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Abstract. We propose a multi-layer binary Markov random field (MRF) model

that assigns high probability to object configurations in the image domain con-

sisting of an unknown number of possibly touching or overlapping near-circular

objects of approximately a given size. Each layer has an associated binary field

that specifies a region corresponding to objects. Overlapping objects are repre-

sented by regions in different layers. Within each layer, long-range interactions

favor connected components of approximately circular shape, while regions in

different layers that overlap are penalized. Used as a prior coupled with a suit-

able data likelihood, the model can be used for object extraction from images,

e.g. cells in biological images or densely-packed tree crowns in remote sensing

images. We present a theoretical and experimental analysis of the model, and

demonstrate its performance on various synthetic and biomedical images.

1 Introduction

Object extraction remains one of the key problems of computer vision and image pro-

cessing. The problem is easily stated: find the regions in the image domain occupied

by a specified object or objects. The solution of this problem often requires high-level

knowledge about the shape of the objects sought in order to deal with high noise, clut-

tered backgrounds, or occlusions [4, 11, 8, 1]. As a result, most approaches to extraction

have, to differing degrees and in different ways, incorporated prior knowledge about the

shape of the objects sought. Early approaches were quite generic, essentially encourag-

ing smoothness of object boundaries [6, 9, 3, 2, 10]. For example, [10] uses a Markovian

smoothness prior (basically a Potts model, i.e. boundary length is penalized); [6] uses a

line process to control the formation of region boundaries and control curvature; while

classical active contour models [9] use boundary length and curvature, and region area

in order to favor smooth closed curves [3, 2].

Subsequently there has been a great deal of work on the inclusion of more specific

prior shape knowledge in a variational [4, 13] or probabilistic [5, 15] framework. Many

of these methods rely on a kind of template matching: shape variability is modeled as
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deformations of a reference shape or shapes. Although these methods are useful for

many applications, the major drawback of using a reference shape (or shapes) is that

handling an unknown number of instances of an object in the same image is difficult.

An alternative approach, known as ‘higher-order active contours’ (HOACs), was

presented and developed in [11, 7, 8]. HOAC models integrate shape knowledge without

using reference shapes via the inclusion of explicit long-range dependencies between

region boundary points. The lack of reference shapes means that they can be used to

extract multiple instances of the same object. In [8], Horvath et al. showed how to set the

parameters of the model introduced in [11] to favor regions consisting of any number of

approximately circular connected components, each component having approximately

the same, specified radius. This ‘gas of circles’ (GOC) model was successfully used for

the extraction of tree crowns from aerial images.

A subsequent reformulation of HOAC models (and active contour models in gen-

eral) as equivalent phase field models [12, 7] brings a number of theoretical and algo-

rithmic advantages. One of the most important of these is that phase field models can

be interpreted as real-valued Markov random fields (MRFs), thereby allowing the theo-

retical and algorithmic toolbox of random field theory to be brought to bear. In [1], this

was carried out, and an MRF GOC model equivalent to the phase field GOC model was

developed.

For many important applications, for example the extraction of cells from light mi-

croscope images in biology, or the extraction of densely packed tree crowns in remote

sensing images, these methods have limitations. The first is due to the representation:

distinct overlapping objects cannot be represented. This is because the representation

used is of a region, i.e. a subset of the image domain, and not of objects as such. Thus

if the regions corresponding to two objects overlap, they form the single region that is

their union. This cannot be distinguished from a single object occupying the same re-

gion. The second is due to the model: the same long-range interactions that favor near-

circular shapes also introduce a repulsive energy between nearby objects that means

that configurations containing nearby objects have low probability, even if they do not

overlap.

In this paper, we propose a generalization of the MRF GOC model that overcomes

these limitations: the multi-layer MRF GOC model. This consists of multiple copies

of the MRF GOC model in [1], each copy being known as a layer. Now overlapping

objects can be represented, as subsets of two different layers. The layers interact via

a penalty for the overlap of regions in different layers, and this inter-layer interaction

is crucial, particularly when a likelihood term is added. In its absence, the maximum

probability configuration would simply be the same in all layers and equal to that found

using the model in [1]. The result is that rather than the regions corresponding to two

overlapping objects necessarily merging into a single region, it may be energetically

favourable for the two regions corresponding to the two separate objects to appear in

different layers.

We begin by recalling the single-layer ‘gas of circles’ model.
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2 The single-layer ‘gas of circles’ model

The ‘gas of circles’ model assigns high probability to regions in the image domain

consisting of some number of approximately circular connected components, each of

which has approximately the same, specified radius, and that are more than a certain

distance apart. There are three equivalent formulations of the model: higher-order active

contours (HOACs) [8], phase fields [7], and Markov random fields [1]. In the next three

subsections, we explain the three formulations, since each provides some insight into

the model, and the equivalences between them.

2.1 Contour representation

In the contour formulation, a region R is represented by its boundary ∂R, which is

an equivalence class (under diffeomorphisms of their domain) of zero or more closed

parameterized curves. The HOAC energy for the GOC model is [8]:

E(γ) = λcL(γ) + αcA(γ)−
βc

2

∫

n · n′
G(γ(t)− γ(t′)) dt dt′, (1)

where the contour γ of length L(γ) represents the boundary ∂R of extracted foreground

regions with a total area A(γ). The last term of Eq. (1) is responsible for the geometry of

extracted regions, where n, n′ corresponds to the normal vectors at t and t′ respectively,

while G is the so called interaction function

G(z) =

{
1
2

(

2− ‖z‖
d − 1

π sin
(

π(‖z‖−d)
d

))

if ‖z‖ < 2d,

1−H(‖z‖ − d) otherwise.
(2)

where d controls the range of interaction and H is the Heaviside step function. Horvath

et al. showed in [8], that parameter triples (λc, αc, βc) satisfying certain stability con-

ditions will produce circular regions of a given radius r, yielding the first definition of

the ’gas of circles’ HOAC model.
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Fig. 1. The interaction function G(z) for d = 2 and corresponding geometric kernel G.
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2.2 Phase field representation

The phase field framework represents a region R by a function Φ 3 φ : D → R defined

on the image domain D ⊂ R2, and a threshold t: R = ζt(φ) = {x ∈ D : φ(x) ≥ t}.

The phase field formulationE(φ) of the contour energy Eq. (1) was described in in [12]:

E(φ) =

∫

D

Df

2
|∇φ|2 + λf

(φ4

4
−

φ2

2

)

+ αf

(

φ−
φ3

3

)

−
βf

2

∫

D×D′

∇φ · ∇′φ′
G(x− x′) . (3)

It is convenient to integrate the non-local term by parts:

−
βf

2

∫

D×D′

∇φ · ∇′φ′
G(x− x′) =

βf

2

∫

D×D′

φ φ′ ∇2
G(x− x′))

︸ ︷︷ ︸

G(x−x′)

.

The value φR that minimizes E(φ) for a fixed region R takes the values +1 inside R

and −1 outside, away from the boundary ∂R, while changing smoothly from −1 to +1
in a narrow interface region around ∂R. Basically, the linear operator G directly acts on

the phase field φ as a geometric kernel (see Fig. 1). In the ‘gas of circles’ model, the

parameters of E(φ) are adjusted using the contour stability analysis and the equivalence

between the formulations so that a circle of the desired radius is stable [7, 8].

r
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Fig. 2. MRF neighborhoods.

2.3 Binary MRF representation

Discretizing the field energy Eq. (3) leads to a Markovian interpretation of the phase

field model, where φ becomes a random field ω taking the discrete values of ±1 [1].

The resulting energy of the prior distribution P (ω) is given by

U(ω) = α
∑

s

ωs +
D

2

∑

s

∑

s′∼s

(ωs − ωs′)
2 +

β

2

∑

s,s′

Fss′ ωs ωs′ , (4)

where s denotes lattice sites (or pixels) of the discrete image domain S and ∼ is the

nearest neightbour relation. The model parameters are related to the phase field model
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by α =
2αf

3 ; β = βf ; while D =
0.82Df

4 incorporates the integral over pairs of

boundary lattice cells. Fss′ is a discrete approximation of G [1], which also determines

the size of the neighborhood: {s′ ∈ S : |s− s′| < 2d} as shown in Fig. 2. The single-

ton potential αωs of the prior energy corresponds to an area term: a lower α favors

more foreground pixels and vice versa, while the doubleton potential D(ωs − ωs′)
2

acting over a nearest neighborhood of s ensures smoothness by penalizing boundary

formation. Finally, the long-range potentials enforce the geometric constraints, thereby

forming circles:

βFss′ ωs ωs′ =

{

−βFss′ if ωs 6= ωs′ ,

+βFss′ otherwise.
(5)

From Fig. 2, it is clear that long-range potentials favour the same label when |s− s′| <
d′ (attractive case) and different labels when d′ < |s− s′| < 2d (repulsive case), where

d′ ' d is the zero of G.

3 The multi-layer MRF ‘gas of circles’ model

We are now in a position to describe the multi-layer generalization of the MRF GOC

model just described. The MRF GOC model has two limitations that render it inap-

propriate for many applications. First, touching or overlapping objects cannot be repre-

sented as separate entities in this model. This is because the representation used is of a

region, not of objects as such. If the regions R1 and R2 corresponding to two objects

overlap, the result is a single region R = R1∪R2 that cannot be distinguished from the

representation of a single object occupying the whole of R. Second, the model energy

has a sometimes undesirable effect: it discourages connected components from being

too close to one another. This is because the same interactions that favor stable circles

also produce a repulsive interaction that raises the energy when two circles are closer

than 2d. Thus while this model is able to separate, for example, tree crowns in regular

plantations, it cannot represent, nor does it model well, configurations in which objects

are touching or overlapping (cf. Fig. 8).

The multi-layer MRF GOC model removes both these limitations by using multiple

copies of the MRF GOC model, as follows. The domain of the binary random field

becomes S̃ = ` × S, or alternatively, the field is a map from S to B`, where ` denotes

either ` ∈ Z+ or the set {1, . . . , `}. Hence ω = {ω(i)} for i ∈ `, where ω(i) : S → B.

In principle, we would like ` = Z+,i.e. an infinite number of layers, as this would place

no restrictions on the possible configurations. In practice, there is always a maximum

number of mutual overlaps, and ` need be no larger than this.

Sites that only differ in the value of i correspond to the same spatial point. Thus

S̃ can be thought of as a series of layers, each of which is isomorphic to S, hence

the name ‘multi-layer’. It is clear that the multi-layer field can represent overlapping

objects, simply by placing the regions corresponding to them on different layers.

The Gibbs energy Ũ of the multi-layer model is the sum of the MRF GOC energies

of each layer, plus an inter-layer interaction term that penalizes overlaps (see Fig. 2):

Ũ(ω) =
∑̀

i=1

U(ω(i)) +
κ

4

∑

i6=j

∑

s

(1 + ω(i)
s )(1 + ω(j)

s ) , (6)
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where κ is a new parameter controlling the strength of the overlap penalty.1 Note that

the inter-layer energy is ultralocal: only corresponding sites on different layers interact.

Thus two regions in different layers experience no interaction at all unless they over-

lap. This eliminates the repulsive energy that exists in the single-layer model, because

nearby but non-overlapping regions in different layers always have lower energy than

the same regions in the same layer, assuming the intra-layer interactions are repulsive.

θ2

r r

w > 0

θ1

Fig. 3. Configurations of two overlapping circles and corresponding plots of E(M)(r,w) and

E(S)(r, w) vs. w for two circles of radius r = 10.

3.1 Energy of two interacting circles

In order better to understand the behaviour of the model, in this section we analyze

the energy of two circles, on the same layer and on different layers. We consider the

configurations shown in Fig. 3, where w stands for the size of the intersection: w < 0
means the circles do not intersect, while w > 0 represents a non-empty intersection

of width w. We want to express the energy of these configurations as a function of w.

We take advantage of the equivalence of the ‘gas of circles’ MRF and HOAC models

to use the higher-order active contour energy Eq. (1) to compute the energy of the two

circles. The parameters of this energy come from the equivalences between the three

formulations: βc = 4β; the unit weight of a boundary point is 4D
0.82 ; while the difference

in energy between an interior and exterior point is 2α. Thus the MRF energy of a single

circle with radius r can be written as

E(r) =
4D

0.82
2πr + 2απr2 − 2β

∫∫ 2π

0

dθ dθ′ r2 cos(θ − θ′)G(γ(θ)− γ(θ′)) , (7)

where γ is an embedding corresponding to the circle, parameterized, as shown in Fig. 3,

by polar angle θ.

1 Notice that Ũ is invariant to permutations of the layers. This will remain true even after we

add a likelihood energy. Thus all configurations, and in particular minimum energy configu-

rations, are `! times degenerate. In practice, this degeneracy will be spontaneously broken by

the optimization algorithm.
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Different layers: When the two circles are in different layers, the only interaction en-

ergy is the inter-layer overlap penalty. Thus the energy is constant until the circles start

to overlap. It then starts to increase:

E(M)(r, w) = 2E(r) + κA(r, w) , (8)

where A(r, w) is the area of the overlap given by

A(r, w) =







2

(

r2 arccos
(
1− w

2r

)
−
(
r − w

2

)
√

2rw − w2

4

)

if w > 0,

0 otherwise.

(9)

Same layer: When the two circles are in the same layer, they interact if w > −2d for

the particular form of interaction function in Eq. (2). (Note that we need only consider

w ≤ 2r, where r is the radius of the circles, due to symmetry.) Thus if w ≤ −2d, the

energy is simply 2E(r). For w > −2d, the energy increases with w until w ∼= 0. As the

circles start to overlap (and thus no longer form two circles, but a combined ‘dumbbell’

shape), there is effectively an attractive energy that causes an energy decrease with

increasing w until the combined shape, and thus the energy, becomes that of a single

circle (w = 2r). More precisely, the energy of two circles is

E(S)(r, w) =
4D

0.82
2(2rπ − L(r, w)) + 2α(2r2π −A(r, w))

− 4β

∫∫ θf

θs

dθ1 dθ
′
1 r

2 cos(θ1 − θ′1)G(γ1(θ1)− γ1(θ
′
1))

− 2β

∫∫ θf

θs

dθ1 dθ2 r
2 cos(θ1 − (π − θ2))G(∆(θ1, θ2, w)) , (10)

where γ1,2 are two embeddings corresponding to the two circles, parameterized by

angles θ1,2 respectively, as shown in Fig. 3. We have taken advantage of symmetry to

write the second line in terms of γ1 only. L(r, w) is the arc length of the intersection

segment, while

∆(θ1, θ2, w) =
√

(r(sin(θ1)− sin(θ2)))2 + (2r − w − r(cos(θ1)− cos(θ2)))2

(11)

is the distance between the points γ1(θ1) and γ2(θ2). The limits θs = cos−1(min(1, 1−w
2d ))

and θf = 2π − θs are the radial angles of the two intersection points.

The righthand side of Fig. 3 shows plots of E(M)(r, w) and E(S)(r, w) against w

for circles with r = 10. When the overlap is greater than a certain threshold, controlled

by κ, the energy of two circles in different layers becomes greater than two partially

merged circles in one layer. Below this threshold, the two layer configuration has a

lower energy. The stable configuration energy of two circles is given by the lower enve-

lope of the curves in Fig. 3, and thus the repulsive energy that exists in the single-layer

MRF GOC model is eliminated in the multi-layer MRF GOC model.
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4 Experimental results

In this section, we report on the quantitative evaluation of the behavior and perfor-

mance of the multi-layer MRF GOC model in object extraction problems involving

simulated data and microscope images. Results were obtained as MAP estimates, using

the multi-layer MRF GOC model as a prior, combined with a likelihood energy UL

to be described shortly: ω̂ = argmaxω P (I|ω)P (ω) = argminω UL(I, ω) + Ũ(ω),
where I : S → R is the image data. Optimization was performed using Gibbs sampling

coupled with simulated annealing [6]. The annealing schedule was exponential, with

half-life at least 70 iterations, and a starting temperature of 3.0 for the parameter values

used in the experiments.

4.1 Data likelihood

The data likelihood models the image in the interior and exterior regions using Gaussian

distributions with constant means, and covariances equal to different multiples of the

identity. In addition, we add an image gradient term connecting neighboring pixels, as

follows. For each pair of neighboring sites, s and s′, let (s, s′) be the unit vector pointing

from s to s′. Let ŝ = argmaxt∈{s,s′}(|∇I(t)|). Let h(s, s′) = |(s, s′) · ∇I(ŝ)|. Then

define

gi(s, s
′) =

{

h(s, s′) ω
(i)
s = ω

(i)
s′ ,

|∇I(ŝ)| − h(s, s′) otherwise.
(12)

The likelihood energy then becomes

UL(I, ω) =
∑

i

γ

{
∑

s

[

ln
(
(2π)1/2σ

ω
(i)
s

)
+

(
Is − µ

ω
(i)
s

)2

2σ2

ω
(i)
s

]

+
γ2

2

∑

s

∑

s′∼s

gi(s, s
′)

}

,

(13)

where γ and γ2 are positive weights. In practice, the parameters µ±1 and σ±1 of the

Gaussian distributions were learned from representative samples.

4.2 Simulation results with the multi-layer MRF GOC model

In the first experiment, we study the global minima of Ũ . Choosing, wlog, d = 10,

with the intra-layer parameters α = 0.18634, D = 0.15451, and β = 0.091137 set

according to the stability constraints [8, 1] and to ensure that stable circles have negative

energy, Ũ was then minimized for different numbers of layers ` and values of κ. Fig. 4

shows representative examples of these optimal configurations. The top-left result has

` = 1: note the spacing of the circles due to the intra-layer repulsive energy. When there

are more layers, the intra-layer energies favour a similarly dense ‘gas of circles’ in each

layer. For ` ≤ 3, every layer may contain such a configuration without the circles in

different layers overlapping. For ` > 3, it is not possible to achieve both an optimal

configuration in each layer and zero overlap energy. For small κ, the model tries to

generate a dense configuration in each layer at the price of having overlaps. For large

κ, the situation is the opposite: the model tries to avoid overlaps at the price of having
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` = 1 ` = 2, κ = 0.4 ` = 3, κ = 0.4 ` = 4, κ = 0.4

` = 5, κ = 0.05 ` = 5, κ = 0.4 ` = 6, κ = 0.05 ` = 6, κ = 0.4

Fig. 4. Stable configurations of the multi-layer MRF GOC model for different numbers of layers

and values of κ.

Fig. 5. Plots of the relative interior area (left) and shape error (right) of the stable configurations

against κ.
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less circles in each layer. Fig. 5 shows a plot of the relative interior area 1
`N

∑
H(ω)

against κ, where N = |S|. The value is almost constant for ` ≤ 3, while for ` > 3, the

value decreases with κ. The circularity of the regions was also evaluated. The righthand

plot in Fig. 5 shows the percentage of pixels outside the ideal desired circles. Although

for ` > 3, these errors increase slightly, overall they remain low, meaning that the

connected components remain circles to good accuracy for all ` and κ.

4.3 Quantitative evaluation on synthetic images

In this experiment, we demonstrate the efficiency of our model in separating overlap-

ping circles. A series of noisy synthetic images were generated containing two circles

of radius 10 with different degrees of overlap. The weights in the likelihood energy

were set to γ = 0.1 and γ2 = 0, i.e. no gradient term was used. We used two layers

and differing κ values in the range [0.01, 1]. Segmentation error was evaluated as the

proportion of incorrectly segmented pixels. A plot of these errors versus the amount of

overlap w and κ is shown in Fig. 6. Note that there is a rather clear drop in the seg-

mentation error for κ ∼= 0.7. When w > 10 (corresponding to an overlap of greater

than 50%), a larger κ is required to get an accurate segmentation (κ = 0.88 was needed

in the last case in Fig. 6), and for w > 15, it is hard to get good quality results. In

summary, the model performs well for reasonable overlaps and it is not sensitive to the

value of κ. On the other hand, there is a performance drop for very large overlaps.

Noisy image Small κ Best κ Big κ

Fig. 6. Results on noisy synthetic images (SNR= 0dB) containing two circles of radius 10 with

different degrees of overlap. Left: typical extraction results. Right: plot of segmentation error as

a function of degree of overlap (w) and κ.

4.4 Application in biomedical imaging

Biomedical image segmentation aims to find the boundaries of various biological struc-

tures, e.g. cells, chromosomes, genes, proteins and other sub-cellular components in

various image types [14]. Light microscope techniques are often used, but the resulting



A multi-layer ‘gas of circles’ Markov random field model 11

images are frequently noisy, blurred, and of low contrast, making accurate segmenta-

tion difficult. In many cases, the geometric structures involved are near-circular with

many overlaps, so that our model seems well suited to extracting the desired structures.

The extraction results shown in Fig. 7 and Fig. 8 demonstrate the effectiveness of the

proposed multi-layer MRF GOC model for this type of task. Computation times vary

from ∼ 20s to ∼ 1000s for images of size N = 104. The key factor is the number of

layers, with the minimum time corresponding to ` = 2, the maximum to ` = 6.

Fig. 7. Extraction of cells from light microscope images using the multi-layer MRF GOC model.

Fig. 8. Extraction of lipid drops from light microscope images using the multi-layer MRF GOC

model.

5 Conclusion

The multi-layer MRF GOC model enables the representation and modeling of object

configurations consisting of an a priori unknown number of approximately circular

objects of roughly the same size, which may touch or overlap. Such configurations

occur in a number of domains, notable biomedicine and biology (e.g. cell images), and

remote sensing (e.g. images of closely planted trees). Experiments show that the model
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behaves as expected on theoretical grounds, and that, when coupled with an appropriate

likelihood model, can successfully extract such object configurations from synthetic

and real images. The multi-layer model should also enable the extraction of several sets

of approximately circular objects of different sizes, by setting the model parameters

differently on different layers of the model.
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