arXiv:1106.6336v1 [cs.DS] 30 Jun 2011

External-Memory Network Analysis Algorithms
for Naturally Sparse Graphs

Michael T. Goodrich and Pawet Pszona

Dept. of Computer Science
University of California, Irvine

Abstract. In this paper, we present a number of network-analysis al-
gorithms in the external-memory model. We focus on methods for large
naturally sparse graphs, that is, n-vertex graphs that have O(n) edges
and are structured so that this sparsity property holds for any subgraph
of such a graph. We give efficient external-memory algorithms for the
following problems for such graphs:

1. Finding an approximate d-degeneracy ordering.

2. Finding a cycle of length exactly c.

3. Enumerating all maximal cliques.
Such problems are of interest, for example, in the analysis of social
networks, where they are used to study network cohesion.

1 Introduction

Network analysis studies the structure of relationships between various entities,
with those entities represented as vertices in a graph and their relationships
represented as edges in that graph (e.g., see [I1]). For example, such structural
analyses include link-analysis for Web graphs, centrality and cohesion measures
in social networks, and network motifs in biological networks. In this paper,
we are particularly interested in network analysis algorithms for finding various
kinds of small subgraphs and graph partitions in large graphs that are likely to
occur in practice. Of course, this begs the question of what kinds of graphs are
likely to occur in practice.

1.1 Naturally Sparse Graphs

A network property addressing the concept of a “real world” graph that is
gaining in prominence is the k-core number [25], which is equivalent to a graph’s
width [16], linkage [19], k-inductivity [18], and k-degeneracy [2I21], and is one
less than its Erdés-Hajnal coloring number [14]. A k-core, G, in a graph, G, is
a maximal connected subgraph of G such that each vertex in G’ has degree at
least k. The k-core number of a graph G is the maximum k& such that G has a
non-empty k-core. We say that a graph G is naturally sparse if its k-core number
is O(1). This terminology is motivated by the fact that almost every n-vertex
graph with O(n) edges has a bounded k-core number, since Pittel et al. [23] show
that a random graph with n vertices and cn edges (in the Erdés-Rényi model)
has k-core number at most 2¢ + o(c), with high probability. Riordan [24] and



Fernholz and Ramachandran [I5] have also studied k-cores in random graphs.
In addition, we also have the following:

— Every s-vertex subgraph of a naturally sparse graph is naturally sparse,
hence, has O(s) edges.

— Any planar graph has k-core number at most 5, hence, is naturally sparse.

— Any graph with bounded arboricity is naturally sparse (e.g., see [10]).

— Eppstein and Strash [I3] verify experimentally that real-world graphs in
four different data repositories all have small k-core numbers relative to
their sizes; hence, these real-world graphs give an empirical motivation for
naturally sparse graphs.

— Any network generated by the Barabdsi-Albert [4] preferential attachment
process, with m € O(1), or as in Kleinberg’s small-world model [20], is
naturally sparse.

Of course, one can artificially define an n-vertex graph, G’, with O(n) edges that
is not naturally sparse just by creating a clique of O(nl/ 2) vertices in an n-vertex
graph, G, having O(n) edges. We would argue, however, that such a graph G’
would not arise “naturally.” We are interested in algorithms for large, naturally
sparse graphs.

1.2 External-Memory Algorithms

One well-recognized way of designing algorithms for processing large data sets
is to formulate such algorithms in the external memory model (e.g., see the
excellent survey by Vitter [27]). In this model, we have a single CPU with
main memory capable of storing M items and that computer is connected to
D external disks that are capable of storing a much larger amount of data.
Initially, we assume the parallel disks are storing an input of size N. A single
I/O between one of the external disks and main memory is defined as either
reading a block of B consecutively stored items into memory or writing a block
of the same size to a disk. Moreover, we assume that this can be done on all D
disks in parallel if need be.

Two fundamental primitives of the model are scanning and sorting. Scanning
is the operation of streaming N items stored on D disks through main memory,

with I/O complexity
N
N)=60|—
scan(N) (DB) ,

and sorting N items has I/O complexity

N N
SOTt(N) =6 (DB lOgM/B B> ,

e.g., see Vitter [27].

Since this paper concerns graphs, we assume a problem instance is a graph
G = (V,E), withn =|V|, m =|E| and N = |G| = m + n. If G is d-degenerate,
that is, has k-core number, d, then m < dn and N = O(dn) = O(n) for d = O(1).
We use d to denote the k-core number of an input graph, GG, and we use the term
“d-degenerate” as a shorthand for “k-core number equal to d.”



1.3 Previous Related Work

Several researchers have studied algorithms for graphs with bounded k-core
numbers (e.g., see [IIBIT2/T7IIR]). These methods are often based on the fact
that the vertices in a graph with k-core number, d, can be ordered by repeatedly
removing a vertex of degree at most d, which gives rise to a numbering of the
vertices, called a d-degeneracy ordering or Erdds-Hajnal sequence, such that each
vertex has at most d edges to higher-numbered vertices. In the RAM model, this
greedy algorithm takes O(n) time (e.g., see [5]). Bauer et al. [6] describe methods
for generating such graphs and their d-degeneracy orderings at random.

In the internal-memory RAM model, Eppstein et al. [I2] show how to find all
maximal cliques in a d-degenerate graph in O(d3%/%n) time. Alon et al. [3] show
that one can find a cycle of length exactly ¢, or show that one does not exist, in
a d-degenerate graph in time O(d'~Y/*m?2=1/k) if ¢ = 4k — 2, time O(dm?~/*¥),
if ¢ = 4k — 1 or 4k, and time O(d't'/*m?2=1/*) if c = 4k + 1.

A closely related concept to a d-degeneracy ordering is a k-core decomposition
of a graph, which is a labeling of each vertex v with the largest k& such that
v belongs to a k-core. Such a labeling can also be produced by the simple
linear-time greedy algorithm that removes a vertex of minimum degree with
each iteration. Cheng et al. [9] describe recently an external-memory method for
constructing a k-core decomposition, but their method is unfortunately fatally
ﬂawecﬂ The challenge in producing a k-core decomposition or d-degeneracy
ordering in external memory is that the standard greedy method, which works
so well in internal memory, can cause a large number of I/Os when implemented
in external memory. Thus, new approaches are needed.

1.4 Our Results

In this paper, we present efficient external-memory network analysis algorithms
for naturally sparse graphs (i.e., degenerate graphs with small degeneracy). First,
we give a simple algorithm for computing a (2 4 €)d-degeneracy ordering of a
d-degenerate graph G = (V, E), without the need to know the value of d in
advance. The I/O complexity of our algorithm is O(sort(dn)).

Second, we give an algorithm for determining whether a d-degenerate graph
G = (V,E) contains a simple cycle of a fixed length c¢. This algorithm uses
O(allie (k- sort(m%%) + (4k)! - scan(m%%))) I/O complexity, where € is a
constant depending on ¢ € {4k — 2,...,4k + 1}.

Finally, we present an algorithm for listing all maximal cliques of an undi-
rected d-degenerate graph G = (V, E), with O(3%/3sort(dn)) I/O complexity,
where § = (2 + €)d.

One of the key insights to our second and third results is to show that, for
the sake of designing efficient external-memory algorithms, using a (2 + €)d-
degeneracy ordering is almost as good as a d-degeneracy ordering. In addition
to this insight, there are a number of technical details that lead to our results,
which we outline in the remainder of this manuscript.

1 We contacted the authors and they confirmed that their method is indeed incorrect.



2 Approximating a d-Degeneracy Ordering

Our method for constructing a (2 + €)d-degeneracy ordering for a d-degenerate
graph, G = (V, E), is quite simple and is given below as Algorithm [1| Note
that our algorithm does not take into account the value of d, but it assumes we
are given a constant ¢ > 0 as part of the input. Also, note that this algorithm
destroys G in the process. If one desires to maintain G for other purposes, then
one should first create a backup copy of G.

L+20

while G is nonempty do
S <+ ne/(2 + €) vertices of smallest degree in G
L+ L|S // append S to the end of L
remove S from G

end while

return L

Algorithm 1: Approximate degeneracy ordering of vertices

Lemma 1. If G is a d-degenerate graph, then Algorithm computes a (2+ €)d-
degeneracy ordering of G.

Proof. Observe that any d-degenerate graph with n vertices has at most 2n/c
vertices of degree at least cd. Thus, G has at most 2n/(2 + €) vertices of degree
at least (24 €)d. This means that the ne/(2+ €) vertices of smallest degree in G
each have degree at most (2 + ¢)d. Therefore, every element of set S created in
line 3 has at most (2+¢)d neighbors in (the remaining graph) G. When we add S
to L in line 4, we keep the property that every element of L has at most (2+ ¢€)d
neighbors in G that are placed behind it in L. Furthermore, note that, after we
remove vertices in S (and their incident edges) from G in line 5, G is still at most
d-degenerate (every subgraph of a d-degenerate graph is at most d-degenerate);
hence, an inductive argument applies to the remainder of the algorithm. a

Note that, after [logy ) /»(dn)] = O(lgn) iterations, we must have processed
all of G and placed all its vertices on L, which is a (2 + ¢)d-degeneracy ordering
for G and that this property holds even though the algorithm does not take the
value of d into account.

The following lemma is proved in the Appendix.

Lemma 2. An iteration of the while loop (lines 3-5) of Algorithm (1] can be
implemented in O(sort(dn)) I/O’s in the external-memory model, where n is
the number of vertices in G at the beginning of the iteration.

Thus, we have the following.

Theorem 1. We can compute a (2 + €)d-degeneracy ordering of a d-degenerate
graph, G, in O(sort(dn)) 1/O’s in the external-memory model, without knowing
the value of d in advance.




Proof. Since the number of vertices of G decreases by a factor of 2/(2+¢) in each
iteration, and each iteration uses O(sort(dn)) 1/O’s, where n is the number of
vertices in G at the beginning of the iteration (by Lemma , the total number
of I/O’s, I(G), is bounded by

I(G)=0 (sort(dn) + sort((?/(? + 6))dn> + Sort((2/(2 + e))an) ¥ )
2

—0 <sort(dn)(1+ ETRa (216)2+)>

= O(sort(dn)). O

This theorem hints at the possibility of effectively using a (2+€)d-degeneracy
ordering in place of a d-degeneracy ordering in external-memory algorithms for
naturally sparse graphs. As we show in the remainder of this paper, achieving
this goal is indeed possible, albeit with some additional alterations from previous
internal-memory algorithms.

3 Short Paths and Cycles

In this section, we present external-memory algorithms for finding short cycles in
directed or undirected graphs. Our approach is an external-memory adaptation
of internal-memory algorithms by Alon et al. [3]. We begin with the definition
and an example of a representative due to Monien [22]. A p-set is a set of size p.

Definition 1 (representative). Let F be a collection of p-sets. A sub-collection

F C F is a g-representative for F, if for every g-set B, there exists a set A € F
such that AN B =0 if and only if there exists a set A € F with this property.

Every collection of p-sets F has a g-representative F of size at most (p;q)
(from Bollobas [7]). An optimal representative, however, seems difficult to find.
Monien [22] gives a construction of representatives of size at most O(>"7_, p).
It uses a p-ary tree of height < ¢ with the following properties.

— Each node is labeled with either a set A € F or a special symbol A.

— If a node is labeled with a set A and its depth is less than ¢, it has exactly p
children, edges to which are labeled with elements from A (one element per
edge, every element of A is used to label exactly one edge).

— If a node is labeled with A or has depth ¢, it has no children.

— Let E(v) denote the set of all edge labels on the way from the vertex v to

the root of the tree. Then, for every v:
— if v is labeled with A, then AN E(v) =0
— if v is labeled with A, then there are no 4 € F s.t. AN E(v) = 0.

Monien shows that if a tree T fulfills the above conditions, defining F to be
the set of all labels of the tree’s nodes yields a g-representative for F. As an exam-
ple, consider a collection of 2-sets, F = {{2,4}, {1,5},{1,6},{1,7},{3,6},{3,8},
{4,7},{4,8}}. Fig.|1 Iprebents F, a 3-representative of F in the tree form.



1 6
/ AN
{3,8} {4,7}
/ N\ / N\
8 3 4 7
/ \ / \
{2,4} {4,8} {17} {1,5}
I\ /\ /\ I\
4 2 8 4 701 15

[\ [\ [\ [\
{3,6} {4,7} {2,4} X {1,5} {3,8} {2,4} {3,8}

Fig. 1. Tree representation of F

The main benefit of using representatives in the tree form stems from the fact
that their sizes are bounded by a function of only p and ¢ (i.e., maximum size of
a representative does not depend on | F|). It gives a way of storing paths of given
length between two vertices of a graph in a space-efficient way (see Appendix
for details).

The algorithm for finding a cycle of given length has two stages. In the first
stage, vertices of high degree are processed to determine if any of them belongs
to a cycle. This is realized using algorithm cycleThrough from Lemma [f] Since
there are not many vertices of high degree, this can be realized efficiently.

In the second stage, we remove vertices of high degree from the graph. Then,
we group all simple paths that are half the cycle length long by their endpoints
and compute representatives for every such set (see Lemma [3)). For each pair of
vertices (u,v), we determine (using findDisjoint from Lemma |4 if there are
two paths: p from u to v and p’ from v to u, such that p and p’ do not share any
internal vertices. If this is the case, C = pUp’ is a cycle of required length.

The following representatives-related lemmas are proved in the Appendix.

Lemma 3. We can compute a g-representative F for a collection of p-sets F,
of size |F| < Sl ptin O((Zg;l 4 -scan(\]:D) I/Os.

Lemma 4. For a collection of p-sets, F, and a collection of q-sets, G, there is
an external-memory method, findDisjoint(F,G), that returns a pair of sets
(A,B) (A€ F, B€G) s.t. AN B =0 or returns € if there are no such pairs of

sets. findDisjoint uses O((Zgifpi +yopts q') - scan(|F| + |Q|)) I/0s.

Lemma 5. Let G = (V,E). A cycle of length ezxactly k that passes through
arbitrary v € V, if it exists, can be found by an external-memory algorithm
cycleThrough(G, k,v) in O((k — 1)! - scan(m)) 1/O’s, where m = |E|, via the
use of representatives.



Before we present our result for naturally sparse graphs, we first give an
external-memory method for general graphs.

Theorem 2. Let G = (V, E) be a directed or an undirected graph. There is an
external-memory algorithm that decides if G contains a cycle of length exactly
c € {2k — 1,2k}, and finds such cycle if it exists, that takes O (k - sort(m2=%) +
(2k — 1)!- scan(mei)) I/0’s.

Proof. Algorithm handles the case of general graphs (which are not necessarily
naturally sparse), and cycles of length ¢ = 2k (the case of ¢ = 2k—1 is analogous).

1 A+ mk

2: for all v — vertex of degree > A do
3 C' <« cycleThrough(G, 2k, v)
4: if C' # e then

5: return C

6: end if

7: end for

8: remove vertices of degree > A from G

9: generate all directed paths of length k in G

10: sort the paths lexicographically, according to their endpoints
11: group all paths u ~ v into collection of (k — 1)-sets Fyy

12: for all pairs (Fuv, Fou) do

13: P « findDisjoint(Fuv, Fou)

14: if P = (A, B) then

15: return C =AUB
16: end if
17: end for

18: return ¢

Algorithm 2: Short cycles in general graphs

Since there are at most m/A = m =% vertices of degree at least A, and each

call to cycleThrough requires O((2k — 1)! - scan(m)) 1/O’s (by Lemma [5)), the
first for loop (lines 2-7) takes O(ml’% - (2k — 1)!'- scan(m)) = O((2k — 1)! -
scan(mei)) I/0’s.

Removing vertices of high degree in line 8 is realized just like line 5 of
Algorithm in O(sort(m)) 1/O’s. There are at most mAF~1 = m2~% paths to
be generated in line 9. It can be done in O(k-sort(mQ_%)) I/0O’s (see Appendix).
Sorting the paths (line 10) takes O(sort(mz’%)) I/0O’s. After that, creating Fy,’s
(line 11) requires O(scan(mQ_%)) 1/0’s.

The groupF procedure groups F, and F,, together. Assume we store Fy,’s
as tuples (u,v,S), for S € F,, in a list F. By u < v we denote that u precedes
v in an arbitrary ordering of V. For u < v, tuples (u,v,1,5) from line 3 mean
that S € Fy,, while tuples (u,v,2,5) from line 5 mean that S € F,,. The for




loop (lines 1-7) clearly takes O(scan(mQ_%)) I/O’s. After sorting F' (line 8) in
O(sort( 2_l ) I/O’s, tuples for sets from Fy, directly precede those for sets
from F,,, allowing us to execute line 9 in O(scan(m? )) I/0’s.

proc groupF
1: for all (u,v,S) in F do
2: if u < v then

3 write (u,v,1,5) back to F

4 else

5 write (v,u,2,5) back to F

6: end if

7: end for

8: sort F' lexicographically

9: scan F to determine pairs (Fyy, Fuv)

Based on Lemma [4] the total number of I/O’s in calls to findDisjoint in
Algorithm 2] line 13 is

O<Zu,v (Zfif(k —1)" - scan(|Fuo| + |-7:vu|))>

= O((SELk — 1)) - X, scan(|Fuol + [ Fuu))
=O((2k —1)!- scan(m2_%))

asweset p=¢q=Fk—1and Y\ 2 (k — 1) = O((k = 1)*3) = O((2k — 1)1).
Putting it all together we get that Algorithm [2[ runs in O(sm“t(m2 %) +
(2k — 1)! - scan(m?~ )) total I/O’s. O

Theorem 3. Let G = (V, E) be a directed or an undirected graph. There is an
external-memory algorithm that, given L — a 0-degeneracy ordering of G (for
0 = (2+¢€)d), finds a cycle of length exactly ¢, or concludes that it does not exist:

(i) in 0(51’% - (k - sort(m? “%) 4 (4k)! - scan(m? ¥ )) I/O’s if c =4k — 2

)
(i) in 0(5- (k - sort(m %) + (4k)! - scan(m? %) )) I/O’s if ¢ = 4k — 1 or
c=4k
(iii) in O(éH% (k- sort(m?=%) + (4k)! - scan(m%%))) I/O%s if c=4k + 1

Proof. We describe the algorithm for the case of directed G, with ¢ = 4k + 1, as
other cases are similar (and a little easier). We assume that § < m7 T | which
is obviously the case for naturally sparse graphs. Otherwise, running Algorithm
on G achieves the advertised complexity.

Algorithm [3] is remarkably similar to Algorithm [2| and so is its analysis.
Differences lie in the value of A and in line 9, when only some paths of length
2k and 2k + 1 are generated. As explained in [3], it suffices to only consider



el el e e e
© 00 TDU W —=OO

A m¥ /§M %
for all v — vertex of degree > A do

C + cycleThrough(G, 4k + 1,v)

if C # € then

return C

end if
end for
remove vertices of degree > A from G
generate directed paths of length 2k and 2k + 1 in G

. sort the paths lexicographically, according to their endpoints

: group all paths u ~» v of length 2k into collection of (2k — 1)-sets Fuo
: group all paths u ~ v of length 2k 4 1 into collection of (2k)-sets Gy
: for all pairs (Fuv, Guv) do

P < findDisjoint(Fuv, Gou)
if P = (A, B) then

return C = AUB
end if

: end for
. return e

all (2k + 1)-paths that start with two backward-oriented (in L) edges and all
2k-paths that start with a backward-oriented (in L) edge. The number of these

paths is O(m2~%§'t+). Since we can generate them in O (kél“‘% : sort(mQ_%))

1/0

Algorithm 3: Short cycles in degenerate graphs

's (see Appendix), and there are at most O(ml_%él"’%) vertices in G of

degree > A, the theorem follows.

4

The Bron-Kerbosch algorithm [§] is often the choice when one needs to list all
maximal cliques of an undirected graph G = (V, E). It was initially improved
by Tomita et al. [26]. We present this improvement as the BronKerboschPivot

All Maximal Cliques

procedure (I'(v) denotes the set of neighbors of vertex v).

proc BronKerboschPivot(P, R, X)

1:

2
3
4
5:
6
7
8
9

if PUX =( then

output R //mazimal clique

: end if

: u + vertex from P U X that maximizes |P N I'(u)]

for allv e P\ I'(v) do

BronKerboschPivot (PN 1I'(v), RU{v}, X NI'(v))
P+ P\ {v}
X + X U{v}

: end for




The meaning of the arguments to BronKerboschPivot: R is a (possibly non-
maximal) clique, P and X are a division of the set of vertices that are neighbors
of all vertices in R, s.t. vertices in P are to be considered for adding to R while
vertices in X are restricted from the inclusion.

Whereas Tomita et al. run the algorithm as BronKerboschPivot (V,(,0),
Eppstein et al. [I2] improved it even further for the case of a d-degenerate G
by utilizing its d-degeneracy ordering L = {vy,vs,...,v,} and by performing n
independent calls to BronKerboschPivot. Algorithm [ presents their version. It
runs in time O(dn3%3) in the RAM model.

1: fori+ 1...ndo

20 P« TI(vi)N{v;:j>i}

3 X+ T(v)n{v;: j<i}

4 BronKerboschPivot (P,{v;},X)
5: end for

Algorithm 4: Maximal cliques in degenerate graph

The idea behind Algorithm [is to limit the depth of recursive calls to |P| < d
and then apply the analysis of Tomita et al. [26].

We show how to efficiently implement Algorithm [4] in the external memory
model using a (2 + €)d-degeneracy ordering of G. Following [12], we define
subgraphs Hp x of G.

Definition 2 (Graphs Hp x). Subgraph Hpx = (Vpx,Epx) of G = (V, E)
is defined as follows:

VP7X =PUX
Epx ={(u,v): (u,v) e EA(ue€ PVveP)}

That is, Hp x contains all edges in G whose endpoints are from P U X,
and at least one of them lies in P. To ensure efficiency, Hp x is passed as an
additional argument to every call to BronKerboschPivot with P and X. It is
used in determining w at line 4 of BronKerboschPivot (we simply choose a
vertex of highest degree in Hp x).

The following two lemmas regarding construction of Hp x’s are proved in
the Appendix.

Lemma 6. Given a §-degeneracy ordering L of an undirected d-degenerate graph
G (0 = (2+ €)d), all initial sets P, X, and graphs Hp x that are passed to
BronKerboschPivot in line 4 of Algorithm can be generated in O(sort(6%n))
I/0’s.

Lemma 7. Given a d-degeneracy ordering L of an undirected d-degenerate graph
G (6 = (2+ €)d), in a call to BronKerboschPivot that was given Hp x, with
|P| = p and |X| = z, all graphs Hpnr),xnrw) that have to be passed to
recursive calls in line 6, can be formed in O(sort(5p*(p + z))) 1/O0’s.

10




Theorem 4. Given a d-degeneracy ordering L of an undirected d-degenerate
graph G (6 = (24 €)d), we can list all its mazimal cliques in O(3%/3sort(én))
I/0’s.

Proof. Consider a call to BronKerboschPivot(P,, {v}, X,), with |P,| = p
and | X,| = z. Define D(p, ) to be the maximum number of I/O’s in this call.
Based on Lemma , D(p, x) satisfies the following recurrence relation:

f)( 2) < max {kD(p — k,z)} + O(sort(ép*(p+))) ifp>0
P, e ifp=0

for constant e greater than zero, which can be rewritten as

N 2 xr .
Dp,x) < {maxk{kD(p —ka)}+c- 2 l()pg ) log s 5 (0p° (p + ) 1£p > 8
e if p=

for a constant ¢ > 0. Since p < ¢ and p+z < n, we have log,,, 5 (5p*(p+7)) <
log s 5(6°n) = O(logy g n) for § = O(1). Thus, the relation for D(p, z):

D(p,x) < {maxk{kﬁ(p —k,z)} +6p*(p+ ) - CI‘%#B” itp>0
e ifp=0

where ¢’ and e are constants greater than zero. Note that this is the relation for

D(p,z) of Eppstein et. al [12] (we set d =6, ¢; = CIO%#M and ¢z = e). Since

the solution for D(p, z) was D(p,z) = O((d+z)37/3), the solution for ﬁ(p, x) is

~ clogy /g o+x
D(p, :0(5 31’/3-7/):0(—3?/31 )
(p, ) (6 +x) e Iy 0gnr/B M
The total size of all sets X, passed to initial calls to BronKerboschPivot is
O(dn), and every set P has at most ¢ vertices. It follows that the total number
of I/O’s in recursive calls is

5+ Xul 5573 _ 5/3 on _ 5/3
ZO(??) logyr/ n) = O(B / ElogM/B n) =0(3 / sort(én))
v
Combining this with Lemma [6] we get that our external memory version of
Algorithm |4 takes O (sort(62n) + 3%/3sort(én)) = O(3%/3sort(én)) 1/O’s. O

References

1. N. Alon and S. Gutner. Linear time algorithms for finding a dominating set of
fixed size in degenerated graphs. Algorithmica, 54(4):544-556, 2009.

2. N. Alon, J. Kahn, and P. D. Seymour. Large induced degenerate subgraphs. Graphs
and Combinatorics, 3:203-211, 1987.

3. N. Alon, R. Yuster, and U. Zwick. Finding and counting given length cycles.
Algorithmica, 17(3):209-223, 1997.

11



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

A .-L. Barabdsi and R. Albert. Emergence of scaling in random networks. Science,
286(5439):509-512, 1999.

V. Batagelj and M. Zaversnik. An O(m) algorithm for cores decomposition of
networks, 2003. http://arxiv.org/abs/cs.DS/0310049.

R. Bauer, M. Krug, and D. Wagner. Enumerating and generating labeled k-
degenerate graphs. In 7th Workshop on Analytic Algorithmics and Combinatorics
(ANALCO), pages 90-98. SIAM, 2010.

B. Bollobds. On generalized graphs. Acta Mathematica Hungarica, 16:447-452,
1965. 10.1007/BF01904851.

C. Bron and J. Kerbosch. Algorithm 457: finding all cliques of an undirected graph.
Commun. ACM, 16(9):575-577, 1973.

J. Cheng, Y. Ke, S. Chu, and T. Ozsu. Efficient core decomposition in massive
networks. In IEEE Int. Conf. on Data Engineering (ICDE), 2011.

M. Chrobak and D. Eppstein. Planar orientations with low out-degree and
compaction of adjacency matrices. Theor. Comput. Sci., 86(2):243-266, 1991.

P. Doreian and K. L. Woodard. Defining and locating cores and boundaries of
social networks. Social Networks, 16(4):267-293, 1994.

D. Eppstein, M. Loffler, and D. Strash. Listing all maximal cliques in sparse graphs
in near-optimal time. In O. Cheong, K.-Y. Chwa, and K. Park, editors, ISAAC
2010, volume 6506 of LNC'S, pages 403-414. Springer-Verlag, 2010.

D. Eppstein and D. Strash. Listing all maximal cliques in large sparse real-world
graphs. arXiv eprint, 1103.0318, 2011.

P. Erdés and A. Hajnal. On chromatic number of graphs and set-systems. Acta
Mathematica Hungarica, 17(1-2):61-99, 1966.

D. Fernholz and V. Ramachandran. The giant k-core of a random graph with a
specified degree sequence. manuscript, 2003.

E. C. Freuder. A sufficient condition for backtrack-free search. J. ACM, 29:24-32,
January 1982.

P. A. Golovach and Y. Villanger. Parameterized complexity for domination
problems on degenerate graphs. Proc. 34th Int. Worksh. Graph-Theoretic Concepts
in Computer Science (WG 2008), 5344:195-205, 2008.

S. Irani. Coloring inductive graphs on-line. Algorithmica, 11:53-72, 1994.

L. M. Kirousis and D. M. Thilikos. The linkage of a graph. SIAM Journal on
Computing, 25(3):626-647, 1996.

J. Kleinberg. The small-world phenomenon: an algorithm perspective. In 32nd
ACM Symp. on Theory of Computing (STOC), pages 163-170, 2000.

D. R. Lick and A. T. White. k-degenerate graphs. Canadian Journal of Mathe-
matics, 22:1082-1096, 1970.

B. Monien. How to find long paths efficiently. Annals of Discrete Mathematics,
25:239-254, 1985.

B. Pittel, J. Spencer, and N. Wormald. Sudden emergence of a giant k-core in a
random graph. Journal of Combinatorial Theory, Series B, 67(1):111-151, 1996.
O. Riordan. The k-core and branching processes. Probability And Computing,
17:111, 2008.

S. B. Seidman. Network structure and minimum degree. Social Networks, 5(3):269—
287, 1983.

E. Tomita, A. Tanaka, and H. Takahashi. The worst-case time complexity for
generating all maximal cliques and computational experiments. Theor. Comput.
Sci., 363(1):28-42, 2006.

J. S. Vitter. External memory algorithms and data structures: dealing with massive
data. ACM Comput. Surv., 33:209-271, June 2001.

12



A Appendix

A.1 Proof of Lemma [2]

The input is a d-degenerate graph G = (V, E). Let V = (1,...,n). We store E
as set of edges (u,v). We assume an order on V that we utilize during sorting.

Finding vertices of smallest degree (Algorithm [1} line 3) is realized by the
smallVertices procedure.

proc smallVertices
1: for all v — vertex of G' do
2:  d(v) «+ degree of v
3:  store pair (d(v),v) in F
4: end for
5: sort F' lexicographically
6: S <« first ne/(2 + €) vertices in F // of smallest degree

Computing degrees of vertices in the for loop (lines 1-4) is easily realized in
O(sort(dn)) 1/O’s. First, E is sorted lexicographically in O(sort(dn)) I/O’s.
After that, edges of E form blocks ordered by their starting vertex, so a simple
scan taking O(scan(dn)) 1/O’s is enough to determine degrees of the vertices.

Sorting F (line 5) is done in O(sort(n)) I/O’s. After that, S is just ne/(2+e€)
first items of F' and its construction (line 6) takes O(scan(ne/(2 + €))) I/O’s.
Likewise, appending S to L (Algorithm (I} line 4) takes O(scan(ne/(2 + ¢€)))
I/O’s.

Finally, removing edges adjacent to S from G (Algorithm line 5) is realized
as follows.

sort E lexicographically
for all (u,v) — edge in F do
if uw € S then
add tuples (u,v,"-") and (v,u,"-") to E
end if
end for
sort E lexicographically
for all p, ¢ — consecutive tuples in F do
if p = (u,v) and ¢ = (u,v,"-") then
do not write p back to F
else if p = (u,v) then
write p back to F
else //p = (u,v,"=")
do not write p back to F
end if
: end for

—_ =

== = e

13



Sorting F in line 1 takes O(sort(dn)) I/O’s. The first for loop (lines 2-6) takes
O(scan(dn)) I/O’s (vertices in S are stored according to the order on V, in the
same relative order as the origins of edges in F, so it is realized by a single
synchronized scan going through E and S at the same time). Each edge in F
causes at most 2 tuples to be added to E in line 4, so clearly the size of FE is
O(dn) after line 6. Sorting E (line 7) obviously takes time O(sort(dn)).

The last for loop (lines 8-16) is easily realized by a single scan of E, in
O(scan(dn)) 1I/0O’s. Correctness follows from two facts. First, for each edge
(u,v), if u € S, the tuple (u,v,"-") (meaning that (u,v) does not belong to
G after this iteration) is added to E in line 4. Second, if (u,v,"=") is in E, its
direct predecessor is (u,v) (or another copy of (u,v,"-")) after E was sorted
lexicographically in line 7. Therefore, the edges that are no longer in G are
rejected in line 10. Also, no tuples (u, v, "-") are further stored in E (line 14).

Altogether, lines 3-5 of Algorithm [I| are implemented in O(sort(dn)) 1/O’s.

O

A.2 Representatives

Monien [22] gave a simple algorithm (which we call repQuery) that operates on
representatives in the tree form described in Sec. I Given F — a representative
for F, repQuery (F, B) decides for a g-set B whether there exists a set A € F
s.t. AN B = (), and returns such A if it exists. The running time of repQuery is
O(pq) in the RAM model. We use repQuery in our algorithms ”as is”, i.e., we
allow it to take O(pq) I/O’s.

Proof of Lemma (3| The size of the resulting tree is is bounded by Zl P
(number of nodes in a p-ary tree of height ¢). We can afford to build the tree one
node at a time, spending O(scan(p|]—'\)) I/O’s on each node. Procedure repLabel
labels vertex v in the representative tree for F in O(scan(p|F|)) 1/O’s.

proc repLabel(F, v)
I A+ set Ain Fst. ANE(w) =10
if A#ecthen _
label v with A
create children of v R
label edges from v to its children with elements from A
else
label v with A
end if

Set A in line 1 can simply be found by scanning F in O(scan(p|F)) 1/O’s (p|F]|
is the total size of all p-sets in JF). Creating children of v (line 4) and labeling
their edges (line 5) takes O(p) I/O’s.

14



Therefore, we compute a g-representative for F in O(( ) pi) -scan (p\]:|)) =
O(( opth - scan(\]—'D) = O((Zf;lpz) : scan(|f|)) I/O’s. 0

Proof of Lemma [4] The proof is essentially the same as that of Lemma 3.2
in [3]: first we compute a g-representative F of F, in O(( ;1:11) : scan(|f|)>
I/O’s, and a p-representative G of G, in O(( f;rll) ~sccm(\g|)) I/0’s.

The sizes of F and G are bounded by Sl pt and 3P, ¢, respectively.
Assuming p > ¢ (w.lo.g.), determining whether F and G contain two disjoint
sets can be easily done in O(Ef;l ppq) = O(Zf;l pit?) = O(Zfif’ p')
1/O’s, by querying G (via repQuery) with all sets from F. O

Proof of Lemma [5| The (very) big picture of the cycleThrough(G, k, v)
algorithm is as follows:

proc cycleThrough(G, k, v)
1: for all u s.t. (v,u) € E do
2:  if there exists simple path p: u ~ v of length exactly k — 1 then
3 return pU (v, u)

4: end if
5: end for
6: return e

Obviously, main difficulty lies in checking the condition in line [2| To show how
we answer that query, let us first explain how [22] handles the paths.

Let PP, denote the set of all simple paths from u to v of length exactly
(p+1) (so that these paths have p inner vertices). First, all paths from u to v of
length (p+ 1) that have the exact same set of inner vertices are represented as a
single set containing these vertices (the vertices are stored as one of the paths; it
provides a representative of the set). Performing this compression on PZ, yields
FP, — a family of p-sets:

FP,={S: Sis a set of inner vertices on some path from utovof lengthp + 1}

The condition from line of cycleThrough is therefore equivalent to F¥2 being
nonempty. We will now focus on how to test if this is the case.

The clou of [22] was that having g-representatives for F?  (for all u € V)
enables efficient computation of (¢ — 1)-representatives for FZ, 1 (for all u € V).
The labels for a (¢ — 1)-representative tree for F2! are computed node by node.
The algorithm is based on the following observation (v is the node whose label

15



we compute, F(v) is the set of edge labels on the way from v to root):

JU € FPH st. UNE(y) =0
A
Jw e V\A{u,v} st (u,w) € E N w¢ E(y) A
U e Fe, st. UN(E(y)U{u}) =0

Having a g-representative for 2  allows us to find U (or determine that it does
not exist) via the repQuery algorithm. Determining the label for v is therefore
realized as follows:

1: for all w s.t. (u,w) € FE and w ¢ E(vy) do
2. U < repQuery(F2,, E(y) U {u})

3 ifU # ¢ then

4: label v with U U {w}

5 return

6: end if

7: end for

8: label v with A

repQuery (querying a representative tree) takes O(pq) I/O’s, so our imple-
mentation of labeling v takes O(pq - scan(I'(u))) 1/O’s (where I'(u) denotes
the number of neighbors of u in G). It simply scans neighbors of u and calls
repQuery accordingly. Because the (¢ — 1)-representative tree for FPH! has
size bounded by Z?_l(p +1)" < gq(p + 1)91, labeling all its nodes requires

O(q(p—|— 17t (pg- scan(F(u)))) = O(qQ(p +1)9- scan(f’(u))) I/O’s. We are
computing (¢— 1)-representatives for FP. s for all u’s, so it takes O( > (P p+

1)q-scan(\f’(u)\))) = O(qQ(p+1)q-Zu scan(|F(u)\)) = O(¢*(p+1)4-scan(m))
I/O’s in total.

Our goal is to compute O-representatives F¥.2 for F¥-2 (for allu € V). Then,
by calling repQuery (FF2, ), we determine whether F*2 is nonempty, as it
either returns e (if ¥ 2 is empty), or a set A € F¥ 2, representing a path from
u to v of length k — 1.

We start with (k—2)-representatives for FC,’s. They are built as trees having
only the root vertex, labeled with either §) (if (u,v) € E), or A (otherwise). They
can be obviously constructed in O(scan(m)) I/O’s, via scanning E. Based on
the discussion above, computing FX-%’s (for all u € V) takes

O30 (k=2 = p)(p+ 1)*=277 - scan(m))
= O((k—2) - scan(m) - Yoo (p + 1)F=277)
= O((k —2) - scan(m) - (k — 2)!)
=O((k —1)!- scan(m))

16



I/O’s, as it can be easily shown by induction that E’;;g (p+1)F=27P < (k—2)!
for k > 6.

A.3 Path Generation

General Graphs (Algorithm [2) Recall that for Algorithm [2| we need to
generate all directed paths of length k in a graph G = (V, E), where maxi-
mum degree of each vertex is bounded by A. As shown in [3], there are at
most O(mA*~1) = O(m? +) such paths. They are generated by the pathGen
procedure.

proc pathGen
generate all sequences of length k — 1, with elements from {1,..., A}
for all s — sequence € {1,...,A}*"1 do
generate sequences els, for all e € F
end for
for all s — sequence € E x {1,...,A}f~! do
decode s into s’ € E¥
if s’ # € then
if s’ is a simple path then
output s’
end if
end if
: end for

— =

—_
[\

Line 1 is simply realized in O(scan(A*1)) = O(scan(ml_%)) I/O’s. Adding
an edge at the beginning of each sequence in the first for loop (lines 2-4) takes
O(m - scan(AF~1)) = O(scan(mQ_%)) I/0’s.

Decoding a sequence s € E x {1,..., A}*~1 into a path s’ € E¥ (pathGen,
line 6) is conceptually straightforward. e is the first edge in the path. Then,
each consecutive number i determines next vertex on the path — ith neighbor of
the previously decoded one (if it has less than ¢ neighbors, the path is dropped
as invalid). The decodePaths procedure handles decoding of S — the set of
sequences. s[i] is the ith element of tuple s, s[i].from is the origin, and
s[i] .to is the destination vertex of edge at s[i].

The first for loop (lines 1-3) decodes the starting edge of the sequence s into
two vertices, and then cyclically shifts the resulting tuple by one position. It
takes O(scan(m%%)) I/O’s. Each iteration of the second for loop (lines 4-12)
decodes the next vertex of s and again cyclically shifts s by one position. Sorting
S in line 5 takes O(sort(mQ_%)) 1/0’s. After that, the inner loop (lines 6-11)
requires only O(scan(m2_%)) I/O’s (it takes one synchronized scan of S and
E). Invalid paths that do not meet the condition at line 8 are dropped. Since the
outer for loop runs for k£ — 1 iterations, decodePaths uses O(k . sort(m2_%))
I/O’s.

17



proc decodePaths(S5)
1: for all s — sequence € E x {1,...,A}*"! do
2:  write tuple (s[1].to,s[2],s[3],...,s[k],s[1].from) to S
end for
cforalli<1,....k—1do //S contains tuples V x {1,..., A=t x V?
sort S lexicographically
for all s — tuple in S do
u + s[2]th neighbor of s[1] in V
if u # € then
write tuple (u,s[3],s[4],...,s[k+1],s[1]) back to S
10: end if
11:  end for
12: end for

© PP T

Verifying that a path is simple (pathGen, line 8) is done by checking that it
does not contain repeated vertices. Thus, pathGen takes O(sort(m%%)) I/0’s.

Degenerate Graphs (Algorithm For Algorithm [3] we need to generate
all paths of length 2k + 1 that start with two backward-oriented (in L) edges. As
shown in [3], there are at most O(m Z?:o (21.’“) Al§%E=1) = O(22kmAF§*) paths
of length 2k 4+ 1 in G. It follows from the fact that for each path p, either p or
p® (the reverse of p) has at most k edges with opposite directions than in L.

The procedure pathGenForward generates paths p that have at most k£ edges
with opposite directions than in L.

proc pathGenForward
1: generate sequences s = ulv, for all (u,v) € E
2: fori«+ 1...2k do
3:  for all s — sequence € V2 x ({"L","E"} x {1,...,A})""! do
4: generate all sequences s|("L",j), for j € {1,...,d}
5: if s has < k pairs of the type ("E", j) then
6: generate all sequences s|("E", j), for j € {1,..., A}
7 end if
8: end for
9: end for
10: for all s — sequence € V2 x ({"L", "E."} X {1, ..., max{J, A}})zk do
11:  decode s into s’ € E2k+1
12: if s’ # € then
13: if s’ is a simple path then
14: output s’
15: end if
16:  end if
17: end for

18



The encoding of the sequences works as follows: it starts with two vertices, u
and v, that represent the starting edge of the path. v is followed by 2k pairs of
the format ("L",) (with ¢ € {1,...,d}) or ("E",4) (withi € {1,..., A}). ("L",4)
means that the next vertex is the ith neighbor of the current vertex in degeneracy
ordering L, and ("E", i) means that the next vertex is the ith neighbor of the
current vertex in E. Any sequence s has at most k pairs of the type ("E",j),
and only edges represented by them may have the opposite direction than in L.

The number of sequences generated by the first for loop (lines 2-9) is clearly
O(mY_, () A16%%) = 0(2°*mA*§*), and the whole generation process
takes O (scan(22*mA¥*6§*)) 1/O’s. The sequences are decoded into paths in the
second for loop (lines 10-17) in a manner similar to decodePaths, using O ((2k+
1) - sort(22*mAkSk) 1/0%s.

Paths of length 2k + 1, that have at most k edges in the opposite direction
than in L when they are read backwards, can be generated by an analogous
procedure pathGenBackward (using E® — reversed edges instead of E), with the
same I/O complexity.

Procedure pathGen2 generates all paths of length 2k + 1 that start with two
backward-oriented (in L) edges.

proc pathGen2
generate paths of length 2k — 1, via pathGenForward
generate paths of length 2k — 1, via pathGenBackward
for all s — generated path of length 2k — 1 do
generate all sequences i|j|s, for (¢,7) € {1,...,4}
end for
for all s — sequence € {1,...,d}? x E?~1 do
decode s into s’ € B2+ +1
if s’ # ¢ then
if s’ is a simple path then
output s’
end if
end if
: end for

2

—_ =

—_ =
W

Paths generated in lines 1-2 are the tails of the resulting paths. The two
numbers in sequences added to these paths in line 4 denote the edges in L that
are to be taken to determine first two vertices on the final path, starting at the
tail’s first vertex. This assures that these edges are backward-oriented in L.

The number of paths generated by pathGen2 is O(62 - 22F=2mAF—15k—1) =
O(22k=2m AR=15k+1) = O(226=22-% §1%), and its 1/O complexity is O(k -
sort(22k*2m2*%51+%)).

Since generating all paths of length 2k that begin with a backward-oriented
(in L) edge is essentially the same as pathGen2, path generation in this case
requires O (k - Sort(22k_2m2_%51+%)) I/O’s.

19



A.4 Graph Reordering

Assume we are given a graph G = (V,E), with V = (1,2,...,n), and d-
degeneracy ordering L = (v1,va,...,v,) of V. Our goal is to reorder G according
to L, i.e., substitute each edge (v;,v;) € E with an edge (4, j).

proc reorderG(G, L)
1: for all £ < 1,2 do
2:  for all v; — ith vertex in L do
3 append tuple (v;, "i") to E
4: end for
5:  sort E lexicographically
6: for all p — tuple in F do
7 if p = (u,v) then
8 q < tuple (u,"i") // precedes p
9 write (v,i) back to F

10: else

11: do not write (v, ) back to E
12: end if

13:  end for

14: end for

A single iteration of the outer for loop (lines 1-14) first renames origins of edges
in E and then reverts them (thus, after 2 iterations edges have their original
directions). First, it adds vertices along with their positions in L to E in lines
2-4. This takes O(scan(n)) I/O’s. Then it sorts E (line 5) in O(sort(dn)) I/0’s.
The next for loop (lines 6-13) scans E, renames origins of edges to their positions
in L and outputs their opposite versions. The tuples ¢ obtained in line 8 can
clearly be found in the same single scan (tuple (u, "i") directly precedes all edges
(u,v) after E was sorted), so this part is done in O(scan(dn)) I/O’s.
Therefore, reorderG runs in O(sort(dn)) 1/O’s altogether.

A.5 Proof of Lemma

First, observe that the total size of all sets P and X passed to initial calls to
BronKerboschPivot is O(m) = O(dn). To see this, note that every edge (v;,v;)
(with v; preceding v; in L = (v1,v2,...,vy)) puts v; into initial X for R = {v;}
and v; into initial P for R = {v;}. Since the size of each P is at most J, the total
number of edges in all Hp x’s is O(6%n).

Our approach is to generate and store all P’s, X’s and Hp x’s at the very
beginning of the algorithm, and then just pass appropriate P, X, and Hp x to
each initial call to BronKerboschPivot.

Procedure genPX generates all initial P’s and X’s in O(sort(dn)) I/O’s. We
assume that for each vertex v € V' we know its position in L (i.e., we know ¢ for
v = v;). Also, for each edge (u,v) € E, we know positions in L of its endpoints

20



(i.e., we know both ¢ and j for (u,v) = (v;,v;)). We can easily achieve this in

O(sort(én)) 1/O’s (see Sec. . By u Z v, we denote that u precedes v in L.
The for loop (lines 1-5) clearly takes O(scan(dn)) 1/0’s.

proc genPX(G, L)
: for all (v;,v;) — edge in E do

[y

if v; < v; then
output tuples (v;, "P",v;), and (v;, "X",v;) to set F'
end if
end for
sort F' lexicographically
scan F' to create sets P and X

The meaning of (v;, "P",v;) is "add v; to P,,”, and of (v;,"X",v;): "add v;
to X,,”. The above discussion explains why this information allows to generate
all P’s and X’s. Therefore, after set F' is sorted in O(sort(dn)) I/O’s in line 6,
generation of P’s and X’s in line 7 takes O(scan(én)) 1/0’s.

Procedure genH generates all initial Hp x’s in O(sort(6%n)) 1/O’s. Each ver-
tex has at most § neighbors that succeed it in L, so there are O(§?n) tuples added
to E in the first for loop (lines 1-5). They can be generated in O(scan(§?n))
I/O’s, as the edges in F are sorted lexicographically.

proc genH(G, L)
1: for all u — vertex in V do

2:  for all v, w — neighbors of u s.t. u %o Zwdo

3: append tuple (v, w, ?u?) to E

4:  end for

5: end for

6: sort E lexicographically

7: for all p — tuple in F do

8 if p= (v,w,?u?) then

9: q < tuple of form (v;,v;) immediately preceding p in E
10: if ¢ = (v, w) then

11: output tuples (H,, u, w) and (H,,w,u) to set H
12: end if

13: do not write p back to E

14: else //p=(v,w)

15: write p back to F

16: end if

17: end for

18: sort H lexicographically
19: scan H to create sets H,
20: scan edges of H,’s and mark the endpoints that belong to P,’s

21



To understand the meaning of tuples from line 3, refer to Fig. 2]

Fig. 2. v and w are neighbors of u, and i v i w, so the tuple (v, w, ?u?) is output
in genH, line 3. If (v, w) € E, the edge (u,w) is in H,.

After E is sorted in line 6 in O(sort(§?n)) I/O’s, the next for loop (lines
7-17) identifies edges that belong to sets H,. In F, each edge (v, w) is followed
by zero or more tuples of the form (v, w, ?u?). This makes it easy to determine
q in line 9, and therefore, the loop takes O(scan(§?n)) 1/0’s.

As explained in Fig. [2l (v,w) followed by (v,w,?u?) means that the edge
(u, w) has to be added to H,. It is denoted by the tuples (H,, u,w) and (H,, w, u)
output in line 11. Sorting H in line 18 takes O(sort(6%n)) 1/O’s, and after that,
Hp x’s are generated in line 19 in O(scan(§?n)) 1/0’s. The marking of endpoints
(line 20) also takes O(scan(6n)) 1/0’s.

Therefore, total complexity of generating initial P’s, X’s, and Hp x’s is
O(sort(6%n)) 1/O’s. O

A.6 Proof of Lemma [T

proc updateH(v)
1: for all Hp x — candidate do

2:  for all e — edge in Hp x do

3: if e = (u,v) or e = (v, w) then
4: unmark v in e

5: end if

6: end for

7. for all e — edge in Hp x do

8: if at least one vertex of e is marked then
9: write e back to Hp x
10: else
11: do not write e back to Hp x
12: end if
13:  end for
14: end for

22



Recall that |P| = p and |X| = z. Our idea in computing Hp x’s is to first
generate candidates for Hp x’s. Candidates are defined as Hp x’s as they would
be if there were no lines 7 and 8 in BronKerboschPivot (i.e., as if P and X
did not change). We then update the candidates according to lines 7 and 8 of
BronKerboschPivot.

Generation of the candidates for Hp x’s is almost the same as in genH, only
v and w in line 2 are now taken from P, so it uses O(sort(p*(p + z))) 1/O’s.
Updating Hp x’s (moving v from P to X) is realized by the procedure updateH.

Both inner for loops (lines 2-6 and 7-13) clearly take O(scan(|Hp x|)) I/O’s.
Since the total size of all candidates is O(p*(p + x)), a single call to updateH
takes O(scan(p?(p + z))) 1/O’s. There are at most p such calls, so generating
Hp x’s that are passed to recursive calls in line 6 of BronKerboschPivot takes
O(sort(p*(p + ) +p - scan(p?(p + x))) = O(sort(dp*(p + x))) 1/O’s. O

23



	External-Memory Network Analysis Algorithms for Naturally Sparse Graphs

