RWTH ALl
cle]s

Knowledge-Based
Automatic Generation of
Partitioned Matrix Expressions

Diego Fabregat-Traver and Paolo Bientinesi

* The final version published by Springer (www.springerlink.com) is available at:
http://link.springer.com/content/pdf/10.1007%2F978-3-642-23568-9_12.pdf

Aachen Institute
for Advanced Study in
Computational Engineering Science

Financial support from the
Deutsche Forschungsgemeinschaft (German Research Foundation)
through grant GSC 111 is gratefully acknowledged.

Knowledge-Based Automatic Generation
of Partitioned Matrix Expressions

Diego Fabregat-Traver and Paolo Bientinesi

AICES, RWTH Aachen, Germany
{fabregat,pauldj}@aices.rwth-aachen.de

Abstract. In a series of papers it has been shown that for many lin-
ear algebra operations it is possible to generate families of algorithms
by following a systematic procedure. Although powerful, such a method-
ology involves complex algebraic manipulation, symbolic computations
and pattern matching, making the generation a process challenging to be
performed by hand. We aim for a fully automated system that from the
sole description of a target operation creates multiple algorithms without
any human intervention. Our approach consists of three main stages. The
first stage yields the core object for the entire process, the Partitioned
Matrix Expression (PME), which establishes how the target problem
may be decomposed in terms of simpler sub-problems. In the second
stage the PME is inspected to identify predicates, the Loop-Invariants,
to be used to set up the skeleton of a family of proofs of correctness. In
the third and last stage the actual algorithms are constructed so that
each of them satisfies its corresponding proof of correctness. In this pa-
per we focus on the first stage of the process, the automatic generation
of Partitioned Matrix Expressions. In particular, we discuss the steps
leading to a PME and the knowledge necessary for a symbolic system to
perform such steps. We also introduce CLICK, a prototype system written
in Mathematica that generates PMEs automatically.

1 Introduction

In the context of the Formal Linear Algebra Methods Environment (FLAME)
project [1], a methodology for the systematic derivation of algorithms for matrix
operations has been developed and demonstrated. The approach has been suc-
cessfully applied to all the operations included in the BLAS [2] and RECSY |3,
4] libraries and to many included in the LAPACK [5] library. In general, the
methodology applies to any operation that can be expressed in a “divide and
conquer” fashion. As opposed to the concept of “Autotuning”, which indicates
the automatic tuning of a given algorithm [6-8], the word derivation refers to the
actual generation of both algorithms and routines to solve a given target equa-
tion [9]. The remarkable results achieved using this methodology are the subject
of a series of publications. a) For many standard operations, e.g. the Cholesky
and the LU factorizations, all the previously known algorithms were systemati-
cally discovered, unifying them under a common root [10]. b) For more involved

operations like the Sylvester equation and the reduction of a generalized eigen-
problem to standard form, the generated family of algorithms included new and
better performing ones [11, 12]. ¢) A related methodology for systematic analysis
of round-off errors yielded bounds tighter than those previously known [13].

Although successful, the approach presents some limitations. The algorithms
are generated through complex symbolic computations, steps often too compli-
cated to be carried out by hand. Motivated by these difficulties, we aim for
a symbolic system that, given as input the description of a matrix equation
Eq, applies the steps dictated by the FLAME methodology to derive a family
of algorithms to solve Eq. As shown in Fig. 1, the procedure consists of three
successive stages—PME Generation, Loop-Invariant Identification, Algorithm
Derivation—and is entirely determined by the mathematical description of the
input operation.

Operation
Description Loop Algorithms
(INPUT) PMEs LOO Invariants (OUTPUT)

> PME p Algorithm
Generation ——» _Invariant |——>» g >

Identification Derivation

Fig.1: The three main stages in the process of derivation of algorithms.

In the first stage, the Partitioned Matrix Expression (PME) for the input
operation is obtained. A PME is a decomposition of the original problem into
simpler sub-problems in a “divide and conquer” fashion, exposing the computa-
tion to be performed in each part of the output matrices. An example is shown
in Box 1. The second stage of the process deals with the identification of Boolean
predicates, the Loop-Invariants, that describe the intermediate state of compu-
tation for the sought-after algorithms. Loop-invariants can be extracted from the
PME, and are at the heart of the automation of the third stage. In the third and
last stage of the methodology, each loop-invariant is used to set up a proof of
correctness around which the algorithm is finally built. Notice that the objective
is not proving the correctness of a given algorithm; vice-versa, the loop-invariant
is chosen before the algorithm is built. Indeed, the algorithm is constructed to
satisfy a given proof of correctness, i.e., to possess the chosen loop-invariant.

X1 =2(LrL,U,Cr)
X =92(Lgr,U,Cp — LX)

Box 1: Partitioned Matrix Expression for the triangular Sylvester equation.

This paper centers around the first stage of the derivation process, the gen-
eration of PMEs. To this end we introduce a formalism to input into the system

PME Generation

Operation Partitioned -

Description Postcondition ‘ N PMEs

o Matrix > Pattern
Partitioning Arithmetic Matching >

-

Fig. 2: Steps for the automatic generation of PMEs.

the minimum amount of knowledge about the operation required by a system to
perform all the subsequent stages automatically. We then describe the process
for transforming an input equation into PMEs. As Fig. 2 shows, such process in-
volves three steps: 1) the partitioning of the operands in the equation, 2) matrix
arithmetic involving the partitioned operands, and 3) a sequence of iterations,
each consisting of algebraic manipulation and pattern matching. We demonstrate
that the process can indeed be automated through CLICK!, a symbolic system
written in Mathematica [14] that performs all the steps for the PME generation.

The paper is organized as follows. In Sect. 2 we categorize the input needed
by a symbolic system. Partitionings of the operands and inheritance of properties
are discussed in Sect. 3, while in Sect. 4 we describe how to use partitionings to
obtain PMEs. We draw conclusion in Sect. 5.

2 Input to the System

Our first concern is to establish how a target operation should be formally de-
scribed. Since we are aiming for a fully-automated system, i.e., without any
human intervention, we need a formalism to unequivocally describe a target
equation. We choose the language traditionally used to reason about program
correctness: equations shall be specified by means of the predicates Precondition
(Ppre) and Postcondition (Ppost) [15]. The precondition enumerates the operands
that appear in the equation and describes their properties, while the postcondi-
tion specifies the equation to be solved.

The Cholesky factorization will serve as an example: given a symmetric pos-
itive definite (SPD) matrix A, the goal is to find a lower triangular matrix L
such that LLT = A. Box 2 contains the predicates Ppre and Py relative to the
Cholesky factorization; the notation L = I'(A) indicates that L is the Cholesky
factor of A.

Even though such a definition is unambiguous, it does not include all the in-
formation needed by a symbolic system to fully automate the derivation process.
In Sect. 2.1 we discuss how a system expands its knowledge by “learning of” new
equations, and in Sect. 3 we overview the ground knowledge that a system must
possess relative to matrix partitioning and inheritance of properties.

! The name CLICK epitomizes the idea that the effort a user has to make to obtain
algorithms consists in just one click.

Pyrc : {Unknown(L) A LowerTriangular(L) A
L=T(A)= Known(A) A SPD(A)}

Ppost : {LL" = A}

Box 2: Formal description for the Cholesky factorization.

2.1 Pattern Learning

We refer to the pair of predicates (Ppre and Ppost) in Box 2 as the pattern that
identifies the Cholesky factorization. Such a pattern establishes that matrices L
and A are one the Cholesky factor of the other provided that the constraints
in the precondition are satisfied, and L and A are related as dictated in the
postcondition (LLT = A). For instance, in the expression

XXT = A-BcC,

in order to determine whether X = I'(A — BC), the following facts need to be
asserted: 1) X is an unknown lower triangular matrix; ii) the expression A — BC'
is a known quantity (A, B and C are known); iii) the matrix A—BC is symmetric
positive definite.

The strategy for decomposing an equation in terms of simpler problems
greatly relies on pattern matching. In the next section we describe how ma-
trix equations can be rewritten in terms of sub-matrices, resulting in expressions
seemingly more complicated than the initial formulation. Such expressions are
thus inspected to find segments corresponding to known patterns.

Initially, CL1CK only knows the patterns for a basic set of operations: addi-
tion, multiplication, inversion, and transposition of matrices, vectors and scalars.
This information is hard-coded. More complex patterns are instead discovered
during the process of PME generation. For instance, the first time the PME
for the Cholesky factorization is generated, CLICK learns and stores the pattern
specified by Box 2. Thanks to such patterns it will then be possible to identify
that a Cholesky factorization may be decomposed into a combination of triangu-
lar systems and simpler Cholesky factorizations. As CLICK’s pattern knowledge
increases, also does its capability of tackling complex operations.

3 Partitioning and Inheritance

In this section we illustrate the first step towards the PME generation: the par-
titioning of the operands (Fig. 2). To this end we introduce a set of rules to
partition and combine operands and to assert properties of expressions involv-
ing sub-operands. The application of these rules to the postcondition yields a
predicate called partitioned postcondition. Due to constraints imposed by both
the structure of the input operands and the postcondition, only few partitioning
rules will be admissible.

3.1 Operands Partitioning and Direct Inheritance

As shown in Box 3, a generic matrix A can be partitioned in four different ways.
The 1 x 1 rule (Box 3(d)) is special as it does not affect the operand; we refer
to it as the identity. For a vector, only the 2 x 1 and 1 x 1 rules apply, while
for scalars only the identity is admissible. When referring to any of the parts
resulting from a non-identity rule, we use the terms sub-matrix or sub-operand,
and for 2 x 2 partitionings we also use the term quadrant.

Arr|Arr Ar
Amxn — <E‘TBR) Amxn — (TB)

where Ay, is k1 X ko where At is k1 X n
(a) 2 x 2 rule (b) 2 x 1 rule
Amxn — (AL ‘AR) ATVLX’VL — (A)
where Ay, is m X ko where Aism X n
(c) 1 x 2 rule (d) 1 x 1 (identity) rule

Box 3: Rules for partitioning a generic matrix operand A. We use the subscript
letters T', B, L, and R for Top, Bottom, Left, and Right, respectively.

The inheritance of properties plays an important role in subsequent stages
of the algorithm generation process. Thus, when the operands have a special
structure, it is beneficial to choose partitioning rules that respect the structure.
For a symmetric matrix, for instance, it is convenient to create sub-matrices
that exhibit the same property. The 1 x 2 and 2 x 1 rules break the structure
of a symmetric matrix, as neither of the two sub-matrices inherit the symmetry.
Therefore, we only allow 1 x 1 or 2 x 2 partitionings, with the extra constraint
that the T'L quadrant has to be square.

Box 4 illustrates the admissible partitionings for symmetric matrices. On the
left, the identity rule is applied and the operand remains unchanged. On the right
instead, a constrained 2x 2 rule is applied, so that some of the resulting quadrants
inherit properties. Both Mrpr, and Mppr are square and symmetric, and Mpy, =
ML, (or vice versa Mrr = MJ,). Each matrix type allows specific partitioning
rules and inheritance of properties; for triangular, diagonal, symmetric, and SPD
matrices a library of admissible partitioning rules is incorporated into CLICK.

M77L><7n — (M) mem — (

or

Mri M};L)
Mpr|MBr

where M is m X m .
where Mty is k X k

Box 4: Partitioning rules for structured matrices.

3.2 Theorem-aware Inheritance

Although frequent, direct inheritance of properties is only the simplest form of
inheritance. Here we expose a more complex situation. Let A be an SPD matrix.
Because of symmetry, the only admissible partitioning rules are the ones listed
in Box 4; applying the 2 x 2 rule, we obtain

Arp | AL
Amsxm = (ABL Apr),

(1)

where A7y is k X k

and both Ap; and Apg are symmetric. More properties about the quadrants
of A can be stated. For example, it is well known that if A is SPD, then every
principal sub-matriz of A is also SPD. As a consequence, the quadrants Ary, and
App inherit the SPD property. Moreover, it can be proved that given a 2 x 2
partitioning of an SPD matrix as in (1), the following matrices (known as Schur
complements) are also symmetric positive definite:

i) Arp — AL AGRABL,
ii) Agr — Apr. A7 AL .

The knowledge emerging from this theorem is hard-coded into CLICK. In
Sect. 4 it will become apparent how this information is essential for the genera-
tion of PMEs.

3.3 Combining the Partitionings

The admissible rules are now applied to rewrite the postcondition. Since in gen-
eral each operand can be decomposed in multiple ways, not one, but many parti-
tioned postconditions are created. As an example, in the Cholesky factorization
(Box 2) both the 1 x 1 and 2 x 2 rules are viable for both L and A, leading to
four different rewrite sets (Tab. 1).

It is apparent that some of the expressions in the fourth column of Tab. 1
are not algebraically well defined. The rules in the second and third rows lead
to ill-defined partitioned postconditions, thus they should be discarded. Despite
leading to a well defined expression, the first row of the table should be discarded
too, as the goal is a Partitioned Matrix Expression and it leads to an expression
in which none of the operands has been partitioned. In light of these additional
restrictions, the only viable set of rules for the Cholesky factorization is the one
given in the last row of Tab. 1.

In summary, partitioning rules must satisfy both the constraints due to the
nature of the individual operands, and those due to the operators appearing in
the postcondition. In the next section we detail the algorithm used by CLICK to
generate only the viable sets of partitioning rules.

3.4 Automation

We show how CLICK performs the partitioning process automatically. The naive
approach would be to exhaustively search among all the rules applied to all

#‘ L ‘ A ‘ Partitioned Postcondition

1 L — (L) A — (A) (L) (L)T = (A)
A7 |AL Arp |AL
2 L — (L) A= <£&> (L) (D)T = (rr BL>
ApL|ABR ApL|ABR
L 0 L 0 L |l
3| L— (XL A = (A) 7| T BL) — (4)
Lpr|LBr LBL‘LBR 0 ‘LBR
aln o (Lol 0 N| L (Arc|AT, Lri| 0 LI, L%, _ Ary|AL,
LpL|LBr ABL|ABR LBL‘LBR 0 ‘LER ABL‘ABR

Table 1: Application of the different combinations of partitioning rules to the
postcondition.

the operands, leading to a search space of exponential size in the number of
operands. Instead, CLICK utilizes an algorithm that traverses once the tree that
represents the postcondition in prefix notation and yields only the viable sets of
partitioning rules. The input to the algorithm is the predicates Py and Pyt for
a target operation. As an example we look at the triangular Sylvester equation
LX + XU = C, defined using our formalism as in Box 5.

Pyre : {Known(L) A LowerTriangular(L) A
Known(U) A UpperTriangular(U) A
X=0(LUC)= Known(C') A Unknown(X)}

Poost : {LX + XU = C}.

Box 5: Formal description for the triangular Sylvester equation.

First, the algorithm transforms the postcondition to prefix notation (Fig. 3)
and collects the name and the dimensionality of each operand. A list of disjoint
sets, one per dimension of the operands is then created. This initial list for the
Sylvester equation is [{L. },{L.}, {U.},{U:}, {Cr}, {C:}, { X}, {X.} |, where
and ¢ stand for rows and columns respectively. The algorithm traverses the tree,
in a post-order fashion, to determine if and which dimensions are bound together.
Two dimensions are bound to one another if the partitioning of one implies the
partitioning of the other. If two dimensions are found to be bound, then their
corresponding sets are merged together. As the algorithm moves from the leaves
to the root of the tree, it keeps track of the dimensions of the operands’ subtrees.

