

1000 18.24 MB 108 b 750 B
Our 5000 91.21 MB 108 b 3.66 kB

10000 182.42 MB 108 b 7.32 kB

Annual International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 20-24, 2006, Proceedings, volume 4117 of Lecture Notes in Computer Science,
pages 602–619. Springer, 2006.

2. Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying Hash Functions for Mes-
sage Authentication. In Neal Koblitz, editor, Advances in Cryptology - CRYPTO
’96, 16th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 18-22, 1996, Proceedings, volume 1109 of Lecture Notes in Computer
Science, pages 1–15. Springer, 1996.

3. Burton H. Bloom. Space/Time Trade-Offs in Hash Coding with Allowable Errors.
Commun. ACM, 13(7):422–426, 1970.

4. Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Pub-
lic Key Encryption with Keyword Search. In Christian Cachin and Jan Camenisch,
editors, Advances in Cryptology - EUROCRYPT 2004, International Conference on
the Theory and Applications of Cryptographic Techniques, Interlaken, Switzerland,
May 2-6, 2004, Proceedings, volume 3027 of Lecture Notes in Computer Science,
pages 506–522. Springer, 2004.

5. Dan Boneh, Eyal Kushilevitz, Rafail Ostrovsky, and William E. Skeith III. Public
Key Encryption that Allows PIR Queries. In Alfred Menezes, editor, Advances
in Cryptology - CRYPTO 2007, 27th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 19-23, 2007, Proceedings, volume 4622 of Lecture
Notes in Computer Science, pages 50–67. Springer, 2007.

6. Dan Boneh and Brent Waters. Conjunctive, Subset, and Range Queries on En-
crypted Data. In Salil P. Vadhan, editor, Theory of Cryptography, 4th Theory of
Cryptography Conference, TCC 2007, Amsterdam, The Netherlands, February 21-
24, 2007, Proceedings, volume 4392 of Lecture Notes in Computer Science, pages
535–554. Springer, 2007.

7. Yan-Cheng Chang and Michael Mitzenmacher. Privacy Preserving Keyword
Searches on Remote Encrypted Data. In In Proceedings of 3rd Applied Cryp-



Table 2. Computational performance of different search schemes, where n is the num-
ber of documents in the database and q the number of words per document. The
number of distinct words per document is denoted by |∆| and |D(w)| denotes the num-
ber of documents containing the keyword w. The number of all distinct words in the
database is denoted by |Wdb|. The asterisk ∗ denotes a bitwise AND and/or XOR. The
two asterisks ∗∗ refer to the use of a so-called FKS dictionary introduced by Fredman
et al. [9].

Scheme Trapdoor BuildIndex SearchIndex Server Client

SWP [16] O(1) O(nq) O(nq) O(nq) O(|D(w)|q)
Goh [10] O(1) O(n|∆|) O(n) O(n) O(1)
CM2 [7] O(log |Wdb|) O(n|∆|) O(n) O(n) O(1)
SSE-1 [8] O(1) O(n|∆|) O(1)∗∗ O(|D(w)|) O(1)

Our (M) O(1) O(n|∆|) O(1) O(1) O(n)∗

Table 3. Communication and space complexity of different search schemes, where n
is the number of documents in the database and |D(w)| the number of documents
containing the keyword w. The total size of the plaintext document collection in units,
where a unit is the smallest possible size for a word, is denoted by m and the number
of all distinct words in the database is denoted by |Wdb|.

Scheme Index Trapdoor Result

SWP [16] - O(1) O(|D(w)|)
Goh [10] O(n) O(1) O(n)
CM2 [7] O(n) O(1) O(n)
SSE-1 [8] O(m) +O(|Wdb|) O(1) O(|D(w)|)

Our (M) O(n) O(1) O(n)

tography and Network Security Conference (ACNS), pages 442–455, 2005.
8. Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. Searchable

Symmetric Encryption: Improved Definitions and Efficient Constructions. In CCS
’06: Proceedings of the 13th ACM conference on Computer and Communications
Security, pages 79–88, New York, NY, USA, 2006. ACM.

9. Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a Sparse Table
with 0(1) Worst Case Access Time. J. ACM, 31(3):538–544, 1984.

10. Eu-Jin Goh. Secure Indexes. Cryptology ePrint Archive, Report 2003/216, 2003.
11. Oded Goldreich. Secure Multi-Party Computation. Working draft, October 2002.
12. Oded Goldreich and Rafail Ostrovsky. Software Protection and Simulation on

Oblivious RAMs. J. ACM, 43(3):431–473, 1996.
13. Hugo Krawczyk, Mihir Bellare, and Ran Canetti. HMAC: Keyed-Hashing for Mes-

sage Authentication. RFC2104, Internet Engineering Task Force (IETF), Februar
1997.

14. Rafail Ostrovsky. Efficient Computation on Oblivious RAMs. In Proceedings of
the Twenty Second Annual ACM Symposium on Theory of Computing, 14-16 May
1990, Baltimore, Maryland, USA, pages 514–523. ACM, 1990.

15. Rafail Ostrovsky. Software Protection and Simulations on Oblivious RAMs. PhD
thesis, MIT, 1992.



16. Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical Techniques
for Searches on Encrypted Data. In SP ’00: Proceedings of the 2000 IEEE Sym-
posium on Security and Privacy, pages 44–55, Washington, DC, USA, 2000. IEEE
Computer Society.


