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Abstract. We present a number of positive and negative results for
variants of the matroid secretary problem. Most notably, we design a
constant-factor competitive algorithm for the “random assignment” model
where the weights are assigned randomly to the elements of a matroid,
and then the elements arrive on-line in an adversarial order (extend-
ing a result of Soto [20]). This is under the assumption that the ma-
troid is known in advance. If the matroid is unknown in advance, we
present an O(logrlogn)-approximation, and prove that a better than
O(logn/loglogn) approximation is impossible. This resolves an open
question posed by Babaioff et al. [3].

As a natural special case, we also consider the classical secretary problem
where the number of candidates n is unknown in advance. If n is chosen
by an adversary from {1,..., N}, we provide a nearly tight answer, by
providing an algorithm that chooses the best candidate with probability
at least 1/(Hny—1 + 1) and prove that a probability better than 1/Hy
cannot be achieved (where Hy is the N-th harmonic number).

1 Introduction

The secretary problem is a classical problem in probability theory, with obscure
origins in the 1950’s and early 60’s ([11,17,8]; see also [10]). Here, the goal is
to select the best candidate out of a sequence revealed one-by-one, where the
ranking is uniformly random. A classical solution finds the best candidate with
probability at least 1/e [10]. Over the years a number of variants have been
studied, starting with [12] where multiple choices and various measures of success
were considered for the first time.

Recent interest in variants of the secretary problem has been motivated by
applications in on-line mechanism design [14,18,3], where items are being sold to
agents arriving on-line, and there are certain constraints on which agents can be
simultaneously satisfied. Equivalently, one can consider a setting where we want
to hire several candidates under certain constraints. Babaioff, Immorlica and
Kleinberg [3] formalized this problem and presented constant-factor competitive
algorithms for several interesting cases. The general problem formulated in [3]
is the following.

* This work was done while the author was an intern at IBM Almaden Research
Center, San Jose, CA



Matroid secretary problem. Given a matroid M = (FE,Z) with non-negative
weights assigned to E; the only information known up-front is the number of
elements n := |E|. The elements of E arrive in a random order, with their
weights revealed as they arrive. When an element arrives, it can be selected
or rejected. The selected elements must always form an independent set in M,
and a rejected element cannot be considered again. The goal is to maximize the
expected weight of the selected elements.

Additional variants of the matroid secretary problem have been proposed
and studied, depending on how the input ordering is generated, how the weights
are assigned and what is known in advance. In all variants, elements with their
weights arrive in an on-line fashion and an algorithm must decide irrevocably
whether to accept or reject an element once it has arrived. We attempt to bring
some order to the multitude of models and we classify the various proposed
variants as follows.

Ordering of matroid elements on the input:

— AO = Adversarial Order: the ordering of elements of the matroid on the
input is chosen by an adversary.

— RO = Random Order: the elements of the matroid arrive in a random order.

Assignment of weights:

— AA = Adversarial Assignment: weights are assigned to elements of the ma-
troid by an adversary.

— RA = Random Assignment: the weights are assigned to elements by a ran-
dom permutation of an adversarial set of weights (independent of the input
order, if that is also random).

Prior information:

— MK = Matroid Known: the matroid is known beforehand (by means of an
independence oracle).

— MN = Matroid - n known: the matroid is unknown but the cardinality of
the ground set is known beforehand.

— MU = Matroid - Unknown: nothing about the matroid is known in advance;
only subsets of the elements that arrived already can be queried for inde-
pendence.

For example, the original variant of the matroid secretary problem [3], where
the only information known beforehand is the total number of elements, can
be described as RO-AA-MN in this classification. We view this as the primary
variant of the matroid secretary problem.

We also consider variants of the classical secretary problem; here, only 1
element should be chosen and the goal is to maximize the probability of selecting
the best element.

Classical secretary problems:
— CK = Classical - Known n: the classical secretary problem where the number
of elements in known in advance.



— CN = C(lassical - known upper bound N: the classical secretary problem
where the number of elements is chosen adversarially from {1,..., N}, and
N is known in advance.

— CU = Classical - Unknown n: the classical secretary problem where no in-
formation on the number of elements is known in advance.

Since the independence sets of the underlying matroid in this model are inde-
pendent of the particular labeling of the ground set, we just use the weight
assignment function to characterize different variants of this model. The classi-
cal variant of the secretary problem which allows a 1/e-approximation would be
described as RA-CK. The variant where the number of elements n is not known
in advance is very natural — and has been considered under different stochastic
models where n is drawn from a particular distribution [21,1] — but the worst-
case scenario does not seem to have received attention. We denote this model
RA-CU, or RA-CN if an upper bound on the number of candidates is given. In
the model where the input ordering of weights is adversarial (AA-CK), it is easy
to see that no algorithm achieves probability better than 1/n [5]. We remark
that variants of the secretary problem with other objective functions have been
also proposed, such as discounted profits [2], and submodular objective functions
[4,13]. We do not discuss these variants here.

1.1 Recent related work

The primary variant of matroid secretary problem (RO-AA-MN model) was
introduced in [3]. In the following, let n denote the total number of elements and
r the rank of the matroid. An O(log r)-approximation for the RO-AA-MN model
was given in [3]. It was also conjectured that a constant-factor approximation
should exist for this problem and this question is still open. Constant-factor
approximations were given in [3] for some special cases such as partition matroids
and graphic matroids with a given explicit representation. Further, constant-
factor approximations were given for transversal matroids [7,19] and laminar
matroids [16]. However, even for graphic matroids in the RO-AA-MK model
when the graphic matroid is given by an oracle, no constant factor is known.

Babaioff et al. in [3] also posed as an open problem whether there is a
constant-factor approximation algorithm for the following two models: Assume
that a set of n numerical values are assigned to the matroid elements using a
random one-to-one correspondence but that the elements are presented in an ad-
versarial order (AO-RA in our notation). Or, assume that both the assignment
of values and the ordering of the elements in the input are random (RO-RA
in our notation). The issue of whether the matroid is known beforehand is left
somewhat ambiguous in [3].

In a recent work [20], José Soto partially answered the second question, by
designing a constant-factor approximation algorithm in the RO-RA-MK model:
An adversary chooses a list of non-negative weights, which are then assigned to
the elements using a random permutation, which is independent of the random
order at which the elements are revealed. The matroid is known in advance here.



1.2 Our results

Matroid secretary. We resolve the question from [3] concerning adversarial or-
der and random assignment, by providing a constant-factor approximation algo-
rithm in the AO-RA-MK model, and showing that no constant-factor approxi-
mation exists in the AO-RA-MN model. More precisely, we prove that there is
a 40/(1 —1/e)-approximation in the AO-RA-MK model, i.e. in the model where
weights are assigned to the elements of a matroid randomly, the elements arrive
in an adversarial order, and the matroid is known in advance. We provide a
simple thresholding algorithm, which gives a constant-factor approximation for
the AO-RA-MK model when the matroid M is uniformly dense. Then we use
the principal sequence of a matroid to design a constant-factor approximation
for any matroid using the machinery developed by Soto [20].

On the other hand, if the matroid is not known in advance (AO-RA-MN
model), we prove that the problem cannot be approximated better than within
2(logn/loglogn). This holds even in the special case of rank 1 matroids; see be-
low. On the positive side, we show an O(log r log n)-approximation for this model.
We achieve this by providing an O(log r)-approximation thresholding algorithm
for the AO-AA-MU model (when both the input ordering and the assignment of
weights to the elements the matroid are adversarial), when an estimate on the
weight of the largest non-loop element is given. Here, the novel technique is to
employ a dynamic threshold depending on the rank of the elements seen so far.

Classical secretary with unknown n. A very natural question that arises in this
context is the following. Consider the classical secretary problem, where we want
to select 1 candidate out of n. The classical solution relies on the fact that n is
known in advance. However, what if we do not know n in advance, which would
be the case in many practical situations? We show that if an upper bound N on
the possible number of candidates n is given (RA-CN model: i.e., n is chosen by
an adversary from {1,..., N}), the best candidate can be found with probability
1/(Hn—1+1), while there is no algorithm which achieves probability better than
1/Hn (where Hy = Efvzl 1 is the N-th harmonic number).

In the model where we maximize the expected value of the selected candi-
date, and n is chosen adversarially from {1,..., N}, we prove we cannot achieve
approximation better than {2(log N/loglog N). On the positive side, even if no
upper bound on n is given, the maximum-weight element can be found with prob-
ability €/log' " n for any fixed e > 0. We remark that similar results follow from
[15] and [9] where an equivalent problem was considered in the context of online
auctions. More generally, for the matroid secretary problem where no informa-
tion at all is given in advance (RO-AA-MU), we achieve an O(%logrlog' ™ n)
approximation for any € > 0. See Table 1 for an overview of our results.

Organization. In section 2 we provide a 40/(1 — 1/e) approximation algorithm
for the AO-RA-MK model. In section 3 we provide an O(lognlogr) approxima-
tion algorithm for the AO-RA-MN model, and an O(% log rlog' ™ n) approxima-
tion for the RO-AA-MU model. Finally, in section 4 we provide a (Hy_1 + 1)-
approximation and Hy-hardness for the RA-CN model.



|| Problem ||New approximation| New hardness ||
RA-CN Hy_1+1 Hy
RA-CU O(Zlog' " n) 2(logn)

AO-RA-MK 40/(1 —1/e) -

AO-RA-MN O(logrlogn) 2(logn/loglogn)

AO-RA-MU|[ O(Llogrlog'“ n) |R2(logn/loglogn)

RO-AA-MU|[ O(Llogrlog'“n) [R2(logn/loglogn)

Table 1. Summary of results

2 Approximation for adversarial order and random
assignment

In this section, we derive a constant-factor approximation algorithm for the AO-
RA-MK model, i.e. assuming that the ordering of the elements of the matroid is
adversarial but weights are assigned to the elements by a random permutation,
and the matroid is known in advance. We build on Soto’s algorithm [20], in par-
ticular on his use of the principal sequence of a matroid which effectively reduces
the problem to the case of a uniformly-dense matroid while losing only a con-
stant factor (1 — 1/e). Interestingly, his reduction only requires the randomness
in the assignment of weights to the elements but not a random ordering of the
matroid on the input. Due to limited space here we do not include the details of
the reduction, and we defer it to the full version of the paper.

Recall that the density of a set in a matroid M = (E,Z) is the quantity

~v(S) = #ﬂ(s) A matroid is uniformly dense, if v(S) < y(F) for all S C E. We
present a simple thresholding algorithm which works in the AO-RA-MK model
(i.e. even for an adversarial ordering of the elements) for any uniformly dense
matroid.

Throughout this section we use the following notation. Let M = (E,I) be a
uniformly dense matroid of rank 7. This also means that M contains no loops.
Let |E| = n and let eq,ea,...,¢, denote the ordering of the elements on the
input, which is chosen by an adversary (i.e. we consider the worst case). Fur-
thermore, the adversary also chooses W = {wy > wy > ... > wy,}, a set of non-
negative weights. The weights are assigned to the elements of M via a random bi-
jection w : E' — W. For a weight assignment w, we denote by w(S) = .qw(e)
the weight of a set S, and by w(S) = {w(e) : e € S} the set of weights assigned
to S. We also let OPT(w) be the maximum-weight independent set in M.

Recall that r denotes the rank of the matroid. We show that there is a simple
thresholding algorithm which includes each of the topmost |r/4] weights (i.e.
wy, ..., Wy/4)) With a constant probability. This will give us a constant factor
approximation algorithm, as w(OPT(w)) < YI_, w;, where wy > wy > ... > w,
are the r largest weights in W. It is actually important that we compare our
algorithm to the quantity >.._, w;, because this is needed in the reduction to
the uniformly dense case.



The main idea is that the randomization of the weight assignment makes it
very likely that the optimum solution contains many of the top weights in W.
Therefore, instead of trying to compute the optimal solution with respect to w,
we can just focus on catching a constant fraction of the top weights in W. Let
A = {e1,...,en/2} denote the first half of the input and B = {e,/241,...,€n}
the second half of the input. Note that the partition into A and B is determined
by the adversary and not random. Our solution is to use the |r/4]+1-st topmost
weight in the ”sampling stage” A as a threshold and then include every element
in B that is above the threshold and independent of the previously selected
elements. Details are described in Algorithm 1.

Algorithm 1 Thresholding algorithm for uniformly dense matroids in AO-RA-
MK model
Input: A uniformly dense matroid M = (E,Z) of rank 7.
Output: An independent set ALG C E.
1: if » < 12 then
2:  run the optimal algorithm for the classical secretary problem, and return the
resulting singleton.

3: end if
4: ALG « 0
5: Observe a half of the input (elements of A) and let w* be the (|r/4] 4+ 1)** largest
weight among them.
for each element e € B arriving afterwards do

if w(e) > w* and ALG U {e} is independent then

ALG « ALG U {e}

end if
: end for
: return ALG
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Theorem 2.1. Let M be a uniformly dense matroid of rank r, and ALG(w)
be the set returned by Algorithm 1 when the weights are defined by a uniformly
random bijection w : E— W. Then

1 T
E, [w(ALG(w))] > 0 ;wi

where {wy > we > ... > w,} are the r largest weights in W.

If r < 12, the algorithm finds and returns the largest weight wy with prob-
ability 1/e (step 2; the optimal algorithm for the classical secretary problem).
Therefore, for r < 12, we have E,, [w(ALG(w))] > 1= Yi_  w; > 45 >0 w;.

For r > 12, we prove that each of the topmost |r/4] weights will be included

in ALG(w) with probability at least 1/8. Hence, we will obtain

L /Al L
E, [w(ALG(w))] > ¢ ; wi > 5 ;w (1)



Let t = 2[r/4] + 2. Define C'(w) = {e; : w(ej) > wi} to be the set of
elements of M which get one of the top ¢ weights. Also let A’ (w) = C'(w) N A
and B'(w) = C'(w) N B. Moreover, for each 1 < i <t we define C}(w) = {e; :
w(e;) > wy & wle;) # w;i}, Ab(w) = Cl(w) N A and Bj(w) = C{(w) N B, i.e. the
same sets with the element of weight w; removed.

First, we fix ¢ < |r/4] and argue that the size of Bl(w) is smaller than
Al(w) with probability 1/2. Then we will use the uniformly dense property of
M to show that the span of B}(w) is also quite small with probability 1/2 and
consequently w; has a good chance of being included in ALG(w).

Claim 2.2 Let M be a uniformly dense matroid of rank r, t = 2|r/4| + 2,
1<i<|r/4], and Bi(w) defined as above. Then we have

P, [|IBi(w)| < [r/4]] = 1/2. (2)

Proof. Consider C}(w), the set of elements receiving the top t weights except for
wj. This is a uniformly random set of odd size t — 1 = 2|r/4]| + 1. By symmetry,
with probability exactly 1/2, a majority of these elements are in A, and hence
at most |r/4] of these elements are in B, i.e. |Bj(w)| < |r/4]. O

Now we consider the element receiving weight w;. We claim that this element
will be included in ALG(w) with a constant probability.

Claim 2.3 Let M be a uniformly dense matroid of rank r, and i < |r/4]. Then
P, [w™(w;) € ALG(w)] > 1/8.

Proof. Condition on C}(w) = S for some particular set S of size t — 1 such that
|Bi(w)| = |SNB| < [r/4]. This fixes the assignment of the top ¢ weights except
for w;. Under this conditioning, weight w; is still assigned uniformly to one of
the remaining n — t + 1 elements.

Since we have |AL(w)] = |S N A| > |r/4] + 1, the threshold w* in this case
is one of the top t weights and the algorithm will never include any weight
outside of the top t. Therefore, we have ALG(w) C B'(w). The weight w; is
certainly above w* because it is one of the top |r/4]| weights. It will be added to
ALG(w) whenever it appears in B and it is not in the span of previously selected
elements. Since all the previously included elements must be in Bl(w) = SN B,
it is sufficient to avoid being in the span of S N B. To summarize, we have

wHw;) € B\ span(S N B) = w™(w;) € ALG(w).

What is the probability that this happens? Similar to the proof of [20, Lemma
3.1], since M is uniformly dense, we have

|span(S N B)] - |span(S N B)]
|S N B ~ rank(span(S N B))

<= [span(S N B)| < E|SﬁB| S%
r r



using |SN B| < |r/4]. Therefore, there are at least n/4 elements in B\ span(SN
B). Given that the weight w; is assigned uniformly at random among n — ¢
possible elements, we get

P [ () € B\ span($ 1 B) | Cl(w) =] 2 L > 1

Since this holds for any S such that |[SNB| < |r/4], and SNB = C!NB = Bl(w),
it also holds that

P, [w™ (wi) € B\ span(Bj(w)) | [Bj(w)| < [r/4]] >

FNg.

Using Claim 2.2, we get P, [w™(w;) € B\ span(Bj(w))] > 1/8. O

This finishes the proof of Theorem 2.1.
Combining our algorithm with Soto’s reduction [20, Lemma 4.4], we obtain
a constant-factor approximation algorithm for the matroid secretary problem in

AO-RA-MK model.
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Corollary 2.4. There erists a =i/

MK model.

approximation algorithm in the AO-RA-

3 Approximation algorithms for unknown matroids

In this section we will be focusing mainly on the AO-RA-MN model. i.e. assum-
ing that the ordering of the elements of the matroid is adversarial, weights are
assigned randomly, but the matroid is unknown, and the algorithm only knows
n in advance. We present an O(lognlogr) approximation algorithm for the AO-
RA-MN model, where n is the number of elements in the ground set and r is the
rank of the matroid. At the end of this section we also give a general framework
that can turn any « approximation algorithm for the RO-AA-MN model, (i.e.
the primary variant of the matroid secretary problem) into an O(alog'™“n/e)
approximation algorithm in the RO-AA-MU model.

It is worth noting that in these models the adversary may set some of the
elements of the matroid to be loops, and the algorithm does not know the number
of loops in advance. For example it might be the case that after observing the
first 10 elements, the rest are all loops and thus the algorithm should select at
least one of the first 10 elements with some non-zero probability. This is the idea
of the counterexample in section 4 (Corollary 4.4), where we reduce AO-RA-MN,
AO-RA-MU models to RA-CN, RA-CU models respectively, and thus we show
that there is no constant-factor approximation for either of the models. In fact,
no algorithm can do better than (2(logn/loglogn). Therefore our algorithms
are tight within a factor of O(logrloglogn) or O(logrlog n).

We use the same notation as section 2: M = (E,I) is a matroid of rank r
(which is not known to the algorithm), and ey, es,..., e, is the the adversarial
ordering of the elements of M, and W = {w; > wy > ... > w,} is the set of



hidden weights chosen by the adversary that are assigned to the elements of M
via a random bijection w : £ — W.

We start by designing an algorithm for AO-RA-MN model. Our algorithm
basically tries to ignore the the loops and only focuses on the non-loop elements.
We design our algorithm in two phases. In the first phase we design a randomized
algorithm that works even in the AO-AA-MU model assuming that it has a
good estimate on the weight of the largest non-loop element. In particular, fix
bijection w : W — E, and let e] be the largest non-loop element with respect
w, e5 be the second largest one. We assume that the algorithm knows a bound
w(ey) < L < w(e}) on the largest non-loop element in advance. We show there is
a thresholding algorithm, with a non-fized threshold, that achieves an O(logr)
fraction of the optimum.

Algorithm 2 for AO-AA-MU model with an estimate of the largest non-loop element

Input: The bound L such that w(e3) < L < w(ey).
Output: An independent set ALG C E.

1: with probability 1/2, pick a non-loop element with weight above L and return it.
2: ALG < 0 and r* < 2; set threshold w™ <« L/2.
3: for each arriving element e; do
4:  if w(e;) > w* and ALG U {e;} is independent then
5: ALG + ALG U {e;}
6: end if
7. if rank({e1,...,ei}) > r* then
8: with probability log# set w* < L/2r".
9: ¥ 2r7.
10:  end if
11: end for

12: return ALG

Theorem 3.1. For any matroid M = (E,I) of rank r, and any bijection
w: E — W, given the bound w(e3) < L < w(e}), Algorithm 2 is a 16logr
approximation in the AO-AA-MU model. i.e.

E [w(ALG(w))] >

~ 16 logrw(OPT(w))7

where the expectation is over all of the randomization in the algorithm.

In order to solve the original problem, in the second phase we divide the
non-loop elements into a set of blocks By, By, ..., Biogn, and we use the previous
algorithm as a module to get an O(logr) of optimum within each block.

Theorem 3.2. For any matroid M = (E,ZI) of rank r, there is a polynomial
time algorithm with an approximation factor O(logrlogn) in the AO-RA-MN
model.



Finally, we show how we can use essentially the same technique (decomposing
the input into blocks of exponential size) to obtain an algorithm for AO-RA-MU
model:

Theorem 3.3. Let M be a matroid of rank r on n elements. If there is an «
approzimation algorithm for the matroid secretary problem on M in the RO-AA-
MN model, then for any fized € > 0, there is also an O( log' ™ n)-approzimation
for the matroid secretary problem on M with no information given in advance

(i.e., the RO-AA-MU model).

Due to limited space all of the proofs of this section is deferred to the full
version of the paper.

4 Classical secretary with unknown n

In this section, we consider a variant of the classical secretary problem where
we want to select exactly one element (i.e. in matroid language, we consider a
uniform matroid of rank 1). However, here we assume that the total number of
elements n (which is crucial in the classical 1/e-competitive algorithm) is not
known in advance - it is chosen by an adversary who can effectively terminate
the input at any point.

First, let us consider the following scenario: an upper bound N is given
such that the actual number of elements on the input is guaranteed to be n €
{1,2,..., N}. The adversary can choose any n in this range and we do not learn
n until we process the n-th element. (E.g., we are interviewing candidates for a
position and we know that the total number of candidates is certainly not going
to be more than 1000. However, we might run out of candidates at any point.)
The goal is the select the highest-ranking element with a certain probability.
Assuming the comparison model (i.e., where only the relative ranks of elements
are known to the algorithm), we show that there is no algorithm achieving a
constant probability of success in this case.

Theorem 4.1. Given that the number of elements is chosen by an adversary in
{1,...,N} and N is given in advance, there is a randomized algorithm which
selects the best element out of the first n with probability at least 1/(Hn—1 +1).

On the other hand, there is mo algorithm in this setting which returns the
best element with probability more than 1/Hy. Here, Hy =Y 1", % is the N-th
harmonic number.

Due to limited space, we just sketch the main ideas of the proof. Our proof is
based on the method of Buchbinder et al. [6] which bounds the optimal achievable
probability by a linear program. In fact the optimum of the linear program is
ezactly the optimal probability that can be achieved.

Lemma 4.2. Given the classical secretary problem where the number of ele-
ments is chosen by an adversary from {1,2,..., N} and N is known in advance,



the best possible probability with which an algorithm can find the optimal element
is given by

max o
vn < N; LS ip >, (3)
Vi < N3 YT py +ip < 1, (4)
Vi < N; pi > 0.

The only difference between this LP and the one in [6] is that we have mul-
tiple constraints (3) instead of what is the objective function in [6]. We use
essentially the same proof to argue that this LP captures ezxactly the optimal
probability of success « that an algorithm can achieve. For a given N, an al-
gorithm can explicitly solve the LP given by Lemma 4.2 and thus achieve the
optimal probability. Theorem 4.1 can be proved by estimating the value of this
LP.

A slightly different model arises when elements arrive with (random) weights
and we want to maximize the expected weight of the selected element. This
model is somewhat easier for an algorithm; any algorithm that selects the best
element with probability at least « certainly achieves an a-approximation in this
model, but not the other way around. Given an upper bound N on the number of
elements (and under a more stringent assumption that weights are chosen 1i.i.d.
from a known distribution), by a careful choice of a probability distribution for
the weights, we prove that still no algorithm can achieve an approximation factor
better than an 2(log N/ loglog N)-approximation.

Theorem 4.3. For the classical secretary problem with random nonnegative
weights drawn i.i.d. from a known distribution and the number of candidates

chosen adversarially in the range {1,...,N}, no algorithm achieves a better
than %—appmximation i expectation.

The hard examples are constructed based on a particular exponentially dis-
tributed probability distribution. Similar constructions have been used in re-
lated contexts [15,9]. The proof is deferred to the full version of the paper.
Consequently, we obtain that no algorithm can achieve an approximation factor
better than 2(log N/loglog N) in the AO-RA-MN model.

Corollary 4.4. For the matroid secretary problem in the AO-RA-MN (and AO-
RA-MU, RO-AA-MU) models, no algorithm can achieve a better than £2( log’iZgVN)-
approximation in expectation.
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