Skip to main content

Scope-Based Route Planning

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6942))

Abstract

A new approach to the static route planning problem, based on a multi-staging concept and a scope notion, is presented. The main goal (besides implied efficiency of planning) of our approach is to address—with a solid theoretical foundation—the following two practically motivated aspects: a route comfort and a very limited storage space of a small navigation device, which both do not seem to be among the chief objectives of many other studies. We show how our novel idea can tackle both these seemingly unrelated aspects at once, and may also contribute to other established route planning approaches with which ours can be naturally combined. We provide a theoretical proof that our approach efficiently computes exact optimal routes within this concept, as well as we demonstrate with experimental results on publicly available road networks of the US the good practical performance of the solution.

This research has been supported by the Czech Science Foundation, grants P202/11/0196 and Eurocores GIG/11/E023.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: A hub-based labeling algorithm for shortest paths in road networks. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 230–241. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Abraham, I., Fiat, A., Goldberg, A.V., Werneck, R.F.: Highway dimension, shortest paths, and provably efficient algorithms. In: SODA 2010: Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 782–793 (2010)

    Google Scholar 

  3. Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In transit to constant shortest-path queries in road networks. In: ALENEX 2007: Proceedings of the 9th Workshop on Algorithm Engineering and Experiments, pp. 46–59 (2007)

    Google Scholar 

  4. Bauer, R., Delling, D.: SHARC: Fast and robust unidirectional routing. J. Exp. Algorithmics 14(4), 2.4–4:2.29 (2010)

    Google Scholar 

  5. Brunel, E., Delling, D., Gemsa, A., Wagner, D.: Space-efficient SHARC-routing. In: SEA 2010: Proceedings of the 9th International Symposium on Experimental Algorithms, pp. 47–58 (2010)

    Google Scholar 

  6. Cherkassky, B., Goldberg, A.V., Radzik, T.: Shortest paths algorithms: Theory and experimental evaluation. Mathematical Programming 73(2), 129–174 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering route planning algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large and Complex Networks. LNCS, vol. 5515, pp. 117–139. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Delling, D., Wagner, D.: Time-dependent route planning. In: Ahuja, R.K., Möhring, R.H., Zaroliagis, C.D. (eds.) Robust and Online Large-Scale Optimization. LNCS, vol. 5868, pp. 207–230. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Dijkstra, E.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  10. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hierarchies: Faster and simpler hierarchical routing in road networks. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Goldberg, A.V., Harrelson, C.: Computing the shortest path: A* search meets graph theory. In: SODA 2005: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 156–165 (2005)

    Google Scholar 

  12. Goldberg, A.V., Kaplan, H., Werneck, R.F.: Reach for A*: Efficient point-to-point shortest path algorithms. Technical report, Microsoft Research (2005)

    Google Scholar 

  13. Goldberg, A.V., Kaplan, H., Werneck, R.F.: Better landmarks within reach. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 38–51. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Goldberg, A.V., Werneck, R.F.: Computing point-to-point shortest paths from external memory. In: ALENEX/ANALCO 2005: Proceedings of the 7th Workshop on Algorithm Engineering and Experiments and the 2nd Workshop on Analytic Algorithmics and Combinatorics, pp. 26–40 (2005)

    Google Scholar 

  15. Gutman, R.: Reach-based routing: A new approach to shortest path algorithms optimized for road networks. In: ALENEX 2004: Proceedings of the 6th Workshop on Algorithm Engineering and Experiments, pp. 100–111 (2004)

    Google Scholar 

  16. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics SSC4 4(2), 100–107 (1968)

    Article  Google Scholar 

  17. Hliněný, P., Moriš, O.: Generalized maneuvers in route planning. ArXiv e-prints, arXiv:1107.0798 (July 2011)

    Google Scholar 

  18. Hliněný, P., Moriš, O.: Multi-Stage Improved Route Planning Approach: theoretical foundations. ArXiv e-prints, arXiv:1101.3182 (January 2011)

    Google Scholar 

  19. Maue, J., Sanders, P., Matijevic, D.: Goal-directed shortest-path queries using precomputed cluster distances. J. Exp. Algorithmics 14, 3.2–3.27 (2009)

    Google Scholar 

  20. Murdock, S.H.: 2009 TIGER/Line Shapefiles. Technical Documentation published by U.S. Census Bureau (2009)

    Google Scholar 

  21. Pohl, I.S.: Bi-directional and heuristic search in path problems. PhD thesis, Stanford University, Stanford, CA, USA (1969)

    Google Scholar 

  22. Sanders, P., Schultes, D.: Engineering highway hierarchies. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 804–816. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  23. Sanders, P., Schultes, D., Vetter, C.: Mobile route planning. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 732–743. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  24. Schultes, D.: Route Planning in Road Networks. PhD thesis, Karlsruhe University, Karlsruhe, Germany (2008)

    Google Scholar 

  25. Schultes, D., Sanders, P.: Dynamic highway-node routing. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 66–79. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hliněný, P., Moriš, O. (2011). Scope-Based Route Planning. In: Demetrescu, C., Halldórsson, M.M. (eds) Algorithms – ESA 2011. ESA 2011. Lecture Notes in Computer Science, vol 6942. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23719-5_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23719-5_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23718-8

  • Online ISBN: 978-3-642-23719-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics