Skip to main content

Fast Shape Re-ranking with Neighborhood Induced Similarity Measure

  • Conference paper
  • 1861 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6854))

Abstract

In this paper, we address the shape retrieval problem by casting it into the task of identifying “authority” nodes in an inferred similarity graph and also by re-ranking the shapes. The main idea is that the average similarity between a node and its neighboring nodes takes into account the local distribution and therefore helps modify the neighborhood edge weight, which guides the re-ranking. The proposed approach is evaluated on both 2D and 3D shape datasets, and the experimental results show that the proposed neighborhood induced similarity measure significantly improves the shape retrieval performance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Analysis and Machine Intelligence 24(4), 509–522 (2002)

    Article  Google Scholar 

  2. Ling, H., Jacobs, D.: Shape classification using the inner-distance. IEEE Trans. Pattern Analysis and Machine Intelligence 29(2), 286–299 (2007)

    Article  Google Scholar 

  3. Li, S., Lee, M.-C., Pun, C.-M.: Complex Zernike moments features for shape-based image retrieval. IEEE Trans. Systems, Man, and Cybernetics 39(1), 227–237 (2009)

    Article  Google Scholar 

  4. Sebastian, T.B., Klein, P.N., Kimia, B.B.: Recognition of shapes by editing their shock graphs. IEEE Trans. Pattern Analysis and Machine Intelligence 26(5), 550–571 (2004)

    Article  Google Scholar 

  5. Bai, X., Yang, X., Latecki, L.J., Liu, W., Tu, Z.: Learning context sensitive shape similarity by graph transduction. IEEE Trans. Pattern Analysis and Machine Intelligence 32(5), 861–874 (2010)

    Article  Google Scholar 

  6. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. In: Proc. Int. Conf. World Wide Web 7, vol. 30(1-7), pp. 107–117 (1998)

    Google Scholar 

  7. He, X., Ma, W.-Y., Zhang, H.: Imagerank: spectral techniques for structural analysis of image database. In: Proc. IEEE Int. Conf. Multimedia and Expo, vol. 1, pp. 25–28 (2002)

    Google Scholar 

  8. Latecki, L., Lakamper, R., Eckhardt, U.: Shape descriptors for non-rigid shapes with a single closed contour. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 424–429 (2000)

    Google Scholar 

  9. Wei, C.-H., Li, Y., Chau, W.-Y., Li, C.-T.: Trademark image retrieval using synthetic features for describing global shape and interior structure. Pattern Recognition 42(3), 386–394 (2009)

    Article  MATH  Google Scholar 

  10. Chen, D.-Y., Tian, X.-P., Shen, Y.-T., Ouhyoung, M.: On visual similarity based 3D model retrieval. Computer Graphics Forum 22(3), 223–232 (2003)

    Article  Google Scholar 

  11. Siddiqi, K., Zhang, J., Macrini, D., Shokoufandeh, A., Bouix, S., Dickinson, S.: Retrieving articulated 3-D models using medial surfaces. Machine Vision and Applications 19(4), 261–275 (2008)

    Article  MATH  Google Scholar 

  12. Cheng, H., Liu, Z., Yang, J.: Sparsity induced similarity measure for label propagation. In: Proc. IEEE Int. Conf. Computer Vision, Kyoto, Japan, pp. 317–324 (2009)

    Google Scholar 

  13. Xiaojin, Z.: Semi-supervised learning with Graphs, PhD thesis, CMU (2005)

    Google Scholar 

  14. Jegou, H., Schmid, C., Harzallah, H., Verbeek, J.: Accurate image search using the contextual dissimilarity measure. IEEE Trans. Pattern Analysis and Machine Intelligence 32(1), 2–11 (2010)

    Article  Google Scholar 

  15. Yu, J., Amores, J., Sebe, N., Radeva, P., Tian, Q.: Distance learning for similarity estimation. IEEE Trans. Pattern Analysis and Machine Intelligence 30(3), 451–462 (2008)

    Article  Google Scholar 

  16. http://www.cim.McGill.ca/shape/benchmark

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, C., Gao, C., Xing, S., Hamza, A.B. (2011). Fast Shape Re-ranking with Neighborhood Induced Similarity Measure. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds) Computer Analysis of Images and Patterns. CAIP 2011. Lecture Notes in Computer Science, vol 6854. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23672-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23672-3_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23671-6

  • Online ISBN: 978-3-642-23672-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics