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Abstract. In this paper we introduce an integrative approach towards
color texture classification learned by a supervised framework. Our ap-
proach is based on the Generalized Learning Vector Quantization (GLVQ),
extended by an adaptive distance measure which is defined in the Fourier
domain and 2D Gabor filters. We evaluate the proposed technique on a
set of color texture images and compare results with those achieved by
simple gray value transformation on the color images with a comparable
dissimilarity measure and the same filter bank. The features learned by
GLVQ improve classification accuracy and they generalize much better
for evaluation data previously unknown to the system.
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1 Introduction

Texture analysis and classification are topics of particular interest mainly due to
their numerous possible applications, such as medical imaging, industrial qual-
ity control and remote sensing. A wide variety of methods for texture analysis
has been already developed such as co-occurrence matrices [8], Markov random
fields [24], autocorrelation methods [18, 16], Gabor filtering [22, 5, 11, 13, 15, 6]
and wavelet decomposition [23]. However, these methods mostly concern inten-
sity images and since color information is a vector quantity the transfer of tradi-
tional methods to the color domain is not always straightforward. With regards
to color texture the possible approaches can be distinguished in three categories
[17]. The most popular among them is called the integrative approach [10, 4, 17,
9] and is an attempt to describe texture by combining color information with
the spatial relationships of image regions within each color channel and between
different color channels.

In this contribution we introduce a novel integrative approach towards color
texture classification and recognition based on 2D Gabor filters through super-
vised learning. Given a set of labeled color images (RGB) for training and a bank
of 2D Gabor filters the goal here is to learn a transformation of a color image to
a single channel (intensity) image, such that the Gabor responses of the trans-
formed images will yield the best possible classification. Most signal processing
techniques are based on insights or empirical observations from neurophysiol-
ogy or optical physics. The proposed, novel approach incorporates data-driven
adaptation of the system, e.g. example based learning. Furthermore, the filters
used in our approach can be substituted, depending on the data domain and the



task at hand. As an example we explore in this paper the use of rotation and
scale invariant descriptors based on Gabor filter responses [7]. We demonstrate
that our novel approach yields very good generalization ability with respect to
previously unknown data.

2 Review of the Generalized LVQ

In this section we introduce a methodology to learn discriminative transforma-
tions for images. Our adaptation is based on the Generalized Learning Vector
Quantization (GLVQ) [19]. GLVQ is an extension which introduces a cost func-
tion to the original Learning Vector Quantization (LVQ) [12] formulation. LVQ
is a supervised prototype-based classification method, easy to implement and
interpret, which makes it popular for many applications. The training is based
on data points xi P IRD and their corresponding label information yi P 1, . . . , C,
where D denotes the dimension of the feature vectors and C the number of
classes. The protoytpes are characterized by their location in the feature space
w

i P IRD and the respective class label cpwiq P 1, . . . , C. Given a dissimilarity
measure dpx,wq (e.g. the Euclidean distance), any data point x is assigned to
the class label cpwiq of the closest prototype wi with dpx,wiq ¤ dpx,wjq for all
j � i. The training algorithm is guided by the minimization of a cost function

fcpd, J,Kq �
i̧

dpxi,wJ q � dpxi,wKq
dpxi,wJ q � dpxi,wKq (1)

where the quantities dpxi,wJq with cpwJ q � y
i and dpxi,wKq with cpwKq � y

i

correspond to the distances of the feature vector xi from the respective closest
correct prototype w

J and the closest wrong prototype w
K . The original al-

gorithm follows a stochastic gradient descent for the optimization of the cost
function Eq. (1). The gradients are evaluated with respect to the contribution of
single instances xi, which are presented at random and sequentially during train-
ing. Further extensions like, for instance, the Generalized Matrix LVQ (GMLVQ)
[20] employ an adaptive dissimilarity measure dΩpx,wq � px�wqJΩJΩpx�wq
which corresponds to a generalized Euclidean metric. GMLVQ and its modi-
fications have proven beneficial in many applications, including classification,
content based image retrieval and supervised dimension reduction [21, 2, 3]. In
the following section we extend the original GLVQ formulation for color texture
classification.

3 Adaptive Matrices for Texture Classification

Consider a data set consisting of color image patches of a priorly defined size
(p�p) and a bank of Gabor kernels G with different scales and orientations. We
use for both the image patches and the filter kernels their representation in the
Fourier domain. After vectorizing we end up with complex data points xi P CD

of dimension D � p � p�3 carrying a label yi P t1, . . . , Cu that belong to one of
C classes and a filter bank G, where G

l P CM with M � p � p is the vectorized
kernel of the l-th filter of the bank. The general form of the descriptor for a
vectorized image patch v given the filter bank G and parameterized by local
transformations Ωk can be written as fΩk

pv,Gq : C Ñ C . Here k corresponds



to the index of the prototype w
k or the index of its class label cpwkq for class-

wise transformations. For the proposed optimization procedure it is necessary,
that fΩk

is differentiable. In this contribution fΩk
corresponds to the sum of the

responses of all filter kernels in G to the vectorized image patch, thus defining
the descriptor:

fΩk
pv,Gq : v Ñ rkpvq �

ļ

vΩk
J 
G

l , (2)

where 
 denotes the convolution. The filter bank G may be chosen based on
the user’s preference, suitable to the data and the task at hand. The vector v

is defined in the data domain CD and Ωk P CM�D is the local transformation,
which maps the color values to scalar, ”intensity” values used for filtering. The
dissimilarity measure is defined by:

dΩk

G
pxi,wkq � ‖ |rkpxiq|2 � |rkpwkq|2 ‖2 , (3)

and corresponds to the difference of descriptor magnitudes. This considers two
patches containing the same texture pattern as similar, independent of the po-
sition where the pattern occurs within the patches.

We use the same cost function as in the original GLVQ algorithm Eq. (1). We
follow a stochastic gradient descent procedure and present the samples xi of the
training set sequentially and update the parameters accordingly. We will refer
to this algorithm as Color Image Analysis LVQ (CIA-LVQ) and to one sweep
through the training set as one epoch E.

Explicit form of the learning rules: For the sake of completeness we present
the explicit form of the learning rules of CIA-LVQ. The parameter updates read
as follows:

w
L � w

L � α∆w
L, ∆w

L � BfcpdΩJ

G
, dΩK

G
, J,KqBℜpwLq � i

BfcpdΩJ

G
, dΩK

G
, J,KqBℑpwLq (4)

ΩL � ΩL � ǫ∆ΩL, ∆ΩL � BfcpdΩJ

G
, dΩK

G
, J,KqBℜpΩLq � i

BfcpdΩJ

G
, dΩK

G
, J,KqBℑpΩLq (5)

where L P tJ,Ku and α and ǫ are the learning rates for the prototypes and the
matrix respectively. The derivatives with respect to the closest correct wJ and
closest wrong prototype wK together with their corresponding matrices ΩJ and
ΩK for the given training data point xi read:

∆w
L � �4 � γL

��|rLpxiq|2 � |rLpwLq|2� � rLpwLq� 
�
ļ

ΩL 
G
l

���
(6)

∆ΩL � γL

�
4
�|rLpxiq|2 � |rLpwLq|2� (7)��rLpxiq� 
�

ļ

x
i 
G

l

�� rLpwLq� 
�
ļ

w
L 
G

l

����
, L P tJ,Ku



with γJ � 2�dΩK

G
pxi,wKq�

d
ΩJ

G
pxi,wJ q�d

ΩK

G
pxi,wKq	2 , γK � �2�dΩJ

G
pxi,wJ q�

d
ΩJ

G
pxi,wJ q�d

ΩK

G
pxi,wKq	2 and �

denoting the complex conjugate. Note, that since we are working with complex
values we have to take all derivatives with respect to the real and imaginary
parts respectively.

In the next section we experiment with the algorithm and show its use in
practice.

4 Experiments

In order to evaluate the usefulness of the proposed algorithm, we perform clas-
sification on patches of pictures taken from the VisTex database [1]. Our data
consists of color images with size 128�128 pixels from the groups Bark, Brick,
Tile, Fabric and Food. Although in texture classification literature each such
image is often considered as a different class, here we distinguish into five dif-
ferent classes equivalent to the five aforementioned groups. Despite its increased
difficulty, this classification task allows us to better demonstrate the ability of
CIA-LVQ to describe general characteristics of real-world texture patterns.

At first we draw 15�15 patches randomly from each image shown in Fig.
1. The training set contains 150 patches per image, resulting in 3000 samples
in total, while the test set holds 50 patches from each image. The test set may
contain patches which partially overlap with those used for training. Therefore
the images in Fig. 2 are used in order to create an evaluation set that was never
seen in the training process. The evaluation set consists of 50 randomly drawn
patches per image and is used to show the generalization ability of the approach.
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Fig. 1: Images, which are used to provide ran-
dom patches for training and test.
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Fig. 2: Images, which are used to
provide random patches for evalua-
tion.

A note is due here to the nature of the filter used. A 2D Gabor filter is defined
as a Gaussian kernel function modulated by a sinusoidal plane wave. All filter



Table 1: Confusion matrices (eval. set)

CIA-LVQ:
1 2 3 4 5

°
1 176 10 12 7 2 207
2 1 57 11 9 3 81
3 18 25 43 31 10 127
4 1 5 23 127 4 160
5 4 3 11 26 131 175°

200 100 100 200 150 750

class-wise accuracy of estimation in %
88.00 57.00 43.00 63.50 87.33

RGB2G:
1 2 3 4 5

°
1 52 14 7 36 28 137
2 51 45 30 37 34 197
3 27 27 51 26 22 153
4 29 6 8 83 11 137
5 41 8 4 18 55 126°

200 100 100 200 150 750

class-wise accuracy of estimation in %
26.00 45.00 51.00 41.50 36.67
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Fig. 3: Classwise and individual image
accuracies

kernels can be generated from one basic wavelet by dilation and rotation. In
this experiment our filter bank consists of 12 Gabor filters of bandwidth equal
to 1 at six orientations θ � 0, 30, 60, 90, 120 and 150 degrees and two scales
(wavelegths) varying by one octave: λ � 7 and 7

?
2. These scales ensure that

the Gabor function yields an adequate number of visible parallel excitatory and
inhibitory stripe zones. Dependent on the patch size different scales might be
adequate. We set the phase offset φ � 0 and the aspect ratio γ � 1 for all filters.
In this way we create center-on symmetric filters with circular support. We run
the localized version of CIA-LVQ with class-wise matrices Ωc initialized with
the identity matrix and 4 prototypes per class for E �300 epochs. The learning

rates were chosen as αptq � 0.002 p0.005qt{E , ǫptq � 10�3
�
10�2

�t{E
where t is

the current epoch. Using more filters and more localized matrices Ωj may cause
overfitting effects. So it is advisable to increase the complexity of the system
carefully. The training error is 10.6% and the error on the test set 28%.

We use the same data sets and the same filter bank to compare with the
common approach of deriving textural information only from the luminance
plane of images [4]. This approach is considered to often outperform combined
color and texture features [14]. For this purpose an RGB to gray (RGB2G)
transformation is used, which builds intensity values by a weighted sum of the
color components of every pixel: 0.2989�R�0.587�G�0.114�B.We again vectorize
all patches s and in this case the image patch descriptor is given by r2psq �°

l s 
 G
l. We use a one nearest neighbor (NN) classification scheme with a

dissimilarity measure similar to Eq. (3): dGpxi,xjq � ‖ |r2pxiq|2� |r2pxjq|2 ‖2.
The NN scheme based on the RGB2G transformation shows a test error of
37.5%, but most interesting is the comparison of the classification errors on the
evaluation set. Here the NN scheme shows an error of 61.9%, while the CIA-LVQ
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Fig. 4: Magnitude of the descriptors |rLpwLq| of the prototypes which classify
the evaluation set.
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Fig. 5: Magnitude of the descriptors |rLpwLq| of some correct classified example
patches of the evaluation set.
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Fig. 6: Magnitude of the descriptors |rLpwLq| of some wrongly classified example
patches of the evaluation set.

still has an error of 28.8%. The LVQ scheme displays very good generalization,
which is shown in Table 1 and Fig. 3. Note, that the accuracy rates among
individual images of the same class can vary. Brick and Tile are the most difficult



classes, because the texture is large, so it cannot be captured very well with such
a small patch size, since a lot of patches might be drawn non-textured regions. On
the other side classes like Food and Bark with less diversity regarding textural
structures can be learned quite well.

The prototypes, which classify the evaluation set are shown in Fig. 4. Ad-
ditionally we show some example patches from the evaluation set, which are
classified correctly together with their descriptors in Fig. 5 and some examples
of wrongly classified patches in Fig. 6. Some obvious problems occur due to the
random sampling and the very small patchsize: a lot of samples of Brick and
Tile, for example, show homogeneous regions coming from the area in-between
the textural structure (see Fig. 6). We observe, that classes which vary a lot in
the size of the actual structure (e.g. Brick and Tile) are more difficult to recognize
than classes with small variations in the scale of texture (like Bark and Food).
It is interesting to notice that random patches drawn from Food.0010.ppm are
100% correctly classified, even though no patch from this image was ever used
to train the algorithm. The learned local transformation recognizes the channels
leading to the orange color and increased their weights to distinguish this class
from others.

5 Conclusion and Outlook

In this contribution we proposed a prototype based framework for color texture
analysis. Contrary to standard approaches which are either based on a single
channel representation of the images through a fixed transformation or empir-
ical observations for combining color and textural information, we offer the al-
ternative of data driven learning of suitable, parameterized image descriptors.
The ability of weighting different color channels automatically according to their
importance for the classification task is the most important factor which distin-
guishes our approach. We have formulated a novel general principle: based on a
differentiable convolution and a predefined filter bank the CIA-LVQ algorithm
optimizes the classification. It is also of conceptual value that this adaptation
of LVQ is suitable for learning in the complex numbers domain. As an example
we used Gabor filters to classify texture patterns in 15�15 patches randomly
drawn from images of the VisTex database. The results show that the algorithm
can learn typical texture patterns with very good generalization, even from rela-
tively small patches and filter banks. Similarly to Gabor filters any other family
of 2D filters commonly used to describe gray scale image information could be
adapted and applied to color image analysis with this algorithm. A filter bank
with differences of Gaussians for color edge detection is a possible example. In-
vestigation of the performance of the system on other filters can be addressed
in future. Furthermore, depending on the task it might be desirable that two
patches in which the same texture occurs on different positions should not be
interpreted as similar. In this case another similarity measure should be used:
‖ |rpxiq � rpwLq| ‖2, which is not based on the difference of magnitudes. This
might be of advantage for example in the recognition of objects such as traffic
signs, were a corner or an edge might have different meanings dependent on its
position in the image.
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