
The Union of Probabilistic Boxes:
Maintaining the Volume

Hakan Yıldız1, Luca Foschini1, John Hershberger2, and Subhash Suri1

1 University of California, Santa Barbara, USA
2 Mentor Graphics Corporation, Wilsonville, Oregon, USA

Abstract. Suppose we have a set of n axis-aligned rectangular boxes in
d-space, {B1, B2, . . . , Bn}, where each box Bi is active (or present) with
an independent probability pi. We wish to compute the expected volume
occupied by the union of all the active boxes. Our main result is a data
structure for maintaining the expected volume over a dynamic family of
such probabilistic boxes at an amortized cost of O(n(d−1)/2 logn) time
per insert or delete. The core problem turns out to be one-dimensional:
we present a new data structure called an anonymous segment tree, which
allows us to compute the expected length covered by a set of probabilistic
segments in logarithmic time per update. Building on this foundation,
we then generalize the problem to d dimensions by combining it with
the ideas of Overmars and Yap [13]. Surprisingly, while the expected
value of the volume can be efficiently maintained, we show that the tail
bounds, or the probability distribution, of the volume are intractable—
specifically, it is NP-hard to compute the probability that the volume of
the union exceeds a given value V even when the dimension is d = 1.

1 Introduction

We consider the problem of estimating the volume covered by a set of overlapping
boxes in d-space when the existence of each box is known only with partial
certainty. Specifically, we are given a set of n axis-aligned boxes, in which the
ith box is known to be present only with probability pi. (The probabilities of
different boxes are independent of each other.) This is a probabilistic version of
the classical Klee’s Measure problem [11]. Besides being a fundamental problem
in its own right, it is also a natural framework to model risk and uncertainty
in geometric settings. In order to motivate the problem, consider the following
scenario.

Suppose that a tract of land has a variety of health hazards, occurring in
possibly overlapping regions. The virulence of each hazard is expressed as a sur-
vival rate, i.e., the probability that an entity survives after being exposed to the
hazard. Assuming independence of the hazards, the probability of survival at a
point is the product of the survival probabilities for the different hazards affect-
ing the point. The average survival rate within the whole tract is the integral
of the survival probabilities of all points in the tract divided by the area the
tract. It is easy to see that the integral of concern equals the expected area of

2 The Union of Probabilistic Boxes

covered by the hazardous regions, if we treat the survival rates as the probability
of absence for each region.

Let us now introduce the problem more formally. A d-dimensional rectangular
box B, which we call a d-box for convenience, is the Cartesian product of d one-
dimensional ranges, namely, B = Πd

i=1[ai, bi]. The volume of a box B is defined
as vol(B) = Πd

i=1|bi− ai|. Given a set B of d-boxes {B1, B2, . . . , Bn}, its union⋃
Bi is the set of points contained in at least one box of B. In our problem, each

box Bi is assumed to be present (or active) with an independent probability pi,
and absent otherwise. We wish to compute the expected value of the total volume
occupied by such a collection of boxes. More generally, we may wish to compute
the probability distribution of the volume—for each value V , the probability
that the volume of the union is V . In fact, we wish to maintain a collection
of such probabilistic boxes so that their volume statistics (expectation or tail
bounds) are easily updated as boxes (along with their activation probabilities)
are inserted or deleted.

Our problem is a probabilistic and dynamic version of Klee’s measure prob-
lem, which has a long history in computational geometry [3, 7, 11–13]. The fastest
algorithm currently known for Klee’s problem is due to Chan [7], with worst-case
time O(nd/22O(log? n)). Despite a long and distinguished history, the computa-
tional complexity of the problem has remained largely unresolved for d ≥ 3
since the breakthrough result of Overmars and Yap [13], with time complexity
O(nd/2 log n). Most of the work in the past several years has focused on the
conceptually easier case of the union of cubes [1, 2] or fat boxes [5].

Our main result is a data structure for maintaining the expected volume
over a dynamic set of probabilistic boxes in amortized time O(n(d−1)/2 log n)
per insert or delete. (Any major improvment in this update complexity will
imply a breakthrough on Klee’s measure problem because the d-dimensional
Klee’s problem can be solved by maintaining a (d− 1)-dimensional volume over
n insertions and deletions [7, 13].) The core problem in computing the volume of
probabilistic boxes arises already in one dimension, and leads us to a new data
structure called an anonymous segment tree. This structure allows us to compute
the expected length covered by a set of probabilistic segments in logarithmic time
per update. Building on this foundation, we then generalize the problem to d
dimensions by combining it with the ideas of Overmars and Yap [13]. (The issues
underlying this extension are mostly technical, albeit somewhat non-trivial, since
the Overmars-Yap scheme uses a space-sweep that requires a priori knowledge
of the box coordinates, while we assume a fully dynamic setting with no prior
knowledge of future boxes.)

Surprisingly, while the expected value of the volume can be efficiently main-
tained, we show that computing the tail bounds, or the probability distribution,
of the volume is intractable—specifically, it is NP -hard to compute the prob-
ability that the volume of the union exceeds a given value V even when the
dimension is d = 1.

Finally, in order to evaluate the practical usefulness of our, and Overmars-
Yap’s, scheme in geospatial databases, we implemented the scheme. The results

The Union of Probabilistic Boxes 3

confirm our theoretical bounds in practice and we show that our solution easily
outperforms a näıve solution.

2 Probabilistic Volume: Expectation and Tail Bounds

If algorithmic efficiency were not the main concern, then the expected volume of
the union of n boxes would be easy to compute in polynomial time. A set of n
boxes in d-space is defined by O(dn) facets, and the hyperplanes determined by
those facets partition the space into O(nd) rectangular cells, with each cell fully
contained in all the boxes that intersect it. For each cell, compute the probability
that at least one of its covering boxes is active. By the linearity of expectation,
the expected volume is simply the sum of the volumes of these cells weighted
by their probability of being covered. This näıve algorithm runs in O(nd+1)
time, which is polynomial in n for fixed dimension. In Section 4, we present our
main result: how to maintain the expected volume much more efficiently under
dynamic updates.

On the other hand, we argue below that computing the probability distribu-
tion (i.e., the tail bounds) is intractable. In particular, even in one dimension,
computing the probability that the union of n probabilistic line segments has
volume (length) at least V is NP -hard. The following theorem shows that it is
hard to compute the probability that the union has length precisely L for some
integer L—since we use only integer-valued lengths, computing the tail bound
is at least as hard (the probability of length exactly L can be determined from
those of lengths at least L and at least L+ 1.)

Theorem 1. Given n disjoint line segments on the integer line, where the ith
segment is active with probability pi, it is NP-hard to compute the probability
that the union of the active segments has length L.

Proof. We show a reduction from the well-known NP -complete problem subset-
sum [9]. The subset-sum problem takes as input a set of positive integers A =
{a1, . . . , an}, a target integer L, and asks if there is an index subset I ⊆ {1, . . . , n}
whose elements sum to the target value L, that is,

∑
i∈I ai = L. Given an in-

stance of the subset-sum problem (A,L), we create a set of probabilistic segments
{s1, s2, . . . , sn}, as follows. The segment si begins at point

∑
j<i aj and has

length ai. Each of the n segments occurs with probability pi = 1/2. We observe
that because of the uniform probability, each of the 2n subsets of {s1, s2, . . . , sn}
is equally likely, each occurring with probability 2−n.

Since the segments s1, . . . , sn are disjoint, for any index subset I ⊆ {1, . . . , n},
the union of the segments {si|i ∈ I} has length precisely

∑
i∈I ai. Thus, I is a

solution to the subset sum problem (A,L) if and only if the union of the segments
indexed by I has length L. However, the probability that the union of the active
segments has length L is precisely equal to the number of index subsets that
are valid solutions of the subset sum problem divided by 2n. Thus, given the
probability that the union of the active segments is L, we can deduce whether
the subset sum problem has a solution. This completes the proof.

4 The Union of Probabilistic Boxes

3 Maintaining the Expected Measure in 1D

We begin by describing our data structure in one dimension, and then show
how to embed it in an appropriately generalized version of the Overmars-Yap
structure for the d-dimensional problem. We describe the data structure, called
the anonymous segment tree, first without the probabilities, focusing on its form
and updates, and then present an abstraction that retains all the key elements
and yet accommodates probabilistic segments.

3.1 Anonymous Segment Tree

Let S be a dynamic set of n line segments on the number line that undergoes
insertions and deletions. Our goal is to maintain the length covered by the union
of the segments in S. We simply call this length the measure of S. The segments
in S split the number line into at most (2n+1) disjoint intervals, called primitive
intervals. We maintain a balanced binary tree whose keys are the coordinates of
the segment endpoints, and whose leaves correspond to the primitive intervals.
Each internal node represents the union of all its leaf descendants’ intervals. (See
Figure 1(a).)

Consider a leaf v and its associated primitive interval I = (x1, x2). Let SI ⊂ S
be the subset of segments that cover I, and define the coverage count of v,
denoted cover(v), as |SI |. The measure of v, denoted µ(v), is clearly zero if
cover(v) = 0 and x2 − x1 otherwise. The measure of S is the sum of µ(v) over
all leaves v. The coverage count is an inefficient mechanism for maintaining the
measure when segments are inserted or deleted, so we use a secondary quantity,
called ccover(v). (The name ccover derives from complete coverage count.) The
ccover values satisfy the two invariants described below.

Sum Invariant: For any leaf v, cover(v) is the sum of ccover(a) over
all ancestors a of v (including v itself).

A trivial way to achieve the invariant is to set ccover(v) = cover(v) for each
leaf v and ccover(u) = 0 for each non-leaf node u. But, as we show below,
ccover() allows us to support maintenance of the measure through its flexibility.
We use ccover() values to maintain the measure as follows, where L(v) is the
length of v’s interval.

µ(v) =


L(v) if ccover(v) > 0

0 if ccover(v) = 0 ∧ v is a leaf

µ(vl) + µ(vr) if ccover(v) = 0 ∧ v has children vl, vr

(1)

The following lemma is easily established.

Lemma 1. Let a node v be called exposed if ccover(a) = 0 for all ancestors
a of v (excluding v). Then for any exposed node v, µ(v) is the measure of S
restricted to v’s interval. In particular, µ(root) is the measure of S.

The Union of Probabilistic Boxes 5

Pushup Invariant: For each non-leaf node v with children vl and vr,
at least one of ccover(vl) and ccover(vr) is zero.

We achieve this invariant by applying the following push-up operation at
each internal node: Let vl and vr be children of v. Decrement ccover(vl) and
ccover(vr) by min(ccover(vl), ccover(vr)) and increment ccover(v) by the same
amount. (See Figure 1(b).) This operation propagates the values of ccover() up
the tree as much as possible, which in turn allows us to update the µ() values
efficiently.1

S1 S2S3

2

cl cr

cf
cl · cr

cl cr { cl0

cf + cl

(a) (b)

1

2

1

S4

Fig. 1. (a) An anonymous segment tree, positive ccover values are shown. (b) the
pushup operation, ci’s stand for ccover values.

We can maintain the sum and the pushup invariants as segments are inserted
or deleted by modifying O(log n) values in the tree. We briefly outline how this
is achieved, omitting standard but technical details. A segment s corresponds
to a set of O(log n) nodes in the tree called canonical nodes whose intervals are
disjoint but their concatenation equals s. An insertion (deletion) is handled by
incrementing (decrementing) the ccover() values of the canonical nodes, main-
taining the sum invariant and, thus, the correct µ values in the tree. Due to
the changes in primitive intervals, the tree may undergo rebalancing rotations,
in which case we temporarily push the ccover() down below the rotating nodes
to preserve the sum invariant. Afterwards, we apply the necessary push-ups to
restore the pushup invariant. We note that pushing up the ccover() values is nec-
essary otherwise deletions in the tree become inefficient. The push-up invariant
guarantees that no ccover() value drops below zero after a deletion.

Lemma 2. We can maintain the measure of a dynamic set of n segments in
O(log n) time for insert or delete operations, and O(1) time for measure query.

We next show how to generalize the anonymous segment tree to deal with
probabilistic segments. Towards that goal, we introduce an abstract framework
that includes the measure of probabilistic segments as a special case.

1 The ability to move ccover() values between nodes is the inspiration for the name
anonymous segment tree: the coverage representation for a node is independent of the
covering segments. Coverage of an interval by a single segment is indistinguishable
from coverage by an arbitrary number of consecutive short segments.

6 The Union of Probabilistic Boxes

3.2 An Abstract Anonymous Segment Tree

Let f be a function mapping the segments in S to some range set G, and let
⊕ be a commutative and associative binary operation on G. We consider the
problem of maintaining the following sum for each primitive interval I of the set
S: F (v) =

∑
s∈SI f(s), where v is the leaf associated with I and the summation

uses the ⊕ operation.2

We compute F (v) indirectly by storing a quantity called FF (v) at each node
v of the tree, and maintain the invariant that the sum of FF (a) over all ancestors
a of v equals F (v). We require that ⊕ is invertible, and there is a total order ≤G

on G such that A ≤G B ⇐⇒ A ⊕ C ≤G B ⊕ C. In other words, (G,⊕,≤G)
forms a totally ordered abelian group. Finally, we reduce the range of f() from G
to G+, defined as G+ = {g | g ∈ G ∧ e ≤G g}, where e is the identity element
of ⊕.

The pushup invariant in this abstract setting is that, for each internal node
v with children vl and vr, at least one of FF (vl) and FF (vr) is e and the other
is in G+. Repeated pushup operations in the tree, starting from the leaves,
establish this invariant. In particular, let v be an internal node with children
vl and vr, and without loss of generality assume that FF (vl) ≤G FF (vr). The
push-up operation sets FF (v) = FF (v) ⊕ FF (vl), FF (vl) = e and FF (vr) =

FF (vr) ⊕ FF (vl)
−1

, where −1 denotes the inverse with respect to ⊕. We can
show that the values FF () can be updated in O(log n) time as segments are
inserted and deleted. (The details are technical, but have no bearing on what
follows in the rest of the paper.) We now show below how to use this general
framework for maintaining the measure of probabilistic segments.

3.3 Measure of Probabilistic Segments

For the sake of simplicity, we maintain the complement of the expected mea-
sure: the expected value of the length not covered by any active segment.3 In
order to maintain the measure for probabilistic segments, we apply our abstract
framework twice. First, for each leaf v, we maintain the number of segments that
cover its interval and have probability 1. We denote this by cover(v), and use the
deterministic coverage count algorithm to maintain it. Second, we maintain the
probability that the primitive interval of a leaf v is uncovered by the segments
whose probability is strictly less than 1. (The segments with probability 1 are
handled separately, and more easily.) We denote this quantity by prob(v), and
maintain it using our generalized scheme as follows. We define G as the set of
positive reals, ⊕ as multiplication, ≤G as ≥, and set f(s) to

f(s) =

{
(1− ps) if ps < 1

1 if ps = 1

2 Observe that if G is the set of integers, ⊕ is integer addition, and f(s) = 1 for every
s, then F (v) = cover(v), as in the preceding section.

3 We assume that all segments are contained in a finite, bounded range, ensuring that
the complement is bounded.

The Union of Probabilistic Boxes 7

Observe that F (v) represents prob(v). For ease of reference we denote the FF (v)
values used to maintain prob() by pprob(v). We can define the uncovered measure
of a node v, denoted ν(v), recursively as follows:

ν(v) =


0 if ccover(v) > 0

pprob(v) · L(v) if ccover(v) = 0 ∧ v is a leaf

pprob(v) · (ν(vl) + ν(vr)) if ccover(v) = 0 ∧ v has children vl and vr

(2)

Lemma 3. Let µ̄(v) denote the complement of the expected measure of S re-
stricted to v’s interval, let aprob(v) be the product of pprob(a) over all ancestors a
of v (excluding v), and let a node v be called exposed if ccover(a) = 0 at all strict
ancestors a of v. Then, for any exposed node v, we have µ̄(v) = aprob(v) ·ν(v).

Proof. If an exposed node v has ccover(v) > 0, then µ̄(v) = 0. By the first line
of (2), µ̄(v) equals aprob(v) · ν(v). Now consider an exposed leaf v such that
ccover(v) = 0. Then cover(v) = 0. We write

µ̄(v) = prob(v) · L(v) = aprob(v) · pprob(v) · L(v)

By the second line of (2), this expression equals aprob(v) ·ν(v). Finally, consider
an exposed internal node v such that ccover(v) = 0. Then vl and vr are exposed.
By induction, µ̄(vl) = aprob(vl) · ν(vl) and µ̄(vr) = aprob(vr) · ν(vr). Then

µ̄(v) = µ̄(vl) + µ̄(vr) = aprob(vl) · ν(vl) + aprob(vr) · ν(vr)

= aprob(v) · pprob(v) · (ν(vl) + ν(vr))

By the third line of (2), the expression equals aprob(v) · ν(v).

Lemma 4. ν(root) equals the complement of the expected measure of S.

By Lemma 4, one can report the expected measure of S simply by returning
the complement of ν(root). By maintaining ν() the same way we maintain µ()
in Section 3.1, we end up with a structure that solves the stochastic measure
problem:

Theorem 2. The expected measure of a dynamic set of segments can be main-
tained in O(1) query time, O(log n) insertion/deletion time and O(n) space.

4 Dynamic Probabilistic Volume in d Dimensions

We now show how to maintain the expected volume of the union of a dynamic
set of probabilistic boxes in d-space. We adapt the framework of Overmars and
Yap’s solution to Klee’s problem [13]. The first step is to apply Theorem 2 to
a very special kind of d-dimensional box arrangement called a trellis. A trellis
in d dimensions is a rectangular region R and a collection of boxes B that such
that each box in B forms of an axis-parallel strip inside R. In other words, no
(d−2)-dimensional face (a corner in two dimensions) of a box in B intersects the

8 The Union of Probabilistic Boxes

Mx

My Ly

Lx

Mx

My

Ly

Lx

(a) (b)

Fig. 2. (a) A two-dimensional trellis formed by 5 boxes. (b) The shape with the same
area formed by moving strips.

interior of R. A two-dimensional example is shown in Figure 2(a), where each
box is either a vertical or a horizontal strip.

The volume of a trellis is easy to compute efficiently. First consider the prob-
lem in two dimensions. Suppose the horizontal and vertical side lengths of R are
Lx and Ly, respectively. Let Mx be the length of the portion of the x-interval
of R covered by the vertical strips, and My the length of R’s y-interval covered
by the horizontal strips. Then it is easy to see that the area covered in R is
Lx × Ly − (Lx −Mx)× (Ly −My). (A visual proof is offered in Figure 2(b).)

It follows that computing the area of a trellis reduces to maintaining Mx and
My separately, i.e., to solving two one-dimensional volume problems. In d > 2
dimensions, the volume formula for a trellis generalizes easily to∏

i

Li −
∏
i

(Li −Mi),

where the product index ranges from 1 to d, Li is the side length of R along the
ith axis and Mi is the sublength of Li that is covered by strips orthogonal to
the ith axis [13].

To maintain the expected volume within a trellis for stochastic boxes, we use
the same formula, except that all the variables in the formula are replaced by
their expectations. Specifically, the formula for the d-dimensional case becomes∏

1≤i≤d

Li −
∏

1≤i≤d

(Li − E(Mi))

where E(Mi) is the expected value of Mi. Note that Mi’s are independent. Then,
by linearity and multiplicativity of expectation over independent variables, the
formula correctly represents the expected volume.

It is clear that the expected volume in a trellis can be maintained in loga-
rithmic time per update by using d instances of anonymous segment tree, each
maintaining Mi for 1 ≤ i ≤ d. While several efficient solutions are known for
maintaining the one-dimensional measure of non-probabilistic segments [4, 8, 10],

The Union of Probabilistic Boxes 9

they all seem quite specialized, focusing on a particular application. It is unclear
whether they can be adapted to our probabilistic setting without fairly compli-
cated modifications. The anonymous segment tree, on the other hand, offers a
simple, and general, framework suitable for probabilistic measure maintenance.

The second step is to partition the space hierarchically such that the leaves of
the partition contain trellis structures. The partition proceeds in d steps. Let us
call a face of a box orthogonal to the ith axis an i-face and the hyperplane it sits
on an i-bound. In the first step of the partition, we divide the space into regions
called 1-slabs by cutting it with hyperplanes through every

√
nth 1-bound of the

boxes along the first axis. Consequently, O(
√
n) 1-slabs are formed, each of which

contains O(
√
n) 1-faces. In the second step, each 1-slab is split into 2-slabs by

hyperplanes perpendicular to the second coordinate axis. These hyperplanes are
introduced as follows: A hyperplane is drawn along every

√
nth 2-bound in B.

Additionally, for each box B that has a 1-face inside the 1-slab, two hyperplanes
are drawn along both of its 2-bounds. Consequently, each 1-slab is partitioned
into O(

√
n) 2-slabs, each of which intersects with O(

√
n) 1-faces and 2-faces of

the boxes in B. In the third step, each 2-slab is partitioned into O(
√
n) 3-slabs.

This time, the splitting hyperplanes pass along every
√
nth 3-bound and the

3-bounds of each box that has a 1-face or a 2-face intersecting the inside of the
2-slab. This partitioning strategy is continued until the dth step, in which each
(d− 1)-slab is divided into O(

√
n) cells. The following lemma, whose proof can

be found in [13], summarizes the key properties of this orthogonal partition.

Lemma 5. The orthogonal partition contains O(nd/2) cells such that each box
of B partially covers O(n(d−1)/2) cells, each cell partially intersects O(

√
n) boxes

in B, and the boxes partially overlapping a cell form a trellis.

We can now maintain the uncovered expected volume as follows. For each
cell C, we maintain uncovered volume of the boxes that partially intersects
C restricted to C. By using the trellis structure we have mentioned, this is
doable in logarithmic time per update and constant time per query. Since a
box partially intersects O(n(d−1)/2) cells, we can update all trellis structures in
O(n(d−1)/2 log n) time during a box insertion/deletion.

The cells in a (d−1)-slab form a linear sequence. We can track the boxes that
completely overlap the cells of a (d− 1)-slab using a structure called a slab tree,
which is just an anonymous segment tree with trellises at its leaves. Equation 2
applies at each node of a slab tree, except that if v is a leaf with ccover(v) = 0,
then ν(v) = pprob(v) · νT (v), where νT (v) is the uncovered expected measure
of the trellis stored at v. The uncovered measure of the whole arrangement is
the sum of ν(r) over all the roots r of the (d − 1)-slab trees. Updating a slab
tree with a box takes logarithmic time. Since there are O(n(d−1)/2) (d−1)-slabs,
updating all slab trees takes O(n(d−1)/2 log n) during a box insertion/deletion.
This yields to a total update time of O(n(d−1)/2 log n).

We have a final missing ingredient: a dynamic version of the hierarchical or-
thogonal partition. Recall that Overmars and Yap’s partition is based on making
slab cuts at the

√
nth coordinate in each dimension. We relax this constraint

10 The Union of Probabilistic Boxes

by maintaining the sorted sequence of box coordinates in each dimension and
cutting along a fairly stable—but not static—set of slab boundaries. The slab
boundaries for each dimension partition the corresponding sorted coordinate se-
quence into buckets. We maintain the invariant that each bucket contains at most
2
√
n coordinates, and any two adjacent buckets contain at least

√
n. Whenever

one of these invariants is violated, we split or merge the adjacent buckets as nec-
essary by introducing or removing slab boundaries. This invalidates some trellises
and slab trees; we restore them by rebuilding. By a potential argument, it can be
shown that the amortized cost of all the rebuilding is also O(n(d−1)/2 log n) time
per box insertion/deletion, matching the direct cost of data structure updates.

Theorem 3. The expected volume of a dynamic set of n stochastic boxes in
d-space can be maintained in O(1) query time and O(n(d−1)/2 log n) amortized
time per update, using an O(n(d+1)/2)-space data structure.

5 Discrete Volume

We can also solve the following discrete volume version of the problem. Given
a dynamic set P of points, and a dynamic set B of d-boxes where each point
and box has a probability of being active, maintain the expected number of active
points in P that are contained in the union of the active boxes. The solution idea,
in brief, is to represent the points as tiny boxes of size ε. We use three structures
to maintain the expected volume of the union of: (1) the boxes, (2) the points,
and (3) both the boxes and the points. Then, the inclusion-exclusion principle
can be used to compute the the expected volume of the intersection between
the points and the boxes, which is equal to the expected discrete volume times
ε. This structure achieves an update time of O(n(d−1)/2 log n), where n is the
total number of points and boxes. Note that the algorithm has a few technical
details. First, one needs to represent ε symbolically, so that the algorithm works
correctly regardless of the box sizes. Second, the degenerate cases where the
points lie on the box boundaries should be handled.

6 Experimental Evaluation

We implemented our algorithm in C++ (available at http://www.cs.ucsb.

edu/~foschini/dynOY/). The main goal was to evaluate the memory usage and
the update time behavior of the data structure. Since those parameters are not
affected by the probabilities of the boxes, we performed all our simulations for
the deterministic case, namely, pi = 1.

We tested the algorithm using two-dimensional boxes with 64-bit integer
coordinates. The experiments were performed on an Intel(R) Core(TM)2 Duo
CPU @2.20GHz equipped with 4GB of RAM. To check the correctness of our
implementation on large inputs we constructed the union of boxes explicitly using
the CGAL [6] library primitives Boolean set operations 2. This construction is
fast when the arrangement of boxes is small, but slows down dramatically when

The Union of Probabilistic Boxes 11

2 4 6 8 10 12 14 16
0

2

4

6

n (in thousands)

T
im

e
(m

se
c)

Random
Aspect

Clustered

(a) Runtime vs. input
size

0 2 4 6 8 10
0

2

4

6

8

n (in thousands)

M
em

or
y

(m
il
li
o
n
s

of
ob

je
ct

s) Random
Aspect

Clustered

(b) Memory vs. input
size

101 102 103 104 105 106 107

100

101

Side length of inserted square

T
im

e
(m

se
c)

(c) Runtime vs. insert
size

Fig. 3. Experimental Results

the arrangement size approaches the quadratic worst case. As an example of
this, consider a trellis formed by 50 thin vertical and horizontal boxes. Our
implementation takes 0.05 seconds to compute the measure of the union, by
inserting rectangles one by one, while the CGAL program takes 8.3 seconds.
This conforms with the worst case guarantees provided by our analysis.

Datasets. To test the sensitivity of our algorithm to input distributions,
we used three different input configurations: (1) Random, a set of 15K rectan-
gles randomly generated, with boundary coordinates uniformly distributed in
[−107, 107], (2) Aspect, a set of 15K rectangles with small (< 0.1) aspect ra-
tio and random orientations, with boundary coordinates uniformly distributed
in [−107, 107], and (3) Clustered, a set of 15K rectangles with boundary coor-
dinates clustered in ten groups of bounding box [0, 2 · 106]2 placed along the
diagonal of the [−107, 107]2 box.

Results. For each dataset, we measured the average time to insert a rect-
angle as a function of the number of objects n present in the data structure.
(Deletion time is about 80% of insertion time.) Since the cost of a single update
is predicted to be O(

√
n log n) only in an amortized sense, we report the aver-

age insertion time of the last 1500 rectangles before each tested n. Results are
reported in Figures 3(a) and 3(b). The insertion time is roughly proportional to√
n, highlighting the fact that the amortized worst case bound is a good indica-

tor of the average case behavior. The memory required (plotted as the number
of allocated objects) conforms with the predicted O(n

√
n) worst case bound.

In another experiment we test the sensitivity of the algorithm to the size of
the box inserted. In Figure 3(c) we report the average time needed to insert a
square into a set of 10K random boxes. the inserted square varying from 20 to
2×107 (the size of the full database). The time needed for the insertion increases
by a factor of around ten over the range of insertion sizes. This is expected, since
a larger square intersects more cells.

The main limitation of the data structure seems to be its memory use. The
memory bound of O(

√
n) nodes per box limits the scalability of the algorithm.

Especially, if we consider that each box has four edges each affecting O(
√
n)

trellises and slab trees, it is easy to see how as few as 15K boxes require roughly
1.5GB of memory in our implementation.

12 The Union of Probabilistic Boxes

7 Conclusions

In this paper, we considered the problem of maintaining the volume of the union
of n boxes in d-space when each box is known to exist with an arbitrary, but
independent, probability. We showed that, even in one dimension, computing the
probability distribution, namely the probability that the volume exceeds a given
value, is NP -hard. On the other hand, we showed that the expected volume of
the union can be maintained, nearly as efficiently as in the static and deter-
ministic case. Along the way we introduced a data structure called anomymous
segment tree that may be of independent interest in dealing with dynamic seg-
ment problems with abstract measures. Finally, we also implemented our volume
data structure, and showed experimentally that it performs as predicted by the-
ory, and indeed significantly outperforms a näıve solution. Our simulation results
also highlight the limitation of a Overmars-Yap type approach: the data struc-
ture is memory-intensive, which makes it unsuitable for large data sets. Thus, an
interesting future research question is to explore better space-time tradeoffs that
might yield scalable solutions to our dynamic and stochastic Klee’s problem.

References

1. P. K. Agarwal. An improved algorithm for computing the volume of the union of
cubes. In Proc. of 26th Symp. on Computational Geometry, pages 230–239, 2010.

2. P. K. Agarwal, H. Kaplan, and M. Sharir. Computing the volume of the union of
cubes. In Proc. of 23rd Symp. on Computational Geometry, pages 294–301, 2007.

3. J. L. Bentley. Solutions to Klee’s rectangle problems. Unpublished manuscript,
Dept. of Comp. Sci., CMU, Pittsburgh PA, 1977.

4. G. van den Bergen, A. Kaldewaij, and V. J. Dielissen. Maintenance of the union of
intervals on a line revisited. In Computing Science Reports. Eindhoven University
of Technology, 1998.

5. K. Bringmann. Klee’s measure problem on fat boxes in time O(n(d+2)/3). In Proc.
of 26th Symp. on Computational Geometry, pages 222–229, 2010.

6. CGAL, Computational Geometry Algorithms Library. http://www.cgal.org.
7. T. M. Chan. A (slightly) faster algorithm for Klee’s measure problem. Computa-

tional Geometry, 43(3):243–250, 2010.
8. S. W. Cheng and R. Janardan. Efficient maintenance of the union intervals on

a line, with applications. In Proc. of ACM Symp. on Discrete Algorithms, pages
74–83, 1990.

9. M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory
of NP-completeness. 1979.

10. G. H. Gonnet, J. I. Munro, and D. Wood. Direct dynamic structures for some line
segment problems. Computer Vision, Graphics, and Image Processing, 23(2):178–
186, 1983.

11. V. Klee. Can the measure of ∪[ai, bi] be computed in less than O(n lgn) steps?
American Mathematical Monthly, pages 284–285, 1977.

12. J. van Leeuwen and D. Wood. The measure problem for rectangular ranges in
d-space. Journal of Algorithms, 2(3):282–300, 1981.

13. M. H. Overmars and C.-K. Yap. New upper bounds in Klee’s measure problem.
SIAM J. Comput., 20(6):1034–1045, 1991.

