Skip to main content

Analysis of Wear Debris through Classification

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6915))

Abstract

This paper introduces a novel method of wear debris analysis through classification of the particles based on machine learning. Wear debris consists of particles of metal found in e.g. lubricant oils used in engineering equipment. Analytical ferrography is one of methods for wear debris analysis and it is very important for early detection or even prevention of failures in engineering equipment, such as combustion engines, gearboxes, etc. The proposed novel method relies on classification of wear debris particles into several classes defined by the origin of such particles. Unlike the earlier methods, the proposed classification approach is based on visual similarity of the particles and supervised machine learning. The paper describes the method itself, demonstrates its experimental results, and draws conclusions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Macián, V., Payri, R., Tormos, B., Montoro, L.: Applying analytical ferrography as a technique to detect failures in diesel engine fuel injection systems. Wear 260(4-5), 562–566 (2006)

    Article  Google Scholar 

  2. Roylance, B.J.: Ferrography–then and now. Tribology International 38(10), 857–862 (2005); Ferrography and Friends - Pioneering Developments in Wear Debris Analysis

    Article  Google Scholar 

  3. Xu, K., Luxmoore, A.R., Jones, L.M., Deravi, F.: Integration of neural networks and expert systems for microscopic wear particle analysis. Knowledge-Based Systems 11(3-4), 213–227 (1998)

    Article  Google Scholar 

  4. Raadnui, S.: Wear particle analysis–utilization of quantitative computer image analysis: A review. Tribology International 38(10), 871–878 (2005); Ferrography and Friends - Pioneering Developments in Wear Debris Analysis

    Article  Google Scholar 

  5. Thomas, A.D.H., Davies, T., Luxmoore, A.R.: Computer image analysis for identification of wear particles. Wear 142(2), 213–226 (1991)

    Article  Google Scholar 

  6. Peng, Z., Kirk, T.B.: Wear particle classification in a fuzzy grey system. Wear, 225-229(Part 2): 1238–1247 (1999)

    Google Scholar 

  7. Stachowiak, G.P., Stachowiak, G.W., Podsiadlo, P.: Automated classification of wear particles based on their surface texture and shape features. Tribology International 41(1), 34–43 (2008)

    Article  Google Scholar 

  8. Umeda, A., Sugimura, J., Yamamoto, Y.: Characterization of wear particles and their relations with sliding conditions. Wear 216(2), 220–228 (1998)

    Article  Google Scholar 

  9. Machalík, S.: Recognition of objects in ferrography using image analysis. PhD thesis, Brno University of Technology (2007)

    Google Scholar 

  10. Peng, Z.: An integrated intelligence system for wear debris analysis. Wear 252(9-10), 730–743 (2002)

    Article  Google Scholar 

  11. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55(1), 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Freund, Y., Schapire, R.: A short introduction to boosting. Japonese Society for Artificial Intelligence 14(5), 771–780 (1999)

    Google Scholar 

  13. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 1:511–I–518 (2001)

    Google Scholar 

  14. Papageorgiou, C.P., Oren, M., Poggio, T.: A general framework for object detection. In: ICCV 1998: Proceedings of the Sixth International Conference on Computer Vision, page. 555. IEEE Computer Society, Washington, DC (1998)

    Google Scholar 

  15. Zhang, L., Chu, R., Xiang, S., Liao, S., Li, S.Z.: Face detection based on multi-block lbp representation. In: ICB, pp. 11–18 (2007)

    Google Scholar 

  16. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR 2005: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 886–893. IEEE Computer Society, Washington, DC (2005)

    Google Scholar 

  17. Herout, A., Zemčík, P., Hradiš, M., Juránek, R., Havel, J., Jošth, R., Žádník, M.: Low-Level Image Features for Real-Time Object Detection, page. 25. IN-TECH Education and Publishing (2009)

    Google Scholar 

  18. Heikkilä, M., Pietikäinen, M., Schmid, C.: Description of interest regions with local binary patterns. Pattern Recogn. 42, 425–436 (2009)

    Article  MATH  Google Scholar 

  19. Sochman, J., Matas, J.: Waldboost - learning for time constrained sequential detection. In: CVPR 2005: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 2, pp. 150–156. IEEE Computer Society, Washington, DC (2005)

    Google Scholar 

  20. Zhu, Q., Yeh, M.-C., Cheng, K.-T., Avidan, S.: Fast human detection using a cascade of histograms of oriented gradients. In: CVPR 2006: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1491–1498. IEEE Computer Society, Washington, DC (2006)

    Google Scholar 

  21. Li, S.Z., Zhu, L., Zhang, Z., Blake, A., Zhang, H., Shum, H.Y.: Statistical Learning of Multi-view Face Detection. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 67–81. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  22. Li, S., Zhang, Z., Shum, H., Zhang, H.: Floatboost learning for classification. In: The Conference on Advances in Neural Information Processing Systems, NIPS (2002)

    Google Scholar 

  23. Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated predictions. Mach. Learn. 37(3), 297–336 (1999)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Juránek, R., Machalík, S., Zemčík, P. (2011). Analysis of Wear Debris through Classification. In: Blanc-Talon, J., Kleihorst, R., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2011. Lecture Notes in Computer Science, vol 6915. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23687-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23687-7_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23686-0

  • Online ISBN: 978-3-642-23687-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics