Skip to main content

Autonomous Resolution Based on DNA Strand Displacement

  • Conference paper
DNA Computing and Molecular Programming (DNA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6937))

Included in the following conference series:

Abstract

We present a computing model based on the technique of DNA strand displacement which performs a chain of logical resolutions with logical formulae in conjunctive normal form. The model is enzyme-free and autonomous. Each clause of a formula is encoded in a separate DNA molecule: propositions are encoded assigning a strand to each proposition p, and its complementary strand to the proposition ¬p; clauses are encoded comprising different propositions in the same strand. The model allows to run logic programs composed of Horn clauses by cascading resolution steps and, therefore, possibly function as an autonomous programmable nano-device. This technique can be also used to solve SAT. The resulting SAT algorithm has a linear time complexity in the number of resolution steps, whereas its spatial complexity is exponential in the number of variables of the formula.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Deans, T.L., Cantor, C.R., Collins, J.J.: A tunable genetic switch based on RNAi and repressor proteins for regulating gene expression in mammalian cells. Cell 130(2), 363–372 (2007)

    Article  Google Scholar 

  2. Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., Shapiro, E.: An autonomous molecular computer for logical control of gene expression. Nature 429, 423–429 (2004)

    Article  Google Scholar 

  3. Basu, S., Gerchman, Y., Collins, C.H., Arnold, F.H., Weiss, R.: A synthetic multicellular system for programmed pattern formation. Nature 434(7037), 1130–1134 (2005)

    Article  Google Scholar 

  4. Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic circuits. Science 314(5805), 1585–1588 (2006)

    Article  Google Scholar 

  5. Frezza, B.M., Cockroft, S.L., Ghadiri, M.R.: Modular multi-level circuits from immobilized DNA-based logic gates. J. Am. Chem. Soc. 129(48), 14875–14879 (2007)

    Article  Google Scholar 

  6. Takahashi, K., Yaegashi, S., Kameda, A., Hagiya, M.: Chain reaction systems based on loop dissociation of DNA. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005. LNCS, vol. 3892, pp. 347–358. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Cardelli, L.: Strand Algebras for DNA Computing. In: Deaton, R., Suyama, A. (eds.) DNA 15. LNCS, vol. 5877, pp. 12–24. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Kobayashi, S.: Horn clause computation with DNA molecules. J. Comb. Optim. 3, 277–299 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Uejima, H., Hagiya, M., Kobayashi, S.: Horn clause computation by self-assembly of DNA molecules. In: Jonoska, N., Seeman, N.C. (eds.) DNA 2001. LNCS, vol. 2340, pp. 308–320. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Wasiewicz, P., Janczak, T., Mulawka, J.J., Plucienniczak, A.: The inference based on molecular computing. Cybernetics and Systems: An International Journal 31(3), 283–315 (2000)

    Article  MATH  Google Scholar 

  11. Ran, T., Kaplan, S., Shapiro, E.: Molecular implementation of simple logic programs. Nature Nanotechnology 4(10), 642–648 (2009)

    Article  Google Scholar 

  12. Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E., Livneh, Z., Shapiro, E.: Programmable and autonomous computing machine made of biomolecules. Nature 414(6862), 430–434 (2001)

    Article  Google Scholar 

  13. Rodríguez-Patón, A., Larrea, J.M., Sainz de Murieta, I.: Inference with DNA molecules. In: Calude, C.S., Hagiya, M., Morita, K., Rozenberg, G., Timmis, J. (eds.) UC 2010. LNCS, vol. 6079, page 192. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Panyutin, I.G., Hsieh, P.: The kinetics of spontaneous dna branch migration. Proceedings of the National Academy of Sciences 91(6), 2021–2025 (1994)

    Article  Google Scholar 

  15. Biswas, I., Yamamoto, A., Hsieh, P.: Branch migration through DNA sequence heterology. Journal of Molecular Biology 279(4), 795–806 (1998)

    Article  Google Scholar 

  16. Chiniforooshan, E., Doty, D., Kari, L., Seki, S.: Scalable, time-responsive, digital, energy-efficient molecular circuits using DNA strand displacement. In: Sakakibara, Y., Mi, Y. (eds.) DNA 16 2010. LNCS, vol. 6518, pp. 25–36. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Lipton, R.J.: DNA solution of hard computational problems. Science 268(5210), 542–545 (1995)

    Article  Google Scholar 

  18. Sakamoto, K., Gouzu, H., Komiya, K., Kiga, D., Yokoyama, S., Yokomori, T., Hagiya, M.: Molecular computation by DNA hairpin formation. Science 288(5469), 1223–1226 (2000)

    Article  Google Scholar 

  19. Manca, V., Zandron, C.: A clause string DNA algorithm for SAT. In: Jonoska, N., Seeman, N.C. (eds.) DNA 2001. LNCS, vol. 2340, pp. 172–181. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  20. Manca, V.: DNA and membrane algorithms for SAT. Fundamenta Informaticae 49(1), 205–221 (2002)

    MathSciNet  MATH  Google Scholar 

  21. Ogihara, M.: Breadth first search 3SAT algorithms for DNA computers (1996)

    Google Scholar 

  22. Wang, X., Bao, Z., Hu, J., Wang, S., Zhan, A.: Solving the SAT problem using a DNA computing algorithm based on ligase chain reaction. Biosystems 91(1), 117–125 (2008)

    Article  Google Scholar 

  23. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proceedings of the National Academy of Sciences 107(12), 5393–5398 (2010)

    Article  Google Scholar 

  24. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7(3), 201–215 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  25. Stahl, F.W.: The Holliday junction on its thirtieth anniversary.. Genetics 138(2), 241–246 (1994)

    Google Scholar 

  26. Liu, Y., West, S.C.: Happy Hollidays: 40th anniversary of the Holliday junction. Nature Reviews Molecular Cell Biology 5(11), 937–944 (2004)

    Article  Google Scholar 

  27. Cook, S.A.: The complexity of theorem-proving procedures. In: STOC 1971: Proceedings of the Third Annual ACM Symposium on Theory of Computing, New York, NY, USA, pp. 151–158 (1971)

    Google Scholar 

  28. Esteban, J.L., Torán, J.: Space Bounds for Resolution. Information and Computation 171(1), 84–97 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Haken, A.: The intractability of resolution. Theoretical Computer Science 39, 297–308 (1985)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rodríguez-Patón, A., de Murieta, I.S., Sosík, P. (2011). Autonomous Resolution Based on DNA Strand Displacement. In: Cardelli, L., Shih, W. (eds) DNA Computing and Molecular Programming. DNA 2011. Lecture Notes in Computer Science, vol 6937. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23638-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23638-9_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23637-2

  • Online ISBN: 978-3-642-23638-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics