Skip to main content

A Low-Cost System to Detect Bunches of Grapes in Natural Environment from Color Images

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2011)

Abstract

Despite the benefits of precision agriculture and precision viticulture production systems, its adoption rate in the Portuguese Douro Demarcated Region remains low. One of the most demanding tasks in wine making is harvesting. Even for humans, the environment makes grape detection difficult, especially when the grapes and leaves have a similar color, which is generally the case for white grapes. In this paper, we propose a system for the detection and location, in the natural environment, of bunches of grapes in color images. The system is also able to distinguish between white and red grapes, at the same time, it calculates the location of the bunch stem. The proposed system achieved 97% and 91% correct classifications for red and white grapes, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bramley, R.G.V.: Precision viticulture — research supporting the development of optimal resource management for grape and wine production (2001), http://www.crcv.com.au/research/programs/one/workshop14.pdf

  2. Bramley, R.G.V.: Progress in the development of precision viticulture — variation in yield, quality and soil properties in contrasting australian vineyards (2001), http://www.crcv.com.au/research/programs/one/bramley1.pdf

  3. Seelan, S., Laguette, S., Casady, G., Seielstad, G.: Remote sensing applications for precision agriculture: a learning community approach. Remote Sensing of Environment 88(1-2), 157–169 (2003)

    Article  Google Scholar 

  4. Tongrod, N., Tuantranont, A., Kerdcharoen, T.: Adoption of precision agriculture in vineyard. In: ECTI-CON: 2009 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, vol. 1 and 2, pp. 695–698 (2009)

    Google Scholar 

  5. Edan, Y., Rogozin, D., Flash, T., Miles, G.: Robotic melon harvesting. IEEE Transactions on Robotics and Automation 16, 831–835 (2000)

    Article  Google Scholar 

  6. Sistler, F.: Robotics and intelligent machines in agriculture. IEEE Journal of Robotics and Automation 3, 3–6 (1987)

    Article  Google Scholar 

  7. Van Henten, E., Hemming, J., Van Tuijl, B., Kornet, J., Meuleman, J., Bontsema, J., Van Os, E.: An autonomous robot for harvesting cucumbers in greenhouses. Autonomous Robots 13, 241–258 (2002)

    Article  MATH  Google Scholar 

  8. Monta, M., Kondo, N., Ting, K.: End-effectors for tomato harvesting robot. Artifficial Intelligence Review 12, 11–25 (1998)

    Article  Google Scholar 

  9. Recce, M., Taylor, J., Plebe, A., Tropiano, G.: Vision and neural control for an orange harvesting robot. In: Proceedings of the 1996 International Workshop on Neural Networks for Identification, Control, Robotics, and Signal/Image Processing (NICROSP 1996), p. 467 (1996)

    Google Scholar 

  10. Jimenez, A., Jain, A., Ceres, R., Pons, J.: Automatic fruit recognition: A survey and new results using range/attenuation images. Pattern Recognition 32, 1719–1736 (1999)

    Article  Google Scholar 

  11. Sarig, Y.: Robotics of fruit harvesting: A state-of-the-art review. Journal of Agricultural Engineering Research 54, 265–280 (1993)

    Article  Google Scholar 

  12. U.S. Department of Energy. Assessment study on sensors and automation in the industries of the future:reports on industrial controls, information processing, automation, and robotics. Technical report, U.S. Department of Energy, Energy Efficiency and Renewable Energy, Industrial Technologies Program (2004)

    Google Scholar 

  13. Bohle, C., Maturana, S., Vera, J.: A robust optimization approach to wine grape harvesting scheduling. European Journal of Operational Research 200(1), 245–252 (2010)

    Article  MATH  Google Scholar 

  14. Mateo, E.M., Medina, A., Mateo, F., Valle-Algarra, F.M., Pardo, I., Jimenez, M.: Ochratoxin A removal in synthetic media by living and heat-inactivated cells of Oenococcus oeni isolated from wines. Food Control 21(1), 23–28 (2010)

    Article  Google Scholar 

  15. Lopes, M.S., Mendonca, D., Rodrigues dos Santos, M., Eiras-Dias, J.E., da Camara Machado, A.: New insights on the genetic basis of Portuguese grapevine and on grapevine domestication. Genome 52(9), 790–800 (2009)

    Article  Google Scholar 

  16. Marmol, Z., Cardozo, J., Carrasquero, S., Paez, G., Chandler, C., Araujo, K., Rincon, M.: Evaluation of total polyphenols in white wine dealt with chitin. Revista De La Facultad De Agronomia De La Universidad Del Zulia 26(3), 423–442 (2009)

    Google Scholar 

  17. Rosenberger, C., Emile, B., Laurent, H.: Calibration and quality control of cherries by artificial vision. International Journal of Electronic Imaging, Special Issue on Quality Control by Artificial Vision 13(3), 539–546 (2004)

    Google Scholar 

  18. Lu, J., Gouton, P., Guillemin, J., My, C., Shell, J.: Utilization of segmentation of color pictures to distinguish onions and weeds in field. In: Proceeding of International Conference on Quality Control by Artificial Vision (QCAV), vol. 2, pp. 557–562 (2001)

    Google Scholar 

  19. Petrou, M., Kadyrov, A.: Affine invariant features from the trace transform. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(1), 30–44 (2004)

    Article  Google Scholar 

  20. Jain, A., Duin, R., Mao, J.: Statistical pattern recognition: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(1), 4–37 (2000)

    Article  Google Scholar 

  21. Choksuriwong, A., Laurent, H., Emile, B.: Comparison of invariant descriptors for object recognition. In: IEEE International Conference on Image Processing, ICIP 2005, vol. 1, pp. I-377–I-380 (September 2005)

    Google Scholar 

  22. Chong, C., Raveendran, P., Mukundan, R.: Mean shift: A comparative analysis of algorithms for fast computation of Zernike moment. Pattern Recognition 36, 731–742 (2003)

    Article  MATH  Google Scholar 

  23. Khotanzad, A., Hong, Y.: Invariant image recognition by Zernike moments. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(5), 489–497 (1990)

    Article  Google Scholar 

  24. Chamelat, R., Rosso, E., Choksuriwong, A., Rosenberger, C., Laurent, H., Bro, P.: Grape detection by image processing. In: IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics, vol. 1-11, pp. 3521–3526 (2006)

    Google Scholar 

  25. Morais, R., Fernandes, M., Matos, S., Serôdio, C., Ferreira, P., Reis, M.: A ZigBee multi-powered wireless acquisition device for remote sensing applications in precision viticulture. Computers and Electronics in Agriculture 62(2), 94–106 (2008)

    Article  Google Scholar 

  26. Morais, R., Matos, S., Fernandes, M., Valente, A., Soares, S., Ferreira, P., Reis, M.: Sun, wind and water flow as energy supply for small stationary data acquisition platforms. Computers and Electronics in Agriculture 64(2), 120–132 (2008)

    Article  Google Scholar 

  27. Edan, Y., Miles, G.E.: Systems engineering of agricultural robot design. IEEE Transactions on Systems, Man and Cybernetics 24(8), 1259–1264 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Reis, M.J.C.S. et al. (2011). A Low-Cost System to Detect Bunches of Grapes in Natural Environment from Color Images. In: Blanc-Talon, J., Kleihorst, R., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2011. Lecture Notes in Computer Science, vol 6915. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23687-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23687-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23686-0

  • Online ISBN: 978-3-642-23687-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics