Skip to main content

Graph Clustering Using the Jensen-Shannon Kernel

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6854))

Included in the following conference series:

Abstract

This paper investigates whether the Jensen-Shannon divergence can be used as a means of establishing a graph kernel for graph classification. The Jensen-Shannon kernel is nonextensive information theoretic kernel which is derived from mutual information theory, and is defined on probability distributions. We use the von-Neumann entropy to calculate the elements of the Jensen-Shannon graph kernel and use the kernel matrix for graph classification. We use kernel principle components analysis (kPCA) to embed graphs into a feature space. Experimental results reveal the method gives good classification results on graphs extracted from an object recognition database.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borgwardt, K.M., Kriegel, H.P.: Shortest-path kernels on graphs (2005)

    Google Scholar 

  2. Bunke, H., Riesen, K.: Graph classification based on dissimilarity space embedding. In: Structural, Syntactic, and Statistical Pattern Recognition, pp. 996–1007 (2010)

    Google Scholar 

  3. Desobry, F., Davy, M., Fitzgerald, W.J.: Density kernels on unordered sets for kernel-based signal processing. In: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2007, vol. 2, p. II–417. IEEE, Los Alamitos (2007)

    Google Scholar 

  4. Gartner, T.: A survey of kernels for structured data. ACM SIGKDD Explorations Newsletter 5(1), 49–58 (2003)

    Article  Google Scholar 

  5. Han, L., Hancock, E., Wilson, R.: Learning generative graph prototypes using simplified von neumann entropy. In: Graph-Based Representations in Pattern Recognition, pp. 42–51 (2011)

    Google Scholar 

  6. Jebara, T., Kondor, R., Howard, A.: Probability product kernels. The Journal of Machine Learning Research 5, 819–844 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Jolliffe, I.: Principal component analysis (2002)

    Google Scholar 

  8. Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled graphs. In: International Workshop then Conference on Machine Learning, vol. 20, p. 321 (2003)

    Google Scholar 

  9. Kondor, R.I., Lafferty, J.: Diffusion kernels on graphs and other discrete input spaces. In: International Workshop then Conference on Machine Learning, pp. 315–322. Citeseer (2002)

    Google Scholar 

  10. Lafferty, J., Lebanon, G.: Diffusion kernels on statistical manifolds. The Journal of Machine Learning Research 6, 129–163 (2005)

    MathSciNet  MATH  Google Scholar 

  11. Lin, H., Hancock, E.R.: Characterizing Graphs Using Approximate von-Neumann Entropy (2011)

    Google Scholar 

  12. Martins, A.F.T., Smith, N.A., Xing, E.P., Aguiar, P.M.Q., Figueiredo, M.A.T.: Nonextensive information theoretic kernels on measures. The Journal of Machine Learning Research 10, 935–975 (2009)

    MathSciNet  MATH  Google Scholar 

  13. Scholkopf, B., Smola, A.J.: Learning with kernels. Citeseer (2002)

    Google Scholar 

  14. Shawe-Taylor, J., Cristianini, N.: Kernel methods for pattern analysis. Cambridge Univ Pr., Cambridge (2004)

    Book  MATH  Google Scholar 

  15. Suau, P., Escolano, F.: Bayesian optimization of the scale saliency filter. Image and Vision Computing 26(9), 1207–1218 (2008)

    Article  Google Scholar 

  16. Torsello, A., Hancock, E.R.: Graph embedding using tree edit-union. Pattern recognition 40(5), 1393–1405 (2007)

    Article  MATH  Google Scholar 

  17. Torsello, A., Robles-Kelly, A., Hancock, E.R.: Discovering shape classes using tree edit-distance and pairwise clustering. International Journal of Computer Vision 72(3), 259–285 (2007)

    Article  Google Scholar 

  18. Xiao, B., Hancock, E.R., Wilson, R.C.: Graph characteristics from the heat kernel trace. Pattern Recognition 42(11), 2589–2606 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bai, L., Hancock, E.R. (2011). Graph Clustering Using the Jensen-Shannon Kernel. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds) Computer Analysis of Images and Patterns. CAIP 2011. Lecture Notes in Computer Science, vol 6854. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23672-3_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23672-3_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23671-6

  • Online ISBN: 978-3-642-23672-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics