Skip to main content

Exact Shapes and Turing Universality at Temperature 1 with a Single Negative Glue

  • Conference paper
Book cover DNA Computing and Molecular Programming (DNA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6937))

Included in the following conference series:

Abstract

Is Winfree’s abstract Tile Assembly Model (aTAM) “powerful?” Well, if certain tiles are required to “cooperate” in order to be able to bind to a growing tile assembly (a.k.a., temperature 2 self-assembly), then Turing universal computation and the efficient self-assembly of N ×N squares is achievable in the aTAM (Rotemund and Winfree, STOC 2000). So yes, in a computational sense, the aTAM is quite powerful! However, if one completely removes this cooperativity condition (a.k.a., temperature 1 self-assembly), then the computational “power” of the aTAM (i.e., its ability to support Turing universal computation and the efficient self-assembly of N ×N squares) becomes unknown. On the plus side, the aTAM, at temperature 1, is not only Turing universal but also supports the efficient self-assembly N ×N squares if self-assembly is allowed to utilize three spatial dimensions (Fu, Schweller and Cook, SODA 2011). In this paper, we investigate the theoretical “power” of a seemingly simple, restrictive variant of Winfree’s aTAM in which (1) the absolute value of every glue strength is 1, (2) there is a single negative strength glue type and (3) unequal glues cannot interact (i.e., glue functions must be “diagonal”). We call this abstract model of self-assembly the restricted glue Tile Assembly Model (rgTAM). We achieve two positive results. First, we show that the tile complexity of uniquely producing an N ×N square in the rgTAM is O(logN). In our second result, we prove that the rgTAM is Turing universal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adleman, L., Cheng, Q., Goel, A., Huang, M.-D.: Running time and program size for self-assembled squares. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, pp. 740–748. ACM, New York (2001)

    Google Scholar 

  2. Adleman, L.M., Kari, J., Kari, L., Reishus, D., Sosík, P.: The undecidability of the infinite ribbon problem: Implications for computing by self-assembly. SIAM Journal on Computing 38(6), 2356–2381 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barish, R.D., Schulman, R., Rothemund, P.W., Winfree, E.: An information-bearing seed for nucleating algorithmic self-assembly. Proceedings of the National Academy of Sciences 106(15), 6054–6059 (2009)

    Article  Google Scholar 

  4. Chen, H.-L., Schulman, R., Goel, A., Winfree, E.: Reducing facet nucleation during algorithmic self-assembly. Nano Letters 7(9), 2913–2919 (2007)

    Article  Google Scholar 

  5. Cook, M., Fu, Y., Schweller, R.: Temperature 1 self-assembly: Deterministic assembly in 3d and probabilistic assembly in 2d. In: Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (2011)

    Google Scholar 

  6. Doty, D.: Randomized self-assembly for exact shapes. SIAM Journal on Computing 39(8), 3521–3552 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Doty, D., Kari, L., Masson, B.: Negative interactions in irreversible self-assembly. In: Sakakibara, Y., Mi, Y. (eds.) DNA 16 2010. LNCS, vol. 6518, pp. 37–48. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Doty, D., Lutz, J.H., Patitz, M.J., Summers, S.M., Woods, D.: Intrinsic universality in self-assembly. In: Proceedings of the 27th International Symposium on Theoretical Aspects of Computer Science, pp. 275–286 (2009)

    Google Scholar 

  9. Doty, D., Patitz, M.J., Reishus, D., Schweller, R.T., Summers, S.M.: Strong fault-tolerance for self-assembly with fuzzy temperature. In: Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS 2010), pp. 417–426 (2010)

    Google Scholar 

  10. Doty, D., Patitz, M.J., Summers, S.M.: Limitations of self-assembly at temperature 1. Theoretical Computer Science 412, 145–158 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kao, M.-Y., Schweller, R.T.: Reducing tile complexity for self-assembly through temperature programming. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2006), Miami, Florida, January 2006, pp. 571-580 (2007)

    Google Scholar 

  12. Kao, M.-Y., Schweller, R.T.: Randomized self-assembly for approximate shapes. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 370–384. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Kinsella, J.M., Ivanisevic, A.: Enzymatic clipping of dna wires coated with magnetic nanoparticles. Journal of the American Chemical Society 127(10), 3276–3277 (2005)

    Article  Google Scholar 

  14. Lathrop, J.I., Lutz, J.H., Summers, S.M.: Strict self-assembly of discrete Sierpinski triangles. Theoretical Computer Science 410, 384–405 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Luhrs, C.: Polyomino-safe dna self-assembly via block replacement. DNA, 112–126 (2008)

    Google Scholar 

  16. Majumder, U., Reif, J.: A framework for designing novel magnetic tiles capable of complex self-assemblies. In: Calude, C.S., Costa, J.F., Freund, R., Oswald, M., Rozenberg, G. (eds.) UC 2008. LNCS, vol. 5204, pp. 129–145. Springer, Heidelberg (2008)

    Google Scholar 

  17. Mao, C., Sun, W., Seeman, N.C.: Designed two-dimensional DNA holliday junction arrays visualized by atomic force microscopy. Journal of the American Chemical Society 121(23), 5437–5443 (1999)

    Article  Google Scholar 

  18. Reif, J., Sahu, S., Yin, P.: Complexity of graph self-assembly in accretive systems and self-destructible systems. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005. LNCS, vol. 3892, pp. 257–274. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Rickwood, D., Lund, V.: Attachment of dna and oligonucleotides to magnetic particles: methods and applications. Fresenius’ Journal of Analytical Chemistry 330, 330–330 (1988), doi:10.1007/BF00469247

    Article  Google Scholar 

  20. Rothemund, P.W.K.: Theory and experiments in algorithmic self-assembly, Ph.D. thesis, University of Southern California (December 2001)

    Google Scholar 

  21. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled squares (extended abstract). In: STOC 2000: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, Portland, Oregon, United States, pp. 459–468. ACM, New York (2000)

    Chapter  Google Scholar 

  22. Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biology 2(12), 2041–2053 (2004)

    Article  Google Scholar 

  23. Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. SIAM Journal on Computing 36(6), 1544–1569 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Winfree, E.: Algorithmic self-assembly of DNA, Ph.D. thesis, California Institute of Technology (June 1998)

    Google Scholar 

  25. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394(6693), 539–544 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Patitz, M.J., Schweller, R.T., Summers, S.M. (2011). Exact Shapes and Turing Universality at Temperature 1 with a Single Negative Glue. In: Cardelli, L., Shih, W. (eds) DNA Computing and Molecular Programming. DNA 2011. Lecture Notes in Computer Science, vol 6937. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23638-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23638-9_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23637-2

  • Online ISBN: 978-3-642-23638-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics