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Abstract. Over the last few years, several approaches have been pro-
posed for information fusion including different variants of classifier level
fusion (ensemble methods), stacking and multiple kernel learning (MKL).
MKL has become a preferred choice for information fusion in object
recognition. However, in the case of highly discriminative and comple-
mentary feature channels, it does not significantly improve upon its triv-
ial baseline which averages the kernels. Alternative ways are stacking and
classifier level fusion (CLF) which rely on a two phase approach. There
is a significant amount of work on linear programming formulations of
ensemble methods particularly in the case of binary classification.

In this paper we propose a multiclass extension of binary v-LPBoost,
which learns the contribution of each class in each feature channel. The
existing approaches of classifier fusion promote sparse features combina-
tions, due to regularization based on ¢1-norm, and lead to a selection of
a subset of feature channels, which is not good in the case of informative
channels. Therefore, we generalize existing classifier fusion formulations
to arbitrary ¢,-norm for binary and multiclass problems which results
in more effective use of complementary information. We also extended
stacking for both binary and multiclass datasets. We present an extensive
evaluation of the fusion methods on four datasets involving kernels that
are all informative and achieve state-of-the-art results on all of them.

1 Introduction

The goal of this paper is to investigate machine learning methods for combin-
ing different feature channels for pattern recognition. Due to the importance
of complementary information in feature combination, much research has been
undertaken in the field of low level feature design to diversify kernels, leading to
a large number of feature channels (kernels) in typical pattern recognition tasks.
Kernels are often computed independently of each other, thus may be highly
redundant. On the other hand, different kernels capture different aspects of in-
traclass variability while being discriminative at the same time. Proper selection
and fusion of kernels is, therefore, crucial to optimizing the performance and to
addressing the efficiency issues in large scale pattern recognition applications.
The key idea of MKL [10,15,20], in the case of SVM, is to learn a lin-
ear combination of given base kernels by maximizing the soft margin between
classes using /;-norm regularization on weights. In contrast to MKL, the main
idea of classifier level fusion [8] is to construct a set of base classifiers and then
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classify a new test sample by a weighted combination of their predictors. CLF
methods attracted much attention, with AdaBoost [5] in particular, after being
successful in many practical applications; this led to linear programming (LP)
formulation of AdaBoost [16]. Inspired by the soft margin SVM, a soft margin
LP for boosting, v — LP Boost, was proposed in [16]. Similar to ensemble meth-
ods, the aim of stacking [2] is to combine the prediction labels of multiple base
classifiers using another classifier often referred as meta-level classifier.

Information fusion methods for MKL and CLF favor sparse feature/kernel
selection due to ¢1-norm regularization, arguing that the sparse models have
intuitive interpretation [10] as a method of filtering out irrelevant information.
However, in practical applications sparse models do not always perform well
(c.f. [9] and references therein). In fact ,/; regularization hardly outperforms
trivial baselines, such as average of kernels. Furthermore, sparseness may lead
to poor generalization due to discarding useful information, especially in case of
features encoding orthogonal characteristics of a problem. On the other hand ¢,
regularization promotes combinations with equal emphasis on all feature chan-
nels, which leads to poor performance in case of noisy channels. To address these
problems, different regularization norms [9] are considered for MKL. Similarly,
among the classifier fusion approaches, v-LPBoost with ¢ regularization favors
sparse solutions, or suffers from noisy channels in the case of ¢, regulariza-
tion. In contrast to MKL, there is a lack of intermediary solutions with different
regularization norms in ensemble methods.

In this paper, we present a novel multiclass classifier fusion scheme (NLP-
vMC) based on binary v— L P Boost, which incorporates arbitrary norms {¢,,p >
1} and optimizes the contribution from each class in each feature channel. The
proposed optimization problem is a nonlinear separable convex problem which
can be solved using off-the-shelf solvers. We also incorporate nonlinear con-
straints in previously proposed binary v — LPBoost and multiclass LPBoost [6]
and show empirically that nonlinear variants perform consistently better than
their sparse counterparts, as well as baseline methods. It is important to note
that both LP-8 and LP-B [6] are different from NLP-vMC. In Particular, the
number of constraints in the optimization problems and the concept of margin
are significantly different (see Section 3.1 for more details). For example, LP-B
is not applicable to large multiclass datasets due to large number of constraints.

We use SVM as a base classifier in stacking and instead of using prediction
labels from the base classifier we propose to use its real valued output. We also
incorporate SVM as a base learner for stacking in case of multiclass datasets. We
finally use SVM with RBF kernel as a meta-level classifier. The last contribution
is an extensive evaluation and comparison of state-of-the-art fusion approaches.
We perform experiments on multi-label and multiclass problems using standard
benchmarks. Our multiclass formulation and nonlinear extensions of CLF consis-
tently outperforms the state-of-the-art MKL and sparse CLF schemes. The best
results are achieved with stacking, especially when the stacking kernel is com-
bined with base kernels using CLF. Note that the datasets used for evaluation
are visual category recognition datasets, however, the proposed fusion schemes
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can be applied to any underlying pattern recognition problems provided that we
have multiple feature channels. The proposed methods can also be applied to
multi-model pattern recognition problems.

The remainder of this paper is organized as follows. We start with a review
of two widely used information fusion schemes, the multiple kernel learning in
Section 2 and linear programming (LP) formulation of ensemble methods for
classifier fusion in Section 3 which also extends LP formulation of binary classifier
fusion to incorporate arbitrary norms. Our proposed multiclass classifier fusion
and schemes are presented in Section 3.1 and Section 4. In Section 5 we present
the evaluation results and conclude in Section 6.

2 Multiple Kernel Learning

In this section, we review state-of-the-art MKL methods for classification. Con-
sider m training samples (z;, y;), where x; is a sample in input space and y; is its
label, y; € 1 for binary classification and y; € {1,..., N¢}, for multiclass classi-
fication. We are given n training kernels (one kernel corresponding to each feature
channel) K, of size m x m and corresponding n test kernels K, of size m x [,
with { being the number of test samples. Each kernel, K, = (@,.(z;), P, (x;)),
implicitly maps samples from the input space to a feature space with mapping
function &, (z;) and gives similarity between corresponding samples x; and z;
in the feature space. In the case of the SVM decision function for a single kernel
is the sign of real valued output g,(x):

gr(z) = Kr(x)TYa + b, (1)

where Kr(x) is the column corresponding to test sample x, Y is an m X m matrix
with labels y; on the diagonal and « is a vector of lagrangian multipliers.

In MKL, the aim is to find a convex combination of kernels K = >""_, 5, K,
by maximizing the soft margin [1, 10, 15, 20, 25] using the following program:

m
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The dual of Eq. (2) can be derived easily using Lagrange multiplier techniques.
The MKL primal for linear combination and its corresponding dual are derived
for different formulations in [1,9, 10,15, 20, 24] and compared in [25] which also
extended MKL to the multiclass case. The dual problem can be solved by us-
ing several existing MKL approaches, e.g, SDP [10], SMO [1], SILP [20] and
simpleMKL [15]. The decision function for MKL SVM is the sign of f(z):

f@)=>" B K (2)"Ya +0. (3)
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The weight vector 8 € R", Lagrange multiplier a € R™, and bias b are learnt
together by maximizing the soft margin. We can consider f(x) as a linear com-
bination of real valued output g, (x) of the base classifier with the same « and b
shared across all base classifiers.

3 Classifier Fusion with Non-Linear Constraints

In this section we review the linear programming formulation of ensemble meth-
ods for classifier level fusion (CLF) based on boosting. We also extend the v-LP-
AdaBoost [16] formulation for binary classification with nonlinear constraints.
This is a significant extension as it avoids discarding channels with complemen-
tary information while keeping it robust to noisy feature channels.

The empirical work has shown that boosting, and other related ensemble
methods [5, 6, 16] for combining predictors, can lead to a significant reduction in
the generalization error and, hence, improves performance. Our focus is on the
linear programming (LP) formulations of AdaBoost [5] and its soft margin LP
formulations [16] over a set of base classifiers G = {g, : x — +1,Vr =1,...,n}.
For a test example x, the output label generated by such ensemble is a weighted
majority vote and is given by the sign of f(x):

f@)=>" Brgr(x). (4)

Note that for the SVM, f(z) is a linear combination of the real valued output
of n SVMs, where g, (z) is given by Eq. (1). The decision function of MKL in
Eq. (3) shows that the same set of parameters {a, b} is shared by all participating
kernels. In contrast to MKL, the decision function of CLF methods in Eq. (4)
uses separate sets of SVM parameters, since different {a, b} embedded in g, (x)
can be used for each base learner. In that sense, MKL can be considered as a
restricted version of CLF [6]. The aim of the ensemble learning is to find optimal
weight vector 3 for the linear combination of base classifiers given by Eq. (4).

We define the margin (or classification confidence) for an example z; as
pi = vif(x:) =vyi > Brgr(z;) and the normalized (smallest) margin as:

po= min yif(e) = min 4> Br00(r). (5)
r=1

1<i<m 1<i<m

It has been argued that AdaBoost maximizes the smallest margin p on the train-
ing set [16]. Based on this idea and the idea of soft margin SVM formulations,
the v-LP-AdaBoost formulation has been proposed in [16]. The v-LPBoost per-
forms a sparse selection of feature channels due to ¢; regularization, which is
suboptimal if all feature channels carry complementary information. Similarly,
in the case of £, norm, noisy features channels may have significant impact on
the results. To address these problems, we generalize binary classifier fusion for
arbitrary norms {¢,,p > 1}.
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The input to classifier fusion are predictions corresponding to each feature
channel, which are real valued outputs of base classifiers. To obtain these pre-
dictions for a training set we can use leave one out or v-fold cross validation.
In contrast to AdaBoost, we consider n to be a fixed number of base classifiers
{gr,Vr = 1,...,n} which are independently trained. Given the base classifiers,
we learn the optimal weights 3, for their linear combination (Eq. (4)) by maxi-
mizing the smallest margin p in the following optimization problem:

1 m
IR o p% 6
B 26 ()
s.t. ylZﬂT‘fT(xl) >p— & YVi=1,...,m

r=1

1Bl <1, B=0,£=0,p>0

where &; are slack variables which accommodate negative margins. The regular-
ization constant is given by #, which corresponds to the C' constant in SVM.
Problem (6) is a nonlinear separable convex optimization problem and can be
solved efficiently for global optimal solution by standard optimization toolboxes®.

3.1 Multiclass Classifier Fusion with Non-Linear Constraints

In this section we propose a novel multiclass extension of v-LP-AdaBoost and
compare it with other existing multiclass variants. We also incorporate nonlinear
constraints in two existing multiclass classifier fusion schemes: LP-4 [6] and LP-
B [6]. The empirical results show that the nonlinear constraints improve the
performance of these methods.

Nonlinear Programming v-Multiclass (NLP-vMC): We consider one-vs-
all formulation for multiclass case with N¢ classes, i.e., for each feature channel
we solve N¢ binary problems, one corresponding to each class. Therefore, the
set of base classifiers G = {g, : # — RN ¥r = 1,... n} consists of n base
hypotheses (weak learners) g,., where each base classifier maps into an N¢ di-
mensional space g.(z) — RMc. The output of g, corresponding to c’'th class
is denoted by gr.(z). Recently it has been shown that One-vs-All is as good
as any other approach [18], moreover it fits naturally to the proposed CF and
computational complexity for other methods are higher, even prohibitive in case
of many classes. Note that in practice the predictions for all base classifiers can
be computed in parallel as they are independent of each other, which makes
this approach appealing. We learn the weights for every class in each feature
channel and, therefore, instead of n dimensional weight vector 8 € R™ as in
case of binary classifier fusion, we have an n x N¢ dimensional weight vector
B € R™*Ne_ The first N entries of vector B3 correspond to weights of classes

! We have used MATLAB and MOSEK (http://www.mosek.com) and found that
interior-point based separable convex solver in MOSEK is faster by an order of
magnitude of time.
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in first feature channel and last Ng entries correspond to weights in feature
channel n. After finding the optimal weights, the decision function for a test
sample = corresponding to each class is given by weighted sum and the overall
decision function of multiclass classifier fusion is obtained by picking the class
with maximum response.

We extend the definition of margin (classification confidence) for binary clas-
sifier fusion given in Eq. (5) to multiclass case as follows.

n n Ne
pi(@i,B) =Y BiNo(r—1)1ynIrw (@) = D > BNo(r—1)+y;) 9y, (i) (7)
r=1 r=1j=1j#i

The classification confidence for examples x; depends upon 8 and scores from
base classifiers. The main difference between the two margins is that here, we are
taking responses (scores multiplied with corresponding weights) from all nega-
tive classes, sum them and subtract this sum from the response of positive class.
This is done for all n feature channels. Normalized (smallest) margin can then
be defined as p := minj<;<m, p(z;, §). Inspired by LP formulations of AdaBoost
(cf. [16] and references therein) we propose to maximize the normalized margin
p to learn linear combination of base classifiers. However, generalization perfor-
mance of LP formulation of AdaBoost based on maximizing only normalized
margin is inferior to AdaBoost for noisy problems [16]. Moreover, theorem 2
in [16] highlights the fact that minimum bound on generalization error is not
necessarily achieved with a maximum margin. To address these issues, soft mar-
gin SVM based formulation with slack variable is introduced in Eq. (8). This
formulation does not force all the margins to be greater than zero. To avoid
penalization of informative channels and to gain robustness against noisy fea-
ture channels, we change the regularization norm to handle any arbitrary norm
£,,Vp > 1. The final optimization problem is (replacing p; with Eq. (7)):

max p— —Zfl (8)

B.&p

ZB(NC (r—1)4wv:) g'ryL xz Z Z IBNC(T 1)+y;) gryj( )

r=1 r=1j=1,j#i
>p—&i=1,...m, (9)
18I <1, p>0,8-0 £=0 Vi=1,...m

where ﬁ is the regularization constant and gives a trade-off between minimum
classification confidence p and the margin errors. This formulation looks similar
to Eq. (6), in fact we are using the same objective function but the main dif-
ference is the definition of margin which is used in the constraints in Eq. (9).
Eq. (9) employs a lower bound on the differences between the classification con-
fidence (margin) of the true class and the joint confidence of all other classes.
It is important to note that the total number of constraints is equivalent to the
number of training examples m plus one regularization constraint for /,-norm
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(ignoring the positivity constraints on variables). Therefore, the difference in
complexity, compared to the binary classifier fusion, is the increased number of
variables in weight vector 3, while having the same number of constraints. Note
that the problem in Eq. (8) is a nonlinear separable convex optimization problem
and can be solved efficiently using MOSEK. We now extend LP-3 and LP-B by
introducing arbitrary regularization norms ¢, ¥p > 1, which avoids rejection of
informative feature channels while being robust against noisy features channels.
Generalized optimization problems for, LP-3 and LP-B, are separable convex
programs and can be solved efficiently by MOSEK.

Nonlinear Programming-3 (NLP-3): We generalize LP-§ [6] by incorpo-
rating £, Vp > 1 norm constraints. The optimization problem is given by:

1 m
min —p+ — f 10
B.&p P vm ;5 ( )

s.t. Zﬂrgr,yi(l'i) — mazx Z Brry;(xi) > p—&, Vi=1,..,m (11)
r=1 Y;#Yi,r=1
||ﬁ||g§17 57”207 glzovpzov VT:].,...,TL,V?::].,...,TTL.

Note that weight vector § lies in an n dimensional space 3 € R™ as in binary
classifier fusion. After finding the weight vector 3, the decision function of gen-
eralized LP-3 is simply the maximum response of the weighted sum of all classes
in all feature channels.

Nonlinear Programming-B (NLP-B): We also propose an extension of mul-
ticlass LP-B [6] with arbitrary regularization norms ¢,,Vp > 1. Instead of having
a weight vector 3, LP-B has a weight matrix B € R"*™¢ . For learning weights
in matrix B, we propose the following convex optimization problem:

1 m
n e LS 12
min - —p+ o ;f (12)
s.t. ZBﬁ"gr,yi () — Z BY gy, (i) > p—& i=1,...,m, (13)
r=1 Y7 Yir=1
IB]F <1, Bf >0, £=0,p>0, Vr=1,..,n,c=1,..,N¢c

The first set of constraints (Eq. (13)) gives a lower bound on the pairwise differ-
ence between classification confidences (margins) of the true class and non-target
class. Note that in this formulation No —1 constraints are added for every train-
ing example and the total number of constraints is m x (Ng — 1) + 1.

