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Abstract. We address the problem of jointly estimating the scene illu-
mination, the radiometric camera calibration and the reflectance prop-
erties of an object using a set of images from a community photo col-
lection. The highly ill-posed nature of this problem is circumvented by
using appropriate representations of illumination, an empirical model for
the nonlinear function that relates image irradiance with intensity values
and additional assumptions on the surface reflectance properties. Using
a 3D model recovered from an unstructured set of images, we estimate
the coefficients that represent the illumination for each image using a
frequency framework. For each image, we also compute the correspond-
ing camera response function. Additionally, we calculate a simple model
for the reflectance properties of the 3D model. A robust non-linear opti-
mization is proposed exploiting the high sparsity present in the problem.

Keywords: illumination conditions, reflectance estimation, radiometric
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1 Introduction

Capturing the photometric properties of a scene is a complex process and requires
exhaustive work. A scene captured in a digital image is completely described, in
a photometrical sense, if we are able to represent the objects by an appearance
model, if we estimate the illumination conditions during the acquisition time and
finally if we know the radiometric calibration of the camera. Once the parameters
for the models that describe these processes are estimated, they may be used,
for example, in augmented reality, relighting or realistic rendering applications.
Several issues arise in the formulation and computation of models for object
appearance, lighting and camera radiometric response using only images. The
main obstacle is that intensity values registered by the sensor are the result of
the interaction between surface geometry, object reflectance, scene illumination
and camera properties. In order to estimate one or several of these, it is thus
important to take into account or be robust to the respective other factors.

In this work we aim at estimating the photometric description for a particular
scene using an unstructured and heterogeneous set of images. The use of photo
collections is motivated by the goal of exploiting the richness of appearance
variations present in these repositories. Recent works have shown the potential
of using large databases in computer vision applications. For example, nowadays



it is possible to create an acceptable 3D geometrical model, using images taken
under completely casual conditions. But estimating the photometric properties
from these datasets is still one of the most difficult conundrums for the experts.

Our problem can be formulated as follows: for a 3D geometry obtained from
a set of M unstructured images and that is composed by J surface elements,
and given the camera’s geometric calibration, we wish to determine the camera
response function (CRF) for every image, along with the image illumination
conditions and the surface reflectance properties for every surface element. We
start from scratch, recovering 3D structure of the scene and the camera pose from
an image collection. The points belonging to the recovered structure are called
surface elements. Depending on the representation, these points are vertices of a
mesh or 3D coordinates of a cloud of points. The 3D reconstruction is done using
publicly available tools [17,5]. To represent the image intensities we model the
scene radiance as the result of a linear combination of the radiometric camera
model, the illumination for each acquisition time and the material reflectance. We
estimate the parameters by grouping the unknowns in two subsets: the camera—
illumination variables (CRF coeflicients and spherical harmonic coefficients) and
point variables (albedos). This notation allows us to exploit the high sparsity
present in the problem using a robust estimation algorithm.

2 Related Work

Radiometric Calibration. A common strategy used to estimate the CRF con-
sists on posing specific calibration objects (e.g. color charts) into the scene at
the acquisition time [2,9]. Other methods require multiples images taken under
variable exposure times [3,13]. The main drawback of these algorithms is that
physical access to the scene during the acquisition must be guaranteed. On the
other hand, researchers have proposed approaches exploiting image character-
istics that reflect the non-linearity produced by the camera response function.
For example, [10] and [11] use low level representations such as edges in regions
with constant color to extrapolate the CRF. [14] uses geometric invariants look-
ing for the same goal. Noise present in a simple digital image is used in [18] to
infer the CRF. A common point in most of the methods above mentioned is the
use of a simple, but realistic model for the CRF. In [7], Grossberg and Nayar
proposed an empirical model based on the principal component analysis of real
world CRF’s. The non-linear radiometric response of the camera is composed by
a few coefficients multiplying a precomputed basis. A different camera model is
also introduced in [1]. In this work, authors model the CRF as the product of
a white-balance transform matrix and a polynomial of fifth degree. In this ap-
proach the space of possible CRF's is dramatically large and there is no guarantee
that the estimated CRFs correspond to the real ones. In the work [4], authors
estimate CRF's using a photo collection, but without inferring information about
the illumination or the surface reflectance.

Hllumination and reflectance estimation. On the side of illumination estimation,
we found also different approaches. The most common method, known also as



inverse lighting in the computer graphics community, uses a reflective sphere
inserted in the scene to recover natural illumination [19]. Non invasive methods
have been possible from the formulation of the “signal processing framework”
introduced in [16]. This work has allowed to simplify the integration over the
hemisphere of the BRDF and the light source as the multiplication of some coeffi-
cients in the appropriate space. For the case of Lambertian surfaces, illumination
estimation becomes a simple operation, at least in analytical terms. Other meth-
ods estimate at the same time different unknowns. For example, Luong et al.
[12] use, like our approach, a 3D model to perform radiometric calibration and
illumination estimation. They used a linear model for the CRF’s and required
that several images be taken with the same camera, under controlled conditions.
Their model for the illumination consists of a point light source. However, most
of the time a linear model for the CRF’s is not accurate enough. Haber et al. [8]
have developed an approach to recover reflectance properties and illumination
using a wavelet framework. In this work, authors assume that images extracted
from photo collections can be photometrically corrected by mapping with a tra-
ditional “gamma correction” curve.

3 Image Formation and Estimation Problem

Image irradiance coming from a Lambertian surface under distant illumination,
is a magnitude dependent on the surface orientation and the incoming incident
illumination. In this work we assume that illumination sources are distant and
can be modeled via an environment map. Also, we assume that studied surfaces
are characterized by a Lambertian reflectance with spatially varying albedo. Cast
shadowing and interreflections are ignored (we explain later how to alleviate
this restriction when applying our algorithm to real world cases). Under these
considerations, image irradiance F for a surface element j with albedo p; and
normal n; under an illumination L is computed by:

E(pj,nj,L):ijL(ei,¢j)COSdoQ s (1)

where 6; and ¢; are the inclination and azimuth angles respectively of the light
directions, represented in a local coordinate system around the surface normal
n; and {2 denotes the hemisphere of all possible incoming light directions.

Camera Response Function. The mapping between image irradiance and inten-
sity values is determined by the CRF. A simple but efficient model for the CRF
is proposed in [7]. Authors found that CRF’s belonging to real world cameras lie
in a small part of a theoretical function space that can be spanned using a small
basis. This result allows to express the CRF’s in terms of N coefficients. For an
image i, irradiance FE is related to image intensities B by a linear combination
of an average CRF hg and N principal components h,,:

B = fi(E) = ho(E) + Y _ winhn(E) . ()



The basis CRF’s are thus represented as polynomials of degree D: h,(E) =
2520 cnaE?. Note that according to [7], the h,, are expressed relative to nor-
malized brightness and irradiance, such that c¢,o = 0 and > ¢,q = 1 for all
n = 1---N. The degree of the polynomials was chosen for an adequate rep-
resentation of the curves forming the basis, which was obtained with D = 9.
These polynomials are known; unknown are the coefficients w;, of their linear
combination (2).

Global Illumination Model. Representing illumination is a key factor to obtain-
ing 3D models from real world images. An approach that has recently gained
importance is to analyze illumination conditions in a frequency framework. We
represent the lighting falling on a surface element by a hemisphere centered in
the normal position, using spherical harmonics. In this context, Ramamoorthi
[15] has shown that for convex Lambertian surfaces, the image irradiance is well
represented by a linear combination of coefficients and an orthonormal basis
set. This basis is composed by the spherical harmonics Y}, (n;) rotated around
the plane defined locally by the surface normal. The indices obey [ > 0 and
—1 < m < (there are 2] + 1 basis functions for a given order [). Equation (1) is
expressed in terms of this basis as a combination of L coefficients as follows:

L 1
E(pj,nj, Eim) ijz Z EinYim(ny) . (3)
1=0

m=—1

Given a geometric reconstruction of a 3D surface, the normal n; becomes a
known value and the inverse lighting estimation problem is reduced to the com-
putation of the coefficients Ej,, that best fit the basis of spherical harmonics
rotated at the point normal. Thus, image irradiance per channel is eventually
parametrized as a function of the material albedo and the illumination spherical
coefficients: E(p;,n;, Epy,).

Estimation Problem. Having defined a linear representation for the CRF’s and
for the illumination, the intensity value for a surface element j is calculated using
the normal at the point n; and equations (2) and (3). Since we are dealing with
a set of images taken with different illumination conditions but keeping static
surface properties, the image irradiance emitted by a surface element depends on
the lighting and the material reflectance properties. Additionally, each camera
has a different CRF. Therefore, if we denote B;; as the intensity value for a
particular color channel, describing the surface element j and the image %, the
normalized intensity is estimated by:

L l

Bij = fi(E(pj,ny, Bly) = filp; Y Y EfYim(ng)) - (4)

=0 m=—1

To simplify notations we express equation (4) as a vector multiplication, where
the vector E; is the set of 9 spherical coefficients that describe illumination in
camera i (E},, with L = 2 and — < m <) and Yj is the spherical harmonics



basis expressed in terms of the coordinate plane around the normal in point j.
Combining this vector multiplication with the equation (2), intensity is:

N
Bij,ch = hO (pj,chE;'I:cth) + Z wz‘n,chhn (pj,chE;I:cth) ) (5)

n=1

where ch is a suffix indicating the color channel to evaluate (red, green, blue).

Let us denote the vector a; = [Ef; EX, Ef; wih wi, W?B]T describing illu-
mination and CRF per channel. The vector E; o, has dimension O while the vec-
tor w; o, has N components. Then, the dimension of a; is 3x O+43xN. The vector
b; of dimension 3 represents the surface material albedo: b; = [ij Pia ij]. We
define our estimation function B(a;, b;) as a function from R3*(O+N+1) _; 3,
To estimate the unknowns a;, b;, we minimize the difference between the ob-
served and predicted intensity values. An optimal solution to calculate the un-
knowns requires a full non-linear optimization of the cost function, defined as the
squared difference between the measured intensity and its correspondent estima-
tion. Given a set of J surface elements projected in M images, the optimization
problem is formulated as follows:

Mg A )
min Z Z (Bij —vij B(ay, bj)) : (6)
CRhagV]

i=1 j=1

The scalars v;; are booleans, a value of 1 indicating that surface element j is
visible in image 7, otherwise the value being 0. Note that the unknowns can not
be estimated without ambiguity: albedos p; and lighting coefficients E; can only
be estimated up to one global scale factor. Additionally, we impose a constraint
on the monotonicity of the estimated CRF’s (plausible CRF’s are monotonic)

In our experiments, we initialized the optimization algorithm using a vector
b; containing the mean values of all observed intensities of surface element j. In
the case of the vector a;, the spherical harmonic coefficients (E;) are initialized
with ones while the CRF coefficients (w;) correspond to a vector of zeros (the
initial CRF’s are f; = hg). To avoid the problems related with outliers (i.e.
intensity samples not included in the 3D model, cast-shadowing, imperfections
on the camera pose estimation, surface materials with specular reflection prop-
erties, interreflexions, cf. section 3), the least squares minimization presented in
equation (6) is transformed to a robust estimation problem using the Iterative
Reweighted Least Squares (IRLS) algorithm [20].

4 Results

We evaluate the performance of our algorithm in real world conditions using
two databases. Both collections target architectural structures in outdoor envi-
ronments. Images were taken during different periods of the day with natural
illumination and different cameras. For the first database (DB1) we had access
to the scene and the acquisition equipments. This database is composed by 120
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Fig. 1. The 1st column shows some image samples of DB1 used in the reconstruction. On the 2nd
column we present corresponding rendered images using the estimated CRFs, illumination conditions
and albedos. 3rd and 4th column show representations of the estimated parameters (cf. text).

images used to reconstruct a mesh with 112,504 vertices. We got 10 extra images
containing a color checker board inside the scene, also we took multiple exposure
images for these extra samples, just seconds after the image used for 3D recon-
struction was taken. The second database (DB2) was collected from an internet
repository and 928 images were used to reconstruct a mesh with 80,444 vertices.
In our implementation, we modeled the CRF with 3 coefficients (N = 3) and we
used 9 spherical harmonics coefficients to model the illumination (O =9). The
number of parameters to estimate is 3 x (J + M x (O + N)).

CRF Estimation. To validate our results, we compared the estimated CRF with
the ground truth, obtained by placing a color chart in the scene depicted when
usin DB1. Four column of figure 1 shows our results with the CRF computed
using the HDRShop software [3] and the technique described in [6]. These algo-
rithms present poor estimations due to the difficulty of having perfectly aligned
images when shooting outdoor scenes (shadows, reflections may change rapidly).
CRF estimation using the single image method described in [10] is included. We
also show the CRF obtained with the algorithm presented in [4]. When using
DB2, we compare our estimated CRF with results of algorithms that do not
require physical access to the scene [10, 4].

Nllumination Estimation. The performance of our technique when estimating
the illumination is evaluated by rendering a synthesized image using the calcu-
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Fig. 2. At the left, the 3D model rendered with the average of the pixel intensities. At the right, four
sample images of DB2 and the projection of 3D model with estimated parameter over the original
background. Estimated CRF is shown in the third row.

lated lighting. We evaluated the root mean square difference (RMS) between the
rendered and original images. These values are calculated for intensities scaled
between zero and one. Using DB1 the median RMS difference is 1.2% of the full
pixel intensity while using DB2 is around 1.8%. We performed a cross-validation
test, using one subset of the database and rendering the synthesized images with
the illumination and CRF calculated in a different subset (see figure 1, columns
1-2). For this case the median RMS difference was 7.7% for DB1 and around 23%
for DB2. When using DB2, RMS error increases, since the original images con-
tain sometimes pedestrians or objects not taken into account in the 3D model.
Third column of figure 1 represents the computed spherical harmonics projected
on a sphere viewed from the same point of view as the original images. An arrow
indicates the maximum point, the direction where the illumination is strongest.
It was mentioned in section 3 that albedos and illumination coefficients can only
be estimated up to a global scale factor. This is the case for all three color chan-
nels. Hence, in order to display RGB illumination models and surface colors, we
first have to estimate the ratios of these scales, between color channels. These
scales are calculated by selecting a portion of the sky and projecting its pixels
on the sphere. We found the right scale by fitting the spherical harmonics coef-
ficients to the color of some manually selected pixels projected on the surface of
the sphere. Images where the presence of a directional light source can be de-
duced form shadows show a correct estimation of the illumination direction. For
cloudy skies, illumination is more uniform (cf. third image) and the maximum
is less pronounced.

5 Discussion and Conclusion

We have presented a method to estimate jointly photometric properties for a
scene. The computed CRF's show good performance, similar to state—of-the—art
methods, with the added value that our method provides illumination and re-



flectance information. Illumination estimation presents a suitable environmental
lighting to render new views for the captured scene. One limitation remains on
the use of Lambertian reflectance. Although this constraint is contoured using
a robust optimization, if we wish to calculate accurately the surface reflectance
properties, a more complete model must be used. In that case, the number of
parameters to compute may increase dramatically because the illumination and
the reflectance interact over all directions of the upper hemisphere centered at
the normal of a surface point. Other frameworks may be explored.
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