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Abstract. JPEG XR is considered as a lossy sample data compression
scheme in the context of iris recognition techniques. It is shown that
apart from low-bitrate scenarios, JPEG XR is competitive to the current
standard JPEG2000 while exhibiting significantly lower computational
demands.

1 Introduction

With the increasing usage of biometric systems the question arises naturally
how to store and handle the acquired sensor data (denoted as sample data sub-
sequently). In this context, the compression of these data may become imperative
under certain circumstances due to the large amounts of data involved. Among
other possibilities (e.g. like compressed template storage on IC cards and op-
tional storage of (encrypted) reference data in template databases), compression
technology is applied to sample data in distributed biometric systems, where the
data acquisition stage is often dislocated from the feature extraction and match-
ing stage (this is true for the enrolment phase as well as for authentication). In
such environments the sample data have to be transferred via a network link
to the respective location, often over wireless channels with low bandwidth and
high latency. Therefore, a minimisation of the amount of data to be transferred
is highly desirable, which is achieved by compressing the data before transmis-
sion and any further processing. As an alternative, the application of feature
extraction before transmission looks promising due to the small size of template
data but cannot be done under most circumstances due to the prohibitive com-
putational demand of these operations (current sensor devices are typically far
too weak to support this while compression can be done e.g. in dedicated low
power hardware).

While current international standards define the application of JPEG2000
for lossy iris sample data compression, we focus in this paper on the corre-
sponding application of the recent JPEG XR still image coding standard. We
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experimentally compare the achieved results to a JPEG2000 based (and there-
fore standard conformant) environment. In particular, we investigate the effects
of applying different settings concerning the use of the optional Photo Over-
lap Transform (POT) as a part of JPEG XR’s Lapped Biorthogonal Transform
(LBT) with respect to iris recognition accuracy. In Section 2, we review related
standards and literature in the area of lossy iris sample data compression. Sec-
tion 3 presents experiments where we first shortly review the four different iris
recognition systems employed in this study. Subsequently, JPEG XR basics and
the investigated transform settings are briefly explained. Experimental results
comparing JPEG XR and JPEG2000 are shown with respect to PSNR (image
quality), execution speed, and iris recognition accuracy in terms of EER. Section
4 concludes the paper.

2 Biometric Iris Sample Compression

During the last decade, several algorithms and standards for compressing image
data relevant in biometric systems have evolved. The certainly most relevant one
is the ISO/IEC 19794 standard on Biometric Data Interchange Formats, where in
its former version (ISO/IEC 19794-6:2005), JPEG and JPEG2000 (and WSQ for
fingerprints) were defined as admissible formats for lossy compression, whereas
for lossless and nearly lossless compression JPEG-LS as defined in ISO/IEC
14495 was suggested. In the most recently published version (ISO/IEC FDIS
19794-6 as of August 2010), only JPEG2000 is included for lossy compression
while the PNG format serves as lossless compressor. These formats have also
been recommended for various application scenarios and standardised iris images
(IREX records) by the NIST Iris Exchange (IREX http://iris.nist.gov/irex/)
program.

The ANSI/NIST-ITL 1-2011 standard on “Data Format for the Interchange
of Fingerprint, Facial & Other Biometric Information” (2nd draft as of February
2011, former ANSI/NIST-ITL 1-2007) supports both PNG and JPEG2000 for
the lossless case and JPEG2000 only for applications tolerating lossy compres-
sion.

In literature on compressing iris imagery, rectangular as well as polar iris
sample data has been considered. With respect to employed compression tech-
nology, we find JPEG [1, 8], JPEG2000 [4, 1, 8], and other general purpose com-
pression techniques [8] being investigated. Superior compression performance
of JPEG2000 over JPEG is seen especially for low bitrates (thus confirming the
choice of the above-referenced standards), however, for high and medium quality
JPEG is found still to be competitive in terms of impacting recognition accu-
racy. Apart from applying the respective algorithms with their default settings
and standard configurations, work has been done to optimise the compression
algorithms to the application domain: For JPEG2000, we have proposed to in-
voke Rol coding for the iris texture area [3] whereas the removal of the image
background before compression has also been suggested (i.e. parts of the image
not being part of the eye like eye-lids are replaced by constant average gray
[1]). For JPEG, we have demonstrated an optimisation of quantisation matri-



ces to achieve better matching accuracy compared to the standard values for
rectangular iris image data [7] as well as for polar iris images [6].

The recent JPEG XR standard has not yet been investigated in the context
of biometric systems. It might represent an interesting alternative to JPEG2000
due to its simpler structure and less demanding implementations in terms of
memory and CPU resources.

3 Experiments on Compressing Iris Sample Data

3.1 Iris Recognition and Iris Database

It is crucial to assess the effects of compressing iris samples using a set of different
iris recognition schemes since it can be expected that different feature extraction
strategies will react differently when being confronted with compression artefacts
and reduced image quality in general.

Many iris recognition methods follow a quite common scheme close to the
well known and commercially most successful approach by Daugman. In our
pre-processing approach (following e.g. Ma et al. [9]) we assume the texture to
be the area between the two almost concentric circles of the pupil and the outer
iris. These two circles are found by contrast adjustment, followed by Canny edge
detection and Hough transformation. After the circles are detected, unwrapping
along polar coordinates is done to obtain a rectangular texture of the iris. In our
case, we always re-sample the texture to a size of 512x64 pixels. Subsequently,
features are extracted from this iris texture (which has also been termed polar
iris image), we consider the following four techniques in this work:

1. A wavelet-based approach proposed by Ma et al. [9] is used to extract a
bit-code. The texture is divided into N stripes to obtain N one-dimensional
signals, each one averaged from the pixels of M adjacent rows. We used
N =10 and M =5 for our 512x64 pixel textures (only the 50 rows close to
the pupil are used from the 64 rows, as suggested in [9]). A dyadic wavelet
transform is then performed on each of the resulting 10 signals, and two
fixed subbands are selected from each transform. This leads to a total of
20 subbands. In each subband we then locate all local minima and maxima
above some threshold, and write a bitcode alternating between 0 and 1 at
each extreme point. Using 512 bits per signal, the final code is then 512x20
bit. Matching different codes is done by computing the Hamming Distance.

2. Again restricting the texture to the same N = 10 stripes as described be-
fore, we use a custom C implementation similar to Libor Masek’s Matlab
implementation® of a 1-D version of the Daugman iris recognition algorithm
as the second feature extraction technique. A row-wise convolution with a
complex Log-Gabor filter is performed on the texture pixels. The phase an-
gle of the resulting complex value for each pixel is discretized into 2 bits.
Those 2 bit of phase information are used to generate a binary code, which
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therefore is 512x20 bit (again, Hamming Distance can be used for similarity
determination).

3. The third algorithm has been proposed by Ko et al. [5]. Here feature extrac-
tion is performed by applying cumulative-sum-based change analysis. The
algorithm discards parts of the iris texture, from the right side [45° to 315°]
and the left side [135° to 225°], since the top and bottom of the iris are often
hidden by eyelashes or eyelids. Subsequently, the resulting texture is divided
into basic cell regions (these cell regions are of size 8 x 3 pixels). For each
basic cell region an average gray scale value is calculated. Then basic cell
regions are grouped horizontally and vertically. It is recommended that one
group should consist of five basic cell regions. Finally, cumulative sums over
each group are calculated to generate an iris-code. If cumulative sums are
on an upward slope or on a downward slope these are encoded with 1s and
2s, respectively, otherwise Os are assigned to the code. In order to obtain a
binary feature vector (to enable Hamming Distance computation for com-
parison) we rearrange the resulting iris-code such that the first half contains
all upward slopes and the second half contains all downward slopes. With
respect to the above settings the final iris-code consists of 2400 bits.

4. Finally, we employ the feature extraction algorithm of Zhu et al. [10] which
applies a 2-D wavelet transform to the polar image first. Subsequently, first
order statistical measures are computed from the wavelet subbands (i.e.
mean and variance) and concatenated into a feature vector. The similarity
between two of these real-valued feature vectors is determined by computing
the corresponding [?-Norm.

The following dataset is used in the experiments:

CASIAv3 Interval database* consists of NIR images with 320 x 280 pixels in
8 bit grayscale .jpeg format (high quality) of 249 persons, where for many
persons both eyes are available which leads to 391 (image) classes overall.

For intra-class matches (genuine user matches), we consider all possible tem-
plate pairs for each class (overall 8882 matches), while for inter-class matches
(impostor matches) the first two templates of the first person are matched against
all templates of the other classes (overall 2601 matches).

3.2 Compression Techniques: JPEG XR and JPEG2000

Originally developed by Microsoft and termed “HD Photo”, JPEG XR got stan-
dardized by ITU-T and ISO in 2009 [2], which makes it the most recent still image
coding standard. The original scope was to develop a coding scheme targeting
“extended range” applications which involves higher bit-depths as currently sup-
ported. However, much more than 10 years after JPEG2000 development and
10 years after its standardisation it seems to be reasonable to look for a new
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coding standard to eventually employ “lessons learnt” in JPEG2000 standard-
isation. In particular, the focus is on a simpler scheme which should offer only
the amount of scalability actually required for most applications (as opposed
to JPEG2000 which is a rather complex scheme offering almost unconstraint
scalability). JPEG XR shares many properties with JPEG and JPEG2000 but
exhibits also elements of the recent H.264 video standardisation [2].

JPEG XR is a transform coding scheme showing the classical three-stage de-
sign: transform, quantisation, and entropy encoding. JPEG XR supports lossless
to lossy compression of up to 32 bits per colour channel. The transform operates
on macroblocks consisting of 16 (arranged in 4 by 4) 4 x 4 pixel blocks. The
first stage of the integer-based transform allowing for perfect reconstruction is
applied to all 4 x 4 pixel blocks of a macroblock. Subsequently, the resulting coef-
ficients are partitioned into 240 “high pass (HP) coefficients” and 16 coefficients
corresponding to the lowest frequency in each block. The latter are aggregated
into a square data layout (4 x 4 coefficients) onto which the transform is applied
for a second time. The result are 15 “low pass (LP) coefficients” and a single
“DC” coefficient (per macroblock). It is interesting to note that the concept of
recursively applying a filtering operation is “borrowed” from the wavelet trans-
form. Obviously, this also corresponds to three scalability layers: DC, LP, and
HP coefficients, similar to the scans being built in the spectral selection JPEG
progressive mode.

In fact, the transform used in JPEG XR is more complicated as compared to
JPEG, it is a so-called “two-stage lapped biorthogonal transform (LBT)” which
is actually composed of two distinct transforms: The Photo Core Transform
(PCT) and the Photo Overlap Transform (POT). The PCT is similar to the
widely used DCT and exploits spatial correlation within the 4 x 4 pixels block,
however, it suffers from the inability to exploit inter-block correlations due to its
small support and from blocking artifacts at low bitrates. The POT is designed to
exploit correlations across block boundaries as well as mitigate blocking artifacts.

Each stage of the transform can be viewed as a flexible concatenation of
POT and PCT since the POT is functionally independent of the PCT and can
be switched on or off, as chosen by the encoder (this is signalled by the encoder in
the bitstream). There are three options: disabled for both PCT stages, enabled
for the first PCT stage but disabled for the second PCT stage, or enabled for
both PCT stages.

Since our experiments are focused on the evaluation of those three options
concerning POT employment, we do not describe the subsequent JPEG XR
stages in the following, please consult the standard or related publications with
respect to this issue [2]. For experimentation, we use the official JPEG-XR ref-
erence software 1.8 (as of September 2009) and for JPEG2000 compression, im-
agemagick 8.6.6.0.4-3 (employing libJASPER 1.900.1-74b1) is used with stan-
dard settings.



3.3 Experimental Results

For enabling a fair comparison in the experiments, the same bitrate has to be set
in JPEG XR and JPEG2000. While this is straightforward in JPEG2000, JPEG
XR suffers from the same weakness as JPEG being unable to explicitly specify
a target bitrate. Therefore we have employed a wrapper-program, continuously
adapting the JPEG XR quantisation factors (set to identical values for DC, LP,
and HP band as used in the default settings) to achieve a certain target bitrate
(given in bytes per pixel bpp).

In Fig. 1.a we compare PSNR performance averaged over all images in the
considered dataset. Up to 0.2 bpp, JPEG2000 provides the highest values. In
this bitrate range, applying no POT (LBT= 0) clearly gives the worst results
(PSNR is about 1dB reduced as compared to JPEG2000). Applying POT for
the first (LBT= 1) or both transform stages (LBT= 2) leads to almost identical
results across the entire bitrate range, up to 0.2bpp PSNR quality is only slightly
below that of JPEG2000.
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Fig. 1. Comparing JPEG XR and JPEG2000 in terms of PSNR and Execution Speed.

The situation is different for higher bitrates. JPEG2000 saturates from 0.3bpp
upwards due to the employed irreversible 9/7 transform and is clearly outper-
formed by all JPEG XR settings. Interestingly, for bitrates larger than 0.2bpp,
applying no POT gives the best PSNR values, which is explained by the fact
that POT application is targeted to optimise data for human perception but not
for numerical error minimisation.

Fig. 1.b shows a comparison of execution timings for compressing the entire
dataset. We note that depending on the target bitrate considered, JPEG XR is
faster by a factor of 2-5 as compared to JPEG2000 (target bitrate optimisation
is disabled for this evaluation). This result underlines that JPEG XR could be
an interesting alternative to JPEG2000 in biometric environments, especially in
cases with limited CPU resources at the compressing site.

In the following, we will investigate the impact compression of one tem-
plate involved in matching has on the recognition performance of the four iris
recognition systems considered (e.g., the sample data acquired by the sensor is
compressed and sent to the feature extraction / matching site). For this purpose,
we plot equal error rate (EER, on the vertical axis) for applying compression in
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02 0% 03
bitrate (bytes/pixel)

an entire range of target bitrates (in bpp, on the horizontal axis) and compare
JPEG2000 to the three JPEG XR POT employment variants. For reference, also
the “Lossless” case (i.e. recognition accuracy in EER without any compression
applied) is indicated as a horizontal line in Figs. 2 and 3.

For the algorithms of Ma and Masek, JPEG2000 provides the lowest (i.e.
best) EER up to a bitrate of 0.15bpp, while for the other two recognition algo-
rithms, no clear tendency can be observed. In particular, for no algorithm there
is a clear indication whether application of POT would be beneficial or not. Fur-
ther, it is interesting to see that for some algorithms and bitranges, the results
involving a compressed template are superior to the uncompressed case (e.g. Ko
and Masek for bitrates > 0.2bpp, Zhu for bitrates between 0.04 and 0.15). This
can be explained by the fact that compression acts as a denoising filter and has
been observed in earlier studies as well [6].
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Fig. 3. EER for varying bitrates and JEPG XR compression settings.

What is especially interesting to observe, is that PSNR behaviour as shown
in Fig. 1.a does not directly propagate to recognition accuracy. While the better
PSNR behaviour of JPEG2000 at low bitrates is at least reflected by the results
of two algorithms, we do not find any superiority of JPEG XR for higher bi-
trates. On the other hand it is interesting to see that except for two recognition
algorithms at low bitrates, JPEG XR compressed sample data perform almost
equivalent to JPEG2000 compressed one. Given the significantly reduced compu-
tational demand as shown in Fig. 1.b, JPEG XR can be considered a promising
alternative to JPEG2000 in this application scenario and should be considered
in future standardisation efforts in the area.
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Conclusion

We have found that in the context of biometric systems, JPEG XR can be
an interesting alternative to the current standard JPEG2000, especially due
to its significantly lower computational demand. A minor decrease in EER as
compared to JPEG2000 can be seen only for lower bitrates for two out of four
iris recognition systems only. For most iris recognition scenarios, compression
with JPEG XR has been identified to be quite competitive to compression with
JPEG2000.

References

(1]

2]

3]

[5]

[6]

[7]

[9]

[10]

J. Daugman and C. Downing. Effect of severe image compression on iris recog-
nition performance. IFEFE Transactions on Information Forensics and Security,
3(1):52-61, 2008.

Frederic Dufaux, Gary J. Sullivan, and Touradj Ebrahimi. The JPEG XR image
coding standard. IEEE Signal Processing Magazine, 26(6):195-199, November
2009.

J. Himmerle-Uhl, C. Prahauser, T. Starzacher, and A. Uhl. Improving compressed
iris recognition accuracy using JPEG2000 Rol coding. In M. Tistarelli and M.S.
Nixon, editors, Proceedings of the 3rd International Conference on Biometrics
2009 (ICB’09), volume 5558 of LNCS, pages 1102-1111. Springer Verlag, 2009.
R. W. Ives, R. P. Broussard, L. R. Kennell, and D. L. Soldan. Effects of im-
age compression on iris recognition system performance. Journal of Electronic
Imaging, 17:011015, doi:10.1117/1.2891313, 2008.

J.-G. Ko, Y.-H. Gil, J.-H. Yoo, and K.-I. Chung. A novel and efficient feature
extraction method for iris recognition. ETRI Journal, 29(3):399 — 401, 2007.
Mario Konrad, Herbert Stogner, and Andreas Uhl. Custom design of JPEG quan-
tization tables for compressing iris polar images to improve recognition accuracy.
In M. Tistarelli and M.S. Nixon, editors, Proceedings of the 3rd International Con-
ference on Biometrics 2009 (ICB’09), volume 5558 of LNCS, pages 1091-1101.
Springer Verlag, 2009.

G.S. Kostmajer, H. Stogner, and A. Uhl. Custom JPEG quantization for im-
proved iris recognition accuracy. In D. Gritzalis and J. Lopez, editors, EFmerging
Challenges for Security, Privacy and Trust. Proceedings of the 24th IFIP Interna-
tional Information Security Conference 2009 (IFIP SEC’09), volume 297 of IFIP
AICT, pages 76-86. Springer Verlag, May 2009.

S. Matschitsch, M. Tschinder, and A. Uhl. Comparison of compression algorithms’
impact on iris recognition accuracy. In S.-W. Lee and S.Z. Li, editors, Proceedings
of the 2nd International Conference on Biometrics 2007 (ICB’07), volume 4642
of LNCS, pages 232-241. Springer Verlag, 2007.

L. Ma; T. Tan; Y. Wang; D. Zhang. Efficient iris recognition by characterizing
key local variations. IEEE Transactions on Image Processing, 13(6):739-750, June
2004.

Y. Zhu, T. Tan, and Y. Wang. Biometric personal identification based on iris pat-
terns. In Proceedings of the 15th International Conference on Pattern Recognition
(ICPR’00), volume 2, pages 2801-2804. IEEE Computer Society, 2000.