The algorithm starts by visiting the node corresponding to the operand L.
There it establishes that, since L is lower triangular, the identity and the 2 x 2
partitioning rules are the only admissible ones. Thus, the rows and the columns of

Fig. 3: Tree representation of the equation LX + XU = C.

L are bound together, and the list becomes [{L,, L.}, {U,},{U.}, {C\}, {C.},
{X,;},{X.}]. The next node to be visited is that of the operand X. Since
X has no specific structure, its analysis causes no bindings. Then, the node
corresponding to the x operator is analyzed. The dimensions of L and X have
to agree according to the matrix product, therefore, a binding between L. and
X, is imposed: [{L., Le, X}, {Ur }, {Uc}, {Cr}, {C:}, {X:}] . At this stage the
dimensions of the product LX are also determined to be L, x X..

The procedure continues by analyzing the subtree corresponding to the prod-
uct XU. Again, the lack of a specific structure in X does not cause any bind-
ing and the algorithm follows with the study of the node for the operand
U. The triangularity of U imposes a binding between U, and U, leading to
[{Lr,Le, X0}, {U, Ue}, {Cr}, {C:}, {X }] . Then, the node for the * operator is
analyzed, and a binding between X, and U, is found: [{L,., L., X}, {U,, U., X.},
{C\},{C.}]. The dimensions of the product XU are determined to be X, x U,.

The next node to be considered is the corresponding to the + operator. It
imposes a binding between the rows and the columns of the products LX and
XU, i.e., between L, and X,, and between X. and U.. Since each of these
pairs of dimensions already belong to the same set, no modifications are made
to the list. The algorithm establishes that the dimensions of the + node are
L, x U.. Next, the node associated to the operand C' is analyzed. Since C' has
no particular structure, its analysis does not cause any modification. The last
node to be processed is the equality operator =. This node binds the rows of C'
to those of L (C,., L,) and the columns of C to those of U (C¢, U.). The final
list consists of two separate groups of dimensions:

[{LT‘7 LC7 X’M C’l‘}) {U’r‘7 Uca XC7 CC}] .

Having created g groups of bound dimensions, the algorithm generates 29
combinations of rules (the dimensions within each group being either partitioned
or not), resulting in a family of partioned postconditions, one per combination.
In practice, since the combination including solely identity rules does not lead to
a PME, only 29 — 1 combinations are acceptable. In our example the algorithm
found two groups of bound dimensions, therefore three possible combinations of
rules are generated: 1) only the dimensions in the second group are partitioned,
2) only the dimensions in the first group are partitioned, or 3) all dimensions
are partitioned. The resulting partitionings are listed in Tab. 2.

#| L \ U \ c \ X

oo | (S| (edon) | (eulxn)

) @ | @) | &)
Lpr|LBr Cs Xp

g (LTL 0) (UTL UTR) (CTL‘CTR) (XTL‘XTR)
Ler|Ler 0 |Usr CBL‘CBR XBL‘XBR

Table 2: Viable combinations of partitioning rules for the Sylvester equation.

This very same process is used to find the bound dimensions of every target
operation and, accordingly, only each and every viable combination of partition-
ing rules is generated.

4 Matrix Arithmetic and Pattern Matching

This section covers the second and third steps in the PME generation stage
(Fig. 2). Within the Matriz Arithmetic step, symbolic arithmetic is performed
and the = operator is distributed over the partitions, originating multiple equa-
tions. In (2) we display the result of these actions for the Cholesky factorization,
where the symbol x means that the equation in the top-right quadrant is the
transpose of the bottom-left one.

LTL‘ 0 L;L‘LEL _ ATL‘AEL N LTLL;L:ATL‘ *
LBL‘LBR 0 ‘LER ABL‘ABR LBLLgL:ABL‘LBLLEL-"-LBRLER:ABR

The Pattern Matching step delivers the sought-after PME. Success of this
process is dependent on the ability to identify expressions with known structure
and properties. In order to facilitate pattern matching, we force equations to be
in their canonical form. We state that an equation is in canonical form if a) its
left-hand side only consists of those terms that contain at least one unknown
object, and b) its right-hand side only consists of those terms that solely contain
known objects.

This last step carries out an iterative process comprising three separate ac-
tions: 1) structural pattern matching: equations are matched against known pat-
terns; 2) once a known pattern is matched, the unknown operands are flagged
as known and the equation becomes a tautology; 3) algebraic manipulation: the
remaining equations are rearranged in canonical form. We clarify the iterative
process by illustrating, action by action, how CLICK works through the Cho-
lesky factorization. The first iteration is depicted in Box 6, in which the top-left
formula displays the initial state. In all the next expressions, green and red are
used to highlight the known and unknown operands, respectively.

Structural pattern matching: All the equations in Box 6(a) are in canonical
form. Through pattern matching, the top-left quadrant is the only one for which
a match is found. CLICK identifies the equation as a Cholesky factorization
(Box 6(b)), since the pattern in Box 2 is satisfied: the system recognizes that i)
Lty is lower triangular; ii) Ary is SPD; and iii) the structure of the equation
matches the one in the postcondition (LLT = A).

Exposing new available operands: Having matched the top-left equation,
CLICK turns the unknown operand Ly into Lpp, and propagates the infor-
mation to all the other quadrants (Box 6(c)). As a result, the top-left equation
becomes a tautology.

Algebraic manipulation: All the remaining equations are still in canonical
form, thus no operation takes place (Box 6(d)).

(LTLL%L:ATL *) (ZF(ATL)‘ *)

LBLL}L =Apr LBLLEL +LBRLEH = Apg LBLL’?'I, — ABL‘LBLL?}L +LBHL£R, = Apgr
(a) Initial state. (b) Top-left equation is identified as a Cho-
lesky sub-problem.

(: T'(Arr) *) (Loy = F(App) ‘ .)

T o|_ T T
LBL—ABL Lprlpy +LBrRLBR = ABR

LprLlip = ABL \LBLLL +LprLEr = ABR
(d) There is no need for algebraic manipu-

(¢) Lrr becomes a known operand for g
lation.

the rest of equations.

Box 6: First iteration towards the PME generation.

In this first iteration, one unknown operand, Ly, has become known, and
one equation has turned into a tautology. The knowledge encoded in such a
tautology is of importance for a subsequent iteration. The second iteration is
shown in Box 7.

Structural pattern matching: Box 7(a) reproduces the final state from the
previous iteration. Among the two outstanding equations, the bottom-left one
is identified (Box 7(b)), as it matches the pattern of a triangular system of
equations with multiple right-hand sides (TRSM). The pattern for a TRSM is

{XL" = B A Output(X) A Input(L) A LowerTriangular(L) A Input(B)}.

For the sake of brevity, we assume that CLICK had learned such pattern from a
previous derivation; in practice, in case the system does not know the pattern, a
nested task of PME generation would be initiated, yielding the required pattern.

Exposing new available operands: Once the TRSM is identified, the output
operand L g, becomes available and turns to green in the bottom-right quadrant
(Box 7(c)).

Algebraic manipulation: The bottom-right equation is not in canonical form
anymore: the product Ly LE;) now a known quantity, does not lay in the right-
hand side. A simple manipulation brings the equation back to canonical form

(Box 7(d)).

Ly = I(Arg) ‘ * Ly =T'(App) ‘ *
—T
tppthy = app|iprih, + Lerthr = s : ABrlrp ‘LBLLEL +LprLER = ABR
(a) Initial state. (b) Bottom-left equation is identified as a
triangular system of equations.

Loy = (A ‘

TL (Arp) * Lpp = D(App) ‘ .
L =ap -t \leg ltL |+ Lgrtt,, = A Lpr =AgrLat|lLgrtt . =Agp — L LT
BL|=ABLLrL ||[LBL|EBL BRLBR = ABR BL =ApLlrpp |LBRUBR =ABR — LBLLEBL

(c) Lpr becomes a known operand. (d) State after the algebraic manipulation.

Box 7: Second iteration towards the PME generation.

The process continues until all the equations are turned into tautologies. The
third and final iteration for the Cholesky factorization is shown in Box 8, where
the top formula replicates the final state from the previous iteration.

Structural pattern matching: Only one equation, the bottom-right one, re-
mains unprocessed. At a first glance, one might recognize a Cholesky factoriza-
tion, but the corresponding pattern in Box 2 requires A to be SPD. The question
is whether the expression Agr — LBLLEL represents an SPD matrix. In order to
answer the question, CLICK applies rewrite rules and symbolic simplifications.
In Sect. 3.2 we explained that the following quantities are known to be
SPD: ATL7 ABR» ATL - AgLAE}{ABL7 and ABR - ABLA%}JAEL In order to
determine whether Agr — Lp LLE ;, is equivalent to any of these expressions,
CLICK makes use of the knowledge acquired throughout the previous iterations.
Specifically, in the first two iterations it was discovered that LTLL% , = Arr,
and Lpy = Ap LL;}:. Using these tautologies as rewrite rules, the expression
Apgr — LBLLEL is manipulated. First, the equality Lgy = ABLL;g is used to
replace the instances of Ly, yielding Apr—Ap LL;%L;iAg 1,» and equivalently,
Apr—Apr(Lr LY,)AL, . Then, by virtue of the tautology Ly, LY, = Arp,
LTLL%L is replaced by Arp, yielding Agr — ABLA;iAEL. Now, this expression
is known to be SPD. Thanks to these manipulations, CLICK successfully asso-
ciates the bottom right equation with the pattern for a Cholesky factorization.

Exposing new available operands: Once the expression in the bottom-right
quadrant is identified, the system exposes the quantity Lpr as known. Since
no equation is left, the process completes and the PME—formed by the three
tautologies—is returned as output.

By means of the described process, PMEs for a target equation are automat-
ically generated. The PME for the Cholesky factorization is given in Box 9.

71171‘(417)‘ * LTL—F(ATL)
LprL = ABLLEz‘LBRLEH =Apr—LBLLEy Lpr =ABLLpL ‘m =I(Apr ~LprLhy)
(a) Initial state. (b) Bottom-right equation is identified as
a Cholesky factorization.

Lrp =T'(App) ‘ * Lrp =T'(Arp) ‘ *
— T — T =
LpL =ABLLpp ‘ LBr|=T(ABr — LBLLRBL) Lpr = ABLLTZ‘LBH, =r(Agr - LprLlhL)

(¢) Ler becomes a known operand. (d) Final PME.

Box 8: Final iteration towards the PME generation.

LTL = F(ATL) ‘ *
L = ABLLEg‘LBR =TI'(Apr — LerL%Ey)

Box 9: Partitioned Matrix Expression for the Cholesky factorization.

5 Conclusions

The work we presented sets the ground for the development of a symbolic system
that, from the sole description of an operation, generates algorithms automat-
ically. The core of our methodology stands in the PME. A PME encapsulates
the information about the target operation in a way that facilitates the subse-
quent identification of loop-invariants. The loop-invariants then lead to the final
algorithms through a technique based on program correctness. In this paper we
introduce a symbolic system, CLICK, that automates the generation of PMEs.

In order to generate PMEs, CLICK first identifies how the operands in the
operation may be partitioned. Instead of a brute force approach of exponential
complexity, CLICK utilizes a tree-based algorithm that yields only the viable sets
of partitioning rules. Through a process of pattern matching, each such set leads
to a distinct PME. The key in the PME generation is CLICK’s ability to identify
known patterns. Initially, CLICK only recognizes elementary structures, but its
knowledge expands by automatically learning the patterns associated with the
operations it tackles. Thanks to this augmenting internal knowledge, the system
may generate PMEs for increasingly complex operations.

To illustrate CLICK, we discussed the Cholesky factorization and, partially
(due to space constraints), the Sylvester equation. Despite the fact that such op-
erations differ in multiple ways—mnumber and properties of the operands, num-
ber of valid sets of partitioning rules, number of PMEs—the steps performed by
CLIcK leading to the PMEs are exactly the same. As future work, we plan to
add support for higher dimensional objects and the derivative operator.

6 Acknowledgements

The authors gratefully acknowledge the support received from the Deutsche
Forschungsgemeinschaft (German Research Association) through grant GSC 111.

References

10.

11.

12.

13.

14.

15.

. FLAME Project: FLAME Online Reference.

http://z.cs.utexas.edu/wiki/flame.wiki/

Dongarra, J.J., Du Croz, J., Hammarling, S., Duff, I.S.: A set of level 3 basic linear
algebra subprograms. ACM Trans. Math. Softw. 16 (March 1990) 1-17

Jonsson, I., Kagstrom, B.: Recursive blocked algorithms for solving triangular
systems—part i: one-sided and coupled sylvester-type matrix equations. ACM
Transactions on Mathematical Software 28(4) (2002) 392-415

Jonsson, I., Kagstrom, B.: Recursive blocked algorithms for solving triangular
systems—part ii: Two-sided and generalized sylvester and lyapunov matrix equa-
tions. ACM Transactions on Mathematical Software 28(4) (2002) 416-435
Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J.,
Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LA-
PACK Users’ Guide. Third edn. Society for Industrial and Applied Mathematics,
Philadelphia, PA (1999)

Whaley, R.C., Dongarra, J.: Automatically tuned linear algebra software. In:
SuperComputing 1998: High Performance Networking and Computing. (1998)
Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proceed-
ings of the IEEE 93(2) (2005) 216-231 Special issue on “Program Generation,
Optimization, and Platform Adaptation”.

Piischel, M., Moura, J.M.F., Johnson, J., Padua, D., Veloso, M., Singer, B., Xiong,
J., Franchetti, F., Gacic, A., Voronenko, Y., Chen, K., Johnson, R.W., Rizzolo, N.:
SPIRAL: Code generation for DSP transforms. Proceedings of the IEEE, special
issue on “Program Generation, Optimization, and Adaptation” 93(2) (2005) 232—
275

Bientinesi, P., Gunnels, J.A., Myers, M.E., Quintana-Orti, E.S., van de Geijn,
R.A.: The science of deriving dense linear algebra algorithms. ACM Transactions
on Mathematical Software 31(1) (March 2005) 1-26

Bientinesi, P., Quintana-Orti, E.S., van de Geijn, R.: FLAMElab: A farewell to
indices. FLAME Working Note #11. Technical Report TR-2003-11, The University
of Texas at Austin, Department of Computer Sciences (April 2003)
Quintana-Orti, E.S., van de Geijn, R.A.: Formal derivation of algorithms: The
triangular Sylvester equation. ACM Transactions on Mathematical Software 29(2)
(June 2003) 218-243

Poulson, J., van de Geijn, R., Bennighof, J.: Parallel algorithms for reducing the
generalized hermitian-definite eigenvalue problem. FLAME Working Note #56.
Technical Report TR-11-05, The University of Texas at Austin, Department of
Computer Sciences (February 2011)

Bientinesi, P., van de Geijn, R.: A goal-oriented and modular approach to stability
analysis. STAM Journal on Matrix Analysis and Applications (2011) “To appear”.
Wolfram Research: Mathematica Reference Guide.
http://reference.wolfram.com/mathematica/

Gries, D., Schneider, F.B.: A Logical Approach to Discrete Math. Texts and
Monographs in Computer Science. Springer Verlag (1992)

