Skip to main content

Curve-Skeletons Based on the Fat Graph Approximation

  • Conference paper
  • 2139 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6915))

Abstract

We present a new definition of the 3D curve-skeleton. This definition provides a mathematically strict way to compare and evaluate various approaches to the skeletonization of 3D shapes. The definition is based on the usage of fat curves. A fat curve is a 3D object which allows to approximate tubular fragments of the shape. A set of fat curves is used to approximate the entire shape; such a set can be considered as a generalization of the 2D medial axis. We also present an algorithm which allows to build curve-skeletons according to the given definition. The algorithm is robust and efficient.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blum, H.: A Transformation for Extracting New Descriptors of Shape. In: Wathen-Dunn, W. (ed.) Models for the Perception of Speech and Visual Form, pp. 362–380. MIT Press, Cambridge (1967)

    Google Scholar 

  2. Chang, M.C., Kimia, B.B.: Regularizing 3D medial axis using medial scaffold transforms. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. p. Accepted. IEEE Computer Society, Los Alamitos (2008)

    Google Scholar 

  3. Chuang, J.H., Tsai, C.H., Ko, M.C.: Skeletonization of three-dimensional object using generalized potential field. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1241–1251 (2000), http://dx.doi.org/10.1109/34.888709

    Article  Google Scholar 

  4. Cornea, N.D., Silver, D.: Curve-skeleton properties, applications, and algorithms. IEEE Transactions on Visualization and Computer Graphics 13, 530–548 (2007)

    Article  Google Scholar 

  5. Dey, T.K., Sun, J.: Defining and computing curve-skeletons with medial geodesic function. In: Proceedings of the Fourth Eurographics Symposium on Geometry Processing, pp. 143–152. Eurographics Association, Aire-la-Ville (2006), http://portal.acm.org/citation.cfm?id=1281957.1281975

    Google Scholar 

  6. Giblin, P., Kimia, B.B.: A formal classification of 3d medial axis points and their local geometry. IEEE Trans. Pattern Anal. Mach. Intell. 26, 238–251 (2004), http://dx.doi.org/10.1109/TPAMI.2004.1262192

    Article  Google Scholar 

  7. Palágyi, K., Kuba, A.: A parallel 12-subiteration 3d thinning algorithm to extract medial lines. In: Sommer, G., Daniilidis, K., Pauli, J. (eds.) CAIP 1997. LNCS, vol. 1296, pp. 400–407. Springer, Heidelberg (1997), http://portal.acm.org/citation.cfm?id=648241.752833

    Chapter  Google Scholar 

  8. Siddiqi, K., Pizer, S.: Medial Representations: Mathematics, Algorithms and Applications, 1st edn. Springer Publishing Company, Incorporated, Heidelberg (2008)

    Book  MATH  Google Scholar 

  9. Tagliasacchi, A., Zhang, H., Cohen-Or, D.: Curve skeleton extraction from incomplete point cloud. ACM Trans. Graph. 28, 1–71 (2009), http://doi.acm.org/10.1145/1531326.1531377

    Article  Google Scholar 

  10. Telea, A., van Wijk, J.J.: An augmented fast marching method for computing skeletons and centerlines. In: Proceedings of the Symposium on Data Visualisation, VISSYM 2002, pp. 251–260. Eurographics Association, Aire-la-Ville (2002), http://portal.acm.org/citation.cfm?id=509740.509782

    Google Scholar 

  11. Wang, Y.S., Lee, T.Y.: Curve-skeleton extraction using iterative least squares optimization. IEEE Transactions on Visualization and Computer Graphics 14, 926–936 (2008), http://portal.acm.org/citation.cfm?id=1373109.1373261

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Khromov, D. (2011). Curve-Skeletons Based on the Fat Graph Approximation. In: Blanc-Talon, J., Kleihorst, R., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2011. Lecture Notes in Computer Science, vol 6915. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23687-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23687-7_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23686-0

  • Online ISBN: 978-3-642-23687-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics