
How Profitable are Strategic Behaviors in a
Market?

Ning Chen1, Xiaotie Deng2, Jie Zhang3

1 Division of Mathematical Sciences, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore.

ningc@ntu.edu.sg
2 Department of Computer Science, University of Liverpool, UK.

xiaotie@liv.ac.uk
3 Department of Computer Science, City University of Hong Kong, Hong Kong.

csjiezhang@gmail.com

Abstract. It is common wisdom that individuals behave strategically
in economic environments. We consider Fisher markets with Leontief
utilities and study strategic behaviors of individual buyers in market
equilibria. While simple examples illustrate that buyers do get larger
utilities when behaving strategically, we show that the benefits can be
quite limited: We introduce the concept of incentive ratio to capture
the extent to which utility can be increased by strategic behaviors of an
individual, and show that the incentive ratio of Leontief markets is less
than 2. We also reveal that the incentive ratios are insensitive to market
sizes. Potentially, the concept incentive ratio can have applications in
other strategic settings as well.

1 Introduction

Market equilibrium is a vital notion in classical economic theory. Understanding
its properties and computation has been one of the central questions in Algo-
rithmic Game Theory. For the Fisher market model [7], we consider pricing and
allocation of m products to n buyers, each with an initially endowed amount of
cash ei and with a non-decreasing concave utility function. At a market equilib-
rium, all products are sold out, all cash is spent, and, most importantly, the set
of products purchased by each buyer maximizes his utility function for the given
equilibrium price vector constrained by his initial endowment. It is well-known
that a market equilibrium always exists given mild assumptions on the utility
functions [5, 7].

A critical assumption in studying and analyzing marketplaces is that all
individuals are rational and would like to seek their utility maximized. In a
market equilibrium, while it is true that every buyer gets his maximum utility
through an equilibrium allocation, his utility function indeed takes an effect on
generating equilibrium prices, which in turn affect his utility in the equilibrium
allocation. In other words, (strategic) buyers may affect market equilibria and
their own utilities through the information that the market collects.



From a different angle, market equilibrium maps input information from buy-
ers to prices and allocations; this defines a natural market equilibrium mechanis-
m, in which buyers report to the market their utility functions (their strategies
consist of all possible functions in a given domain) and the market generates an
equilibrium output for the reported functions. Adsul et al. [1] recently observed
that bidding truthfully is not a dominant strategy in the market equilibrium
mechanism for linear utility functions. That is, buyers can behave strategically
in a linear market to increase their utilities. This phenomenon is not restricted to
the linear utility functions. The following example suggests that it may happen
for other utility functions as well, e.g., Leontief functions [9, 10, 16] — the utility
to buyer i is given by ui = minj

{xij

aij

}
, where xij is the allocation of item j to i

and aij ’s are parameters associated with buyer i.

Example 1. There are two buyers i1 and i2 with endowment e1 = 2/3 and e2 =
1/3 respectively. There are two items j1 and j2 both with unit quantity. Buyer

i1’s utility is u1 = min
{

x11
2
3

, x12
1
3

}
, and buyer i2’s utility is u2 = min

{
x21
1
3

, x22
2
3

}
.

Then in an equilibrium output4 with price vector p = (1, 0) and allocations
x1 = ( 23 ,

1
3 ) and x2 = ( 13 ,

2
3 ), the utilities are u1 = 1 and u2 = 1. Now if

buyer i1 strategizes in the market and reports u′
1 = min

{
x11
5
9

, x12
4
9

}
, price vector

p′ = (0, 1) and allocations x′
1 = ( 56 ,

2
3 ) and x′

2 = ( 16 ,
1
3 ) give an equilibrium for

the new setting. Now the utilities are u′
1 = 5

4 and u′
2 = 1

2 , where buyer i1 gets a
strictly larger utility.

These intriguing phenomena motivate us to consider the following questions:
How much can utility be increased with strategic behaviors in a market? How
does the answer to the question depend on the domains of utility functions? The
answers to these questions would help us to understand the effects of strategic
behaviors in marketplaces on their equilibria and utilities of individuals. In this
paper, we take a first step towards answering these questions by considering
Leontief utility functions. Leontief utilities are a special case of well-studied
Constant Elasticity of Substitution (CES) functions [4] and represent perfect
complementarity preferences of buyers. They allow us to model a wide range of
realistic preferences of buyers, illustrating a variety of different phenomena of
markets.

We study this problem by introducing a quantity called incentive ratio, which
characterizes the extent to which utilities can be increased by strategic behaviors
of individuals. Formally, for any fixed bids of other buyers in a given market,
the incentive ratio of any given buyer is defined to be his maximum possible
utility by behaving strategically divided by his utility when bidding truthfully,
given any fixed bids of all other buyers. Note that the definition of incentive
ratio can be generalized to any mechanisms. Indeed, if a mechanism is incentive

4 In a Leontief market, equilibrium allocation may not be unique, but the utility
of every buyer in all equilibria, evaluated using the utility functions reported, is
unique [24]. Therefore, the selection of output equilibria will not affect the utility of
any buyer.



compatible, its incentive ratio is one. A mechanism/market with a small incentive
ratio implies that the “invisible hand” in the market is strong in the sense that
no one can benefit much from (complicated) strategic considerations, even if one
has complete information of the others. Incentive ratio therefore characterizes
robustness of incentives in a mechanism/market, and has potential applications
in other incentive scenarios.

A related concept, price of anarchy [19], together with several variants (e.g.,
price of stability [2]), is becoming one of the most important solution concepts
in our understanding of Algorithmic Game Theory. While the price of anarchy
considers the ratio of the social welfare achieved in the worst case Nash equilib-
rium versus the optimum social welfare, our concept of incentive ratio does not
deal with social welfare but that of individual optimality, for everyone. It is close
to the approximation market equilibrium price introduced in [11] where every
individual achieves a solution within a constant factor from its own optimum
under the given price. In both concepts, individuals do not achieve their own
optimum but bounded by a constant factor away. However, in [11], the consider-
ation is about computational difficulty, but, in our model, we consider an exact
equilibrium mechanism when market participants may play strategically.

In this paper, we show that the incentive ratio of Leontief markets is less
than 2. Our proof lies on revealing interconnections of the incentive ratios of
markets with different sizes. In particular, we prove that the incentive ratio
is independent of the number of buyers (Theorem 5), by showing a reduction
from any n-buyer market to a 2-buyer market, and vice versa. A similar result
holds for items as well, i.e., the incentive ratio is independent of the number of
items (Theorem 6). These results are of independent interests and imply that
the incentive ratio is insensitive to the size of a market. In other words, the size
of a market is not a factor to affect the largest possible utility that a strategic
individual can obtain. Given these properties, we therefore focus on a market
with 2 buyers and 2 items to bound the incentive ratio. Our proof involves in
best response and dominant strategy analysis for Leontief markets.

1.1 Related work

Market equilibrium, especially its algorithmic perspective, has received extensive
attention in the last decade [11, 17, 10, 25, 12]. For Fisher markets, Devanur et al.
[13] developed a polynomial primal-dual algorithm with linear utility functions.
Codenotti and Varadarajan [9] modeled the Leontief market equilibrium problem
as a concave maximization problem; Garg et al. [16] gave a polynomial time
algorithm to compute an equilibrium for Leontief utilities. Other algorithmic
results of computing a market equilibrium in Fisher markets including, e.g.,
Cobb-Douglas utilities [14] and logarithmic utilities [8].

Roberts and Postlewaite [21] observed that as the number of buyers becomes
large, the Walrasian allocation rule is asymptotically incentive compatible. This
has a similar flavor to our results that the incentive ratio does not increase as
the size of the market enlarges. In a recent paper, Adsul et al. [1] studied strate-
gic behaviors in a Fisher market with linear utilities; they showed that all Nash



equilibria in their setting are conflict-free, i.e., buyers have no conflict on alloca-
tions that maximize their utilities. They also showed that a symmetric strategy
profile, i.e., all buyers report the same utility function, is a Nash equilibrium if
and only if it is conflict-free. Our paper however has completely different focuses
as we study Leontief rather than linear utilities, and we consider strategic be-
haviors for each individual “locally” whereas [1] studied Nash equilibrium for all
the buyers.

2 Preliminaries

In a Fisher market M , we are given a set of n buyers and a set of m divisible
items. Without loss of generality, assume that all items are of unit quantity
supply. Each buyer i has an initial endowment ei > 0, which is normalized to
be

∑
i ei = 1, and a utility function ui(xi), where xi = (xi1, . . . , xim) is a vector

denoting the amount of items that i receives.
One of the most important classes of utility functions is that of Constant

Elasticity of Substitution (CES) functions [23]: ui(xi) =
(∑m

j=1 aijx
ρ
ij

) 1
ρ , for

−∞ < ρ < 1 and ρ ̸= 0, where ai = (ai1, . . . , aim) is a given vector as-
sociated with each buyer; its elements aij > 0. Let amax

i = maxj{aij} and
amin
i = minj{aij}. CES functions allow us to model a wide range of realistic

preferences of buyers, and have been shown to derive, in the limit, special cases
including, e.g., linear, Leontief, and Cobb-Douglas utility functions [4].

The output of a market is given by a tuple (p,x), where p = (p1, . . . , pm)
is a price vector and x = (x1, . . . ,xn) is an allocation vector. We say (p,x)
is a market equilibrium (and p equilibrium price and x equilibrium allocation
respectively) if the following conditions hold:

– The allocation xi maximizes the utility of each buyer i given his endowment
ei and price vector p.

– The market is clear, i.e., all items are sold out and all endowments are ex-
hausted. That is, for any item j,

∑
i xij = 1; and for any buyer i,

∑
j pjxij =

ei. (Note that this implies that
∑

j pj =
∑

i ei = 1.)

For CES functions, the equilibrium allocation can be captured by the seminal
Eisenberg-Gale convex program [15].

In this paper, we will focus on Leontief utility functions: The utility of every
buyer is given by ui(xi) = minj

{xij

aij

}
, where aij > 0. Leontief utility function

indicates perfect complementarity between different items and is the case when
ρ → −∞ in the CES functions. Codenotti and Varadarajan [9] gave the following
convex program to encode a Leontief market:

max
n∑

i=1

ei log ui (1)

s.t.

n∑
i=1

aijui ≤ 1, ∀ j = 1, . . . ,m

ui ≥ 0, ∀ i = 1, . . . , n



Recall that the KKT conditions [6] are necessary for a feasible solution of a
nonlinear program to be optimal, provided that some regularity conditions are
satisfied. If the objective function and the inequality constraints are continuously
differentiable convex functions and the equality constraints are affine functions,
the KKT necessary conditions are also sufficient for optimality. Moreover, if the
objective function is strictly convex, then the optimal solution is unique [6].
Note that (1) satisfies all the necessary conditions; thus, it possesses all these
properties. In particular, this implies that the utility of every buyer is unique in
all market equilibria.

Applying the KKT necessary conditions on (1), we get

− ei
ui

+

m∑
j=1

pjaij − µi = 0, ∀ i

µiui = 0, ∀ i

pj

( n∑
i=1

aijui − 1

)
= 0, ∀ j

(2)

where the Lagrangian variable pj is actually an equilibrium price of the market.
Since ui > 0, we have µi = 0 and ui =

ei∑m
j=1 pjaij

.

We have the following simple characterization on the uniqueness of allocation
in a Leontief market.

Lemma 1. The equilibrium allocation is unique if and only if the first constraint
of the convex program (1) is tight. That is,

∑n
i=1 aijui = 1, for j = 1, . . . ,m.

3 Market Equilibrium Mechanism

Market equilibrium provides a natural mirror that maps input information of
a market (i.e., endowments and utility functions) to an output (i.e., prices and
allocations). The participation of every buyer in the market is to seek for a
utility-maximized allocation. That is, for any given price vector p, every buyer
would like to get an allocation that maximizes his utility subject to the bud-
get constraint. This fact is indeed captured by the market equilibrium solution
concept.

If we consider rational behaviors of buyers, however, as observed in Exam-
ple 1, they may actually behave strategically to increase their utilities. This
suggests a natural market equilibrium mechanism, in which buyers report to
the market their utility functions5 (their strategy space consists of all possi-
ble functions in a given domain, i.e., Leontief functions considered in this pa-
per), and then the market generates an equilibrium output based on the report-
ed functions. Formally, each buyer i has a private vector ai = (ai1, . . . , aim),

5 We assume that buyers do not play with their budget and always report the true
value ei. This assumption is without loss of generality as we are able to show that
for any reported utility functions, bidding the true budget is always a dominant
strategy.



which denotes his true Leontief utility function, and may bid an arbitrary vector
bi = (bi1, . . . , bim) where each bij > 0 to the mechanism. Upon receiving the
reported vectors b1, . . . ,bn (as well as endowments) from all buyers, the mech-
anism outputs prices and allocations of the items; the true utility that buyer i
obtains from the output is denoted by ui(b1, . . . ,bn).

In this section, we will establish a few properties regarding best response
and dominant strategy for the market equilibrium mechanism. Since bidding
truthfully is not necessarily a dominant strategy, for any given fixed reported
functions of other buyers, every individual buyer will report a function that
maximizes his own utility; such a bidding function is called a best response.
Before considering best response strategies, we first notice that since equilibrium
allocations may not be unique for given reported utility functions, the real utility
that a strategic buyer obtains depends on different allocations, which in turn
affects his strategic behaviors. The following claims, however, indicate that there
is always a best response such that the resulting equilibrium allocation is unique.
In the following we denote bmax

i = maxj{bij}, bmin
i = minj{bij},∀i.

Theorem 1. For any given market with two buyers i1, i2 and any reported bid
b2 of i2, there is a best response strategy b1 of i1 such that the equilibrium
allocation with (b1,b2) is unique. Further, this best response strategy b1 is given
by

b1j =

{
e1 if j ∈ argmax{b2j}
1− b2j

bmax
2

e2 otherwise

where the maximum utility of i1 is u1(b1,b2) = minj

{ 1−
b2j

bmax
2

e2

a1j

}
.

For a market with n buyers, we have the following result which follows from
Theorem 1 directly.

Theorem 2. For any given market with n buyers and reported bids b2, . . . ,bn

of i2, . . . , in, respectively, let S = {j | bij = bmax
i , i ̸= i1}. If S ̸= ∅, then a best

response strategy b1 of i1 is given by

b1j =

{
e1 if j ∈ S

1−
∑

i ̸=i1

bij
bmax
i

ei otherwise

where the maximum utility of i1 is u1(b1,b2, . . . ,bn) = minj

{ 1−
∑

i ̸=i1

bij
bmax
i

ei

a1j

}
,

and the resulting equilibrium allocation is unique.

The following theorem is a sufficient condition for being a dominant strategy
for all buyers to bid truthfully, i.e., bi = ai.

Theorem 3. For any fixed bid b−i of all the buyers except i, if there exists an
item j such that aij = amax

i , and bi′j = bmax
i′ for all i′ ̸= i, then bidding truthfully

is dominant strategy for i.

The above theorem implies that if there is a common item on which all
buyers have the largest weight, then that item “dominates” the utilities and it
is impossible to increase one’s allocation.



4 Incentive Ratio

In this section, we will present the definition of incentive ratio and our main
results.

Definition 1 (Incentive Ratio). For a given market M and any fixed bids
b−i of other buyers, let ui(ai,b−i) be the utility of i when he bids truthfully, and
maxbi

ui(bi,b−i) be the largest possible utility of i when he unilaterally changes
his bid.6 Define

RM
i = max

b−i

maxbi
ui(bi,b−i)

ui(ai,b−i)

to be the incentive ratio of i in the market M .

Incentive ratio quantifies the benefit of strategic behaviors of each individual
buyer. Let RM , maxi R

M
i denote the largest individual incentive ratio of M .

Our main result is the following.

Theorem 4 (main). For any given Leontief market M and a buyer i ∈ M , his
incentive ratio is smaller than 2, i.e., RM

i < 2. Thus, RM < 2.

The ratio given by the theorem is tight; the following example shows that
RM can take on a value arbitrarily close to 2.

Example 2 (Tight example). There are 2 buyers and 2 items with a1 = (1− ϵ, ϵ)
and a2 = ( 12 − ϵ, 1

2 + ϵ). Their budgets are e1 = 4ϵ− 4ϵ2 + ϵ3 and e2 = 1− 4ϵ+
4ϵ2 − ϵ3, where ϵ > 0 is an arbitrarily small number. Assume b2 = a2. When i1
bids truthfully, his utility is u1 = 4ϵ−4ϵ2+ϵ3

1−ϵ . If i1 strategically bids

b1 =
(8ϵ− 12ϵ2 + 9ϵ3 − 2ϵ4

1 + 2ϵ
, 4ϵ− 4ϵ2 + ϵ3

)
then his utility will be

u′
1 =

8ϵ− 12ϵ2 + 9ϵ3 − 2ϵ4

(1 + 2ϵ)(1− ϵ)

and the incentive ratio is
8− 12ϵ+ 9ϵ2 − 2ϵ3

4 + 4ϵ− 7ϵ2 + 2ϵ3

which converges to 2 as ϵ approaches 0.

Before proving Theorem 4, we first establish a connection of the incentive
ratios of different markets in terms of the number of buyers and items. These
properties are of independent interests to reveal the effect of market sizes on
strategic behaviors. We will prove the theorem at the end of the section.

6 As mentioned earlier, equilibrium allocation may not be unique for different bids of
i, which may lead to different true utilities for him. Our definition of incentive ratio
is the strongest in the sense that it bounds the largest possible utility in all possible
equilibrium allocations, which include, of course, a best possible allocation.



4.1 Incentive Ratio is Independent of the Number of Buyers

In this subsection, we will show that the incentive ratio of Leontief markets is
independent of the number of buyers.

Theorem 5. Incentive Ratio is independent of the number of buyers. That is,
if Rn = max

{
RMn | Mn is a market with n buyers

}
, then Rn = Rn′ for any

n > n′ ≥ 2. (Note that R1 = 1.)

The proof is by showing that Rn = R2 for any n ≥ 3; it consists of two
directions of reductions: one is from Rn to R2 and the other is from R2 to Rn.

Reduction from Rn to R2. We construct a reduction from any market with
n buyers to a 2-buyer market, as the following lemma states. The reduction is
by unifying n − 1 buyers in the n-buyer market, and comparing the incentive
ratio of the buyer whose utility functions are the same in both of the markets.

Lemma 2. For any n-buyer market Mn, there is a 2-buyer market M2 such
that RM2 ≥ RMn . This implies that R2 ≥ Rn.

Reduction from R2 to Rn. We can have a similar reduction from any market
with 2 buyers to an n-buyer market, as the following lemma states. (Note that
such a reduction is necessary for Leontief utility functions, since we cannot simply
add dummy buyers and items as they may affect the allocations of existing
items.)

Lemma 3. For any 2-buyer market M2, there is an n-buyer market Mn such
that RMn ≥ RM2 . This implies that Rn ≥ R2.

4.2 Incentive Ratio is Independent of the Number of items

The following claim shows that the incentive ratio does not depend on the num-
ber of items as well.

Theorem 6. Incentive ratio is independent of the number of items.

4.3 Proof of Theorem 4

In this subsection, we will prove our main theorem. Given the properties of
the incentive ratio established in the above subsections, it suffices to bound the
incentive ratio for a 2-buyer 2-item market.

Let M be a market with 2 buyers i1, i2 and 2 items j1, j2 with true utility
vectors a1 = (a11, a12) and a2 = (a21, a22). We will only analyze the incentive
ratio of i1; the same argument applies to i2. Suppose the reported utility vector
of i2 is b2 = (b21, b22), and assume without loss of generality that b21 < b22.
According to Theorem 3, we can assume that a11 > a12 (otherwise truthful
strategy is dominant strategy for i1 and his incentive ratio is 1).



Let b1 = (b11, b12) be i1’s best response for i2’s bid b2. Let u1 = u1(a1,b2), u
′
1 =

(b1,b2) and u2 = u2(a1,b2). Hence, the incentive ratio of i1 is

RM
1 =

u′
1

u1
=

min
j

{
1−

b2j
bmax
2

e2

a1j

}
u1

=

min

{
1− b21

b22
e2

a11
, e1
a12

}
u1

There are the following two cases.

– b21
b22

> e2, or equivalently, e1 > 1 − b21
b22

. For this case, we will construct a

new market M̃ where a12 is replaced by ã12 = min
{
a12, (1− b22

b21
e2)

a12

e1
− ϵ

}
,

and all other parameters remain unchanged. Let ũ1 = ũ1(ã1,b2), where
ã1 = (a11, ã12).
Recall that ũ1 ≤ e1

ãmin
1

= e1
ã12

, u2 ≤ e2
bmin
2

= e2
b21

, and by definition ã12 <

(1− b22
b21

e2)
a12

e1
, we can verify that when i1 bids truthfully in market M̃ , for

item j2 we have

a12u1 + b22u2 − 1 = ã12u1 + b22u2 − 1

<
(
1− b22

b21
e2

)a12
e1

· e1
a12

+ b22
e2
b21

− 1 = 0

According to linear complementary conditions, p2 = 0 and p1 > 0. Recall
that p1 + p2 = e1 + e2 = 1; we get p1 = 1. Hence, ũ1 = e1

p1a11+p2ã12
=

e1
a11

, u2 = e2
b21

. Therefore, ũ1 = e1
a11

= e1
amax
1

≤ u1. Hence,

RM
1 =

min
j

{
1−

b2j
bmax
2

e2

a1j

}
u1

≤
min

{
1− b21

b22
e2

a11
, e1
a12

}
ũ1

≤
min

{
1− b21

b22
e2

a11
, e1
ã12

}
e1
a11

≤ RM̃
1

Now we can get the ratio of M̃ . For item j2, we have

a1ju1 + b2ju2 − 1 = ã12u1 + b22u2 − 1 = ã12
e1
a11

+ b22
e2
b21

− 1 < 0

Thus, e1 > a11(b22−b21)
a11b22−ã12b21

. Recall that we have b21
b22

> e2, which is equivalent to

e1 > 1− b21
b22

. In addition, a11(b22−b21)
a11b22−ã12ab21

> 1− b21
b22

, we conclude the constraint
for e1 satisfies

e1 >
a11(b22 − b21)

a11b22 − ã12b21
Now comparing the two terms of buyer i1’s utility when he uses best response
strategy, we have

1− b21
b22

e2

a11
− e1

ã12
=

1

a11

[(
1− b21

b22

)
− a11b22 − ã12b21

ã12b22
e1

]
<

1

a11

[(
1− b21

b22

)
− a11b22 − ã12b21

ã12b22
· a11(b22 − b21)

a11b22 − ã12b21

]
=

1

a11

(
1− b21

b22

)(
1− a11

ã12

)
< 0



Therefore,

R =
u′
1

u1
=

min
j

{
1−

b2j
bmax
2

e2

a1j

}
u1

≤
1− b21

b22
e2

a11

e1
a11

=
1− b21

b22
e2

e1
=

b22 − b21
b22

1

e1
+

b21
b22

<
b22 − b21

b22
· a11b22 − ã12b21
a11(b22 − b21)

+
b21
b22

= 1 +
b21
b22

(
1− ã12

a11

)
< 1 + 1 = 2

where the last inequality is due to 0 < b22 − b21 < ϵ and 0 < ã12 < ϵ, as ϵ
approaches 0.

– b21
b22

≤ e2, or equivalently, e1 ≤ 1 − b21
b22

. Since b21
b22

≤ e2, we know that when
buyer i1 bids truthfully, u2 < e2

b21
. Otherwise if u2 = e2

b21
, then for item j2,

a12u1 + b22
e2
b21

− 1 ≥ a12u1 + 1 − 1 > 0, which is a contradiction. On the
other hand, if u2 = e2

b22
, then buyer i1 cannot improve his utility any further

and his incentive ratio is 1. Therefore, the utilities satisfy

e1
a11

< u1 <
e1
a12

,
e2
b22

< u2 <
e2
b21

(3)

According to the KKT conditions, we have

0 < p1 < 1, 0 < p2 < 1{
a11u1 + b21u2 − 1 = 0

a12u1 + b22u2 − 1 = 0

Thus,

u1 =
b22 − b21

a11b22 − a12b21
, u2 =

a11 − a12
a11b22 − a12b21

Plug it into (3), we have

a12(b22 − b21)

a11b22 − a12b21
< e1 <

a11(b22 − b21)

a11b22 − a12b21
(4)

Since 1− b21
b22

< a11(b22−b21)
a11b22−a12b21

, we conclude the constraint for e1 is,

a12(b22 − b21)

a11b22 − a12b21
< e1 ≤ 1− b21

b22
(5)

Thus,

1− b21
b22

e2

a11
− e1

a12
=

1

a11

[(
1− b21

b22

)
− a11b22 − a12b21

a12b22
e1

]
<

1

a11

[(
1− b21

b22

)
− a11b22 − a12b21

a12b22
· a12(b22 − b21)

a11b22 − a12b21

]
=

1

a11

[(
1− b21

b22

)
−
(
1− b21

b22

)]
= 0



Therefore,

RM
1 =

u′
1

u1
=

min
j

{
1−

b2j
bmax
2

e2

a1j

}
u1

=

1− b21
b22

e2

a11

b22−b21
a11b22−a12b21

=
a11b22 − a12b21
a11(b22 − b21)

(
1− b21

b22
+

b21
b22

e1

)
≤ a11b22 − a12b21

a11(b22 − b21)

(
b22 − b21

b22
+

b21
b22

· b22 − b21
b22

)
= (1− a12

a11
· b21
b22

)(1 +
b21
b22

) < (1− 0)(1 + 1) = 2

where the last inequality is due to 0 < b22 − b21 < ϵ and 0 < a12 < ϵ, as ϵ
approaches 0.

This completes the proof.

5 Conclusions

We introduce the concept of incentive ratio to characterize the extent to which
utilities can be increased by strategic behaviors of individuals in a marketplace.
It would be interesting to study the incentive ratio for other market models, e.g.,
linear, Cobb-Douglas, or general, CES utility functions, as well as Arrow-Debreu
markets. The definition of incentive ratio can be generalized to other mechanism
design settings. For example, if a mechanism is incentive compatible, its incen-
tive ratio is one. A notion similar to incentive ratio is approximate truthfulness,
which has been considered in, e.g., [22, 20, 3, 18]. The concept of incentive ratio
focuses on individual participant rather than the worst case analysis of the whole
market. In particular, for markets with asymmetric information, the incentive
ratios of different individuals could be very different, depending on their knowl-
edge and unbalanced situation in the market. The incentive ratio defined in our
paper characterizes robustness of incentives for individuals, and has potential
applications in other settings.
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