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Abstract. The detection of vascular bifurcations in retinal fundus im-
ages is important for finding signs of various cardiovascular diseases. We
propose a novel method to detect such bifurcations. Our method is im-
plemented in trainable filters that mimic the properties of shape-selective
neurons in area V4 of visual cortex. Such a filter is configured by com-
bining given channels of a bank of Gabor filters in an AND-gate-like
operation. Their selection is determined by the automatic analysis of a
bifurcation feature that is specified by the user from a training image.
Consequently, the filter responds to the same and similar bifurcations.
With only 25 filters we achieved a correct detection rate of 98.52% at a
precision rate of 95.19% on a set of 40 binary fundus images, containing
more than 5000 bifurcations. In principle, all vascular bifurcations can
be detected if a sufficient number of filters are configured and used.

Keywords: DRIVE, Gabor filters, retinal fundus, trainable filters, V4
neurons, vessel bifurcation.

1 Introduction

The vascular topographical geometry in the retina is known to conform to struc-
tural principles that are related to certain physical properties [14]. The analysis
of the geometrical structure is very important as deviations from the optimal
principles may indicate some cardiovascular diseases, such as hypertension [17]
and atherosclerosis [4]; a comprehensive analysis is given in [12]. The identifica-
tion of vascular bifurcations is one of the basic steps in this analysis.

More than 100 vascular bifurcations can be seen in a typical retinal fun-
dus image. Their manual detection by a human observer is a tedious and time
consuming process. The existing attempts to automate the detection of retinal
vascular bifurcations can be categorized into two classes usually referred to as
geometrical-feature based and model based approaches. The former involve ex-
tensive preprocessing such as segmentation and skeletonization followed by local
pixel processing and branch point analysis. These techniques are known for their
robustness in bifurcation localization [2,3,5,8]. On the other hand, model based
approaches are usually more adaptive and have smaller computational com-
plexity which makes them more appropriate for real-time applications [1,16].
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However, model based approaches are known to suffer from insufficient general-
ization ability as they are usually unable to model all the features of interest.
Consequently, these methods may fail to detect some relevant features.

In this paper we propose trainable filters for the detection of vascular bifur-
cations in retinal fundus images. Our approach requires a single-step training
process where an observer specifies a typical bifurcation by a point of interest in
an image. The specified feature is then used to automatically configure a bifurca-
tion detector by determining the properties of all line segments in the concerned
feature and their mutual geometrical arrangement. This training procedure can
be repeated as many times as required in order to configure a number of filters
based on different specified features of interest. The filters can then be applied
on retinal fundus images to detect the features that are similar to the patterns
that were used to configure the filters.

The rest of the paper is organized as follows: In Section 2 we present our method
and demonstrate how it can be used to detect retinal vascular bifurcations. In Sec-
tion 3, we apply the proposed nonlinear filters on retinal fundus images from the
DRIVE dataset [15]. Section 4 contains a discussion and conclusions.

2 Proposed Method

2.1 Overview

Fig.1a shows a bifurcation encircled in a binarized retinal fundus image from the
DRIVE dataset [15]. Such a feature, which is shown enlarged in Fig.1b, is used
to automatically configure a detector that will respond to the same and similar
patterns.

Each of the three ellipses shown in Fig.1b represents the support or receptive
field (RF) of a sub-unit that detects a line of a given orientation and width, while
the central circle represents the RF of a group of such sub-units. The response
of the proposed bifurcation detector is computed by combining the responses of
the concerned sub-units by multiplication. The preferred orientations of the sub-
units and the mutual spatial arrangement of their RFs are determined by the
local pattern used for the configuration of the concerned filter. Consequently,

(a) (b)

Fig. 1. (a) The circle indicates a bifurcation that is selected by a user. (b) Enlargement
of the selected feature. The ellipses represent the support of line detectors that are
identified as relevant for the concerned feature.
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that filter is selective for the presented local combination of lines of specific
orientations and widths.

Such a design is inspired by electrophysiological evidence that some neurons
in area V4 of visual cortex are selective for moderately complex stimuli, such as
curvatures, that receive inputs from a group of orientation-selective cells in areas
V1 and V2 [9,10,11]. Moreover, there is psychophysical evidence [6] that curve
contour parts are likely detected by an AND-gate-like operation that combines
the responses of afferent orientation-selective sub-units by multiplication. An
AND-gate-like model produces a response only when all its afferent sub-units
are stimulated; i.e. all constituent parts of a stimulus are present.

In the next sub-sections, we explain the automatic configuration process of
a bifurcation detector. The configuration process determines which responses of
which Gabor filters in which locations need to be multiplied in order to obtain
the output of the filter.

2.2 Orientation-Selective Sub-units Based on Gabor Filters

The input to the orientation-selective sub-units mentioned above is provided
by two-dimensional (2D) Gabor filters, which are established models of V1/V2
cells. We denote by gλ,θ(x, y) the half-wave rectified response of a Gabor filter
of preferred wavelength λ and orientation θ to a given input image. Such a filter
has also other parameters, namely spatial aspect ratio, bandwidth and phase
offset, that we skip here for brevity. We set their values as proposed in [13].

Since we work in a multiscale setting, we re-normalize all Gabor functions
that we use in such a way that all positive values of such a function sum up to
1 while all negative values sum up to -1. We use symmetric Gabor functions as
they respond to line structures and we are interested to detect the presence of
vessels in retinal fundus images.

We use a bank of Gabor filters with 5 wavelengths (Λ = {4, 4√2, 8, 8
√

2, 16})
and 8 equidistant orientations (Θ = {0, π8 , . . . , 7π

8 }) that we apply on images of
size 565 × 584. In such images, the blood vessels have widths of 1 to 7 pixels.
Fig.2a illustrates the maximum value superposition of the thresholded responses
of the concerned bank of Gabor filters obtained for the bifurcation image shown
in Fig.1b. All responses are thresholded at a given fraction t1 = 0.2 of the
maximum response of gλ,θ(x, y) across all combinations of values (λ, θ) used and
all positions (x, y) in the image.

2.3 Sub-unit Parameters

A sub-unit uses as inputs the responses of a certain Gabor filter characterized
by the parameter values (λ, θ) around a certain position (ρ, φ) with respect to
the center of the filter. A sub-unit is thus characterized by four parameters:
(λ, θ, ρ, φ). The values of such parameters for a sub-unit are obtained as follows.

We consider the responses of the bank of Gabor filters along a circle of a given
radius ρ around the selected point of interest (Fig.2). In each position along that
circle, we take the maximum of all responses across the possible values of (λ, θ).
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If this value is greater than the corresponding values for the neighboring positions
along an arc of angle π

8 the concerned position is chosen as a center of the RF
of a sub-unit. Its coordinates (ρ, φ) are determined with respect to the center
of the filter. The pair of values (λ, θ) for which the concerned local maximum is
reached are the preferred wavelength and orientation of the sub-unit.

In our experiments, we configure bifurcation detectors using multiple values
of the parameter ρ. For non-zero values of ρ we determine a group of sub-units
with the method mentioned above. For ρ = 0, we consider the responses of the
bank of Gabor filters used at the specified point of interest. For such a location,
we consider all combinations of (λ, θ) for which the corresponding responses
gλ,θ(x, y) are greater than a fraction t2 = 0.75 of the maximum of gλ,θ(x, y)
across the different combinations of values (λ, θ) used. For each value θ that
satisfies such a condition, we consider a single value of λ, the one for which
gλ,θ(x, y) is the maximum of all responses across all values of λ. At this central
location, multiple sub-units can thus be defined and their RFs are centered at
the same position with polar coordinates (ρ = 0, φ = 0).

We denote the set of parameter value combinations, which fulfill the above
conditions, by Sf = {(λ, θ, ρ, φ)}. The subscript f stands for the local pattern
around the selected point of interest. Every tuple in the set Sf specifies the
parameters of a sub-unit.

For the point of interest shown in Fig.2a and two given values of the radius
ρ ({0, 10}), the selection method described above results in five sub-units with
parameter values specified by the tuples in the following set; Sf = {(λ = 4, θ =
0, ρ = 0, φ = 0), (λ = 4, θ = π

2 , ρ = 0, φ = 0), (λ = 4, θ = 0, ρ = 10, φ =
1.34), (λ = 4, θ = 3π

4 , ρ = 10, φ = 3.75), (λ = 4, θ = π
2 , ρ = 10, φ = 6.27)}. The

last tuple in that list, (λ = 4, θ = π
2 , ρ = 10, φ = 6.27), for instance, describes a

sub-unit that collects its inputs from the responses of a Gabor filter with λ = 4
and θ = π

2 , i.e. a Gabor filter that strongly responds to horizontal lines (θ = π
2 )
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Fig. 2. (a) The gray-level intensity of every pixel is the maximum value superpo-
sition of the thresholded responses from a bank of Gabor filters at that position;
maxλ∈Λ,θ∈Θ |gλ,θ(x, y)|t1 . The arrow indicates the location of the point of interest se-
lected by a user, while the bright circle of a given radius ρ indicates the considered
locations. (b) Values of the maximum value superposition of Gabor filter responses
along the concerned circle of radius ρ = 10 around the point of interest. The marked
local maxima are caused by the three blood vessels.
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of width of (λ2 =) 2 pixels, around a position of (ρ =) 10 pixels to the right
(φ = 6.27) of the center of the filter. This selection is the result of the presence
of a horizontal vessel to the right of the center of the feature that is used for the
configuration of the filter.

2.4 Sub-unit Response

We denote by sλ,θ,ρ,φ(x, y) the response of a sub-unit, which we compute as
follows. We consider the responses gλ,θ(x, y) of a Gabor filter with preferred
wavelength λ and orientation θ around position (ρ, φ) with respect to the cen-
ter of the filter. We weight these responses by a 2D Gaussian function with a
standard deviation that is a linear function of parameter ρ. We define the out-
put of the sub-unit as the maximum value of all the weighted responses of the
concerned Gabor filter. This result is shifted by ρ in the direction opposite to φ.

Fig.3 illustrates the computation of the responses of three sub-units. Each
of the three bright blobs shown is an intensity map of a 2D Gaussian function
mentioned above. The three ellipses illustrate the orientations and wavelengths
of the corresponding Gabor filters. The responses gλ,θ(x, y) of such a filter are
weighted by the respective 2D Gaussian function and the maximum result is
shifted by the corresponding vector.

Fig. 3. Computation of sub-unit responses. The three bright blobs are intensity maps
for 2D Gaussian functions that model the corresponding sub-unit RFs. The three el-
lipses illustrate the orientations and wavelengths of the corresponding Gabor filters.
A sub-unit response is computed as the maximum value of the weighted responses of
such a Gabor filter with the respective 2D Gaussian function. The result is shifted by
the corresponding vector.

2.5 Filter Response

We define a nonlinear filter with output rSf as the geometric mean of all quan-
tities sλ,θ,ρ,φ(x, y) that belong to the specific selection determined by Sf :

rSf (x, y) =

∣∣∣∣∣∣
( ∏

(λ,θ,ρ,φ)∈Sf
sλ,θ,ρ,φ(x, y)

) 1

|Sf |
∣∣∣∣∣∣
t3

(1)
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where |.|t3 stands for thresholding the response at a fraction t3 of its maximum.
Rotation invariance is achieved by manipulating the set of parameter values

in Sf , rather than by computing them from the responses to a rotated version
of the original pattern. Using the set Sf that defines the concerned filter, we can
form a new set �ψ(Sf ) = {(λ, θ + ψ, ρ, φ + ψ) | (λ, θ, ρ, φ) ∈ Sf}. The rotation
invariant response is then defined as r̂Sf (x, y) = maxψ(r�ψ(Sf )(x, y)).

3 Experimental Results

We use the bifurcation illustrated in Fig.1 to configure a filter denoted by Sf1
(ρ ∈ {0, 4, 10}, t1 = 0.2 and t2 = 0.75). Fig.4(a-b) show the result (for t3 = 0.25)
of the application of filter Sf1 to the binary retinal fundus image shown in Fig.1a.
The encircled regions are centered on the local maxima of the filter response and
if two such regions overlap by 75%, only the one with the stronger response is
shown. Besides the original bifurcation, the filter successfully detects 5 other
bifurcations with similar vessel orientations.

If the same filter is applied in a rotation invariant mode, a total of 38 sim-
ilar features are detected, Fig.4(c-d). This illustrates the strong generalization
capability of this approach because 35.51% (38 out of 107) of the features of
interest are detected by a single filter. Notable is the fact that this is achieved at
a precision rate of 100%, as the filter does not give any false positive responses.
The threshold parameter t3 can be used to tune the degree of generalization.

As to the remaining features that are not detected by this filter, we proceed
as follows: we take one of these features that we denote by f2 (Fig. 5) and train a
second nonlinear filter, Sf2 , using it. With this second filter we detect 46 features
of interest of which 20 coincide with features detected by filter Sf1 and 26 are
newly detected features. Merging the responses of the two filters results in the
detection of 64 distinct features. We continue adding filters that are configured
using features that have not been detected by the previously trained filters. A
set of 10 filters that correspond to the features shown in Fig.5 proves sufficient
to detect all 107 features of interest in the concerned image. A fixed response

(a) (b) (c) (d)

Fig. 4. (a) Result of applying the filter Sf1 in rotation non-invariant mode and (b)
enlargements of the detected features given in descending order (left-to-right, top-to-
bottom) of the filter response. (c) Result of applying the filter in a rotation invariant
mode and (d) enlargements of the detected features.



Detection of Retinal Vascular Bifurcations 457

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

Fig. 5. A set of 10 bifurcations extracted from the image in Fig.1a, used to configure
10 filters

threshold of t3 = 0.25 is applied for all filters. An important aspect of this result
is that a recall rate of 100% is achieved at a precision rate of 100% 1.

We apply these 10 filters on a larger dataset (DRIVE) of 40 binary retinal
fundus images2. The ground truth of correct bifurcations was defined by the
authors of this paper. For this larger dataset we achieve a recall rate R of 97.3%
and a precision rate P of 94.71%. We carried out further experiments by config-
uring up to 40 filters and varying the threshold parameter t3 between 0.2 and
0.3. We achieve optimal results for 25 filters and show them together with the
results for 10 filters in Fig.6. With 25 filters, the harmonic mean (2PR/(P +R))
of the precison and recall reaches maximum at a recall rate of 98.52% and a
precision rate of 95.19% for t3 = 0.28.
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Fig. 6. Precision-recall plots obtained with 10 and 25 filters. For each plot the threshold
parameter t3 is varied between 0.2 and 0.3. The precision rate increases and the recall
rate decreases with an increasing value of t3. The harmonic mean of precision and recall
reaches a maximum at R = 0.9852 and P = 0.9519 for 25 filters and at R = 0.973 and
P = 0.9471 for 10 filters. These points are marked by a filled-in square and triangle,
respectively.

4 Discussion and Conclusion

We propose a novel approach for the automation of vascular bifurcation detection
in retinal fundus images. Our proposed method is implemented in filters that
simulate the properties of shape-selective V4 neurons in visual cortex.
1 Recall rate is the percentage of true bifurcations that are successfully detected.

Precision rate is the percentage of correct bifurcations from all detected features.
2 Named in DRIVE 01 manual1.gif, 02 manual1.gif, . . . , 40 manual1.gif



458 G. Azzopardi and N. Petkov

The proposed V4-like filters are trainable, in that the structure of the filter
is determined by a feature that is specified by a user. The way this is achieved
is not by template matching, but rather by the extraction of information about
the dominant orientations in the concerned feature and their mutual spatial
arrangement. While such a filter reacts most strongly to the feature that was used
to configure it, the filter also reacts to features which differ in the orientations of
the involved line segments to a certain extent. The degree of generalization can be
tuned by proper selection of the filter parameters. The automatic configuration of
the proposed filters gives an edge to our approach over model based approaches
regarding generalization ability.

Although one can find methods for local image feature analysis by combining
filter responses at different scales (e.g. SIFT features [7]), to the best of our
knowledge, the proposed approach is the first one which combines the responses
of orientation-selective filters with their main area of support outside the point
of interest.

In our experiments, we use a set of 40 binary retinal images provided as
ground truth in the DRIVE dataset [15]. In total, these images contain 5118
vessel bifurcations. We achieved a recall rate of 98.52% and a precision rate of
95.19% with the application of only 25 filters. The precision rate can be improved
by performing additional analysis of the features that are detected by the filters.
In [2] a recall rate of 95.82% was reported on a small dataset of five retinal
images.

In principle, all vessel bifurcations can be detected if a sufficient number
of filters are configured and used. The recall rate of 98.52% that we achieve
means that on average only one to two out of 100 bifurcations are missed in
a typical image. This is sufficient to the needs of the medical application at
hand. We conclude that the proposed trainable filters are an effective means to
automatically detect bifurcations in retinal vascular images.
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