Discussion:The main difference between the three multiclass approaches dis-
cussed in this section is in the definition of the feasible region which is defined by
Eq. (9), Eq. (11) and Eq. (13) for NLP-vMC, NLP-8 and NLP-B respectively.
In NLP-8 and Lp-8 [6] the feasible region depends on the difference between
the classification confidence of the true class and the closest non-target class
only. The total number of constraints in this case is m + 1. The feasible region



8 Muhammad Awais, Fei Yan, Krystian Mikolajczyk, and Josef Kittler

of NLP-B and LP-B [6] is defined by the pairwise difference between class confi-
dence of the true class and non-target class added as one constraint at a time. In
other words each difference pair is added as an independent constraint without
having any interaction among each other. There are N¢ constraints for each
example and the total number of constraints is m x (N¢g — 1) + 1. The large
number of constraints makes this approach less attractive for datasets with a
large number of classes. For example, for Caltech101 [4] with only 15 images per
class for training, the number of constraints for LP-B is more than 150 thousand
(15 x 101 x 100 + 1 = 1.5 x 10°). In case of our NLP-vMC, the feasible re-
gion depends upon the joint classification confidence of all the non-target classes
subtracted from the class confidence of the true class. Thus, the feasible region
of NLP-vMC is much smaller than the feasible region of NLP-B. Due to these
joint constraints the total number of constraints for NLP-vMC is m+1, e.g., for
Caltech101 [4] with 15 images per class for training, the number of constraints
for NLP-vMC is only 1516 (15*101+41) which is only 1% of the constraints in
NLP-B. We, therefore, can apply NLP-vMC to large multiclass datasets, as op-
posed to NLP-B, especially for norms greater than 1. Note that the difference
in complexity between NLP-vMC and NLP-3 or binary classifier fusion is the
extended weight vector 3.

4 Extended Stacking

In this section we give a brief overview of stacking proposed in [21]. We then
present an extension to the stacking framework. The main aim of stacking [2]
is to combine the prediction labels of multiple base classifiers C. using another
classifier, often referred to as meta-level classifier. In the first phase, prediction
labels y; for example x; of base classifiers are obtained by leave-one-out or by
v-fold cross validation on the training set. The input to the meta-level classifier
are these prediction labels together with the output label for example ¢ and form
a tuple of the form ((y},...,4y"),y;). By the use of meta-level classifier, stacking
tries to infer reliable and unreliable base classifiers. By using output probabilities
corresponding to each label, the performance of stacking can be improved. The
size of the meta-level training tuple is multiplied by the number of classes in
this case. It has been shown empirically that stacking does not perform better
than selecting the best classifier in ensemble by cross validation [2]. To improve
the performance of stacking they replaced meta-level classifier by a new multi-
response model tree and empirically showed enhancement in performance as
compared to stacking or selecting the best base classifier by cross validation.
We have used SVM as a base classifier. Instead of using the prediction labels,
we use the real valued outputs g,(z;) of the SVM classifier. The input training
tuple for meta-level classifier is of the form (g1 (z;), ..., gn(z;), y;). For multiclass
case we use one vs all formulation within base classifiers, therefore g, maps into
an N¢ dimensional space, g,.(z) — RY¢. The input tuple in this case is multiplied
by the number of classes. We concatenate the outputs of all base SVM classifiers
corresponding to example x; and consider it as an input feature vector for a
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meta-level SVM classifier. We build an RBF kernel by using euclidean distance
between these feature vectors. We refer to this as stacking kernel. To the best of
our knowledge the use of real valued SVM output for base classifiers in stacking
is novel, for both binary and multiclass datasets. We consider the stacking kernel
as a separate feature channel and can then apply MKL or any proposed CLF
scheme, discussed in Section 3, to combine it with base kernels.

5 Experiments and Discussion

This section presents the experimental evaluation of the methods investigated in
this paper on different object recognition benchmarks. These datasets include a
large variety of objects under different poses, scale and lighting condition with
cluttered background in real world scenario. We first discuss the results of the
multi-label datasets, namely, Pascal VOC 2007 and then present the results
for three multiclass datasets, namely, Flowerl7, Flower102 and Caltech101. In
multi-label, classification each example can be associated with a set of labels
as opposed to a single label. We use binary relevance [17], a well know method
for multi-label classification, as it is recommended by the organizers of Pascal
VOC challenge [3]. The MKL results on Pascal VOC 2007 are reported using
binary MKL from SHOGUN toolbox?, and for CLF we have used v-LP-AdaBoost
given in Eq. (6). For multiclass dataset we have used multiclass MKL from the
SHOGUN toolbox. For classifier level fusion we use three CLF schemes proposed
in this paper namely, NLP-vMC, NLP-3 and NLP-B given by Eq.(8), Eq.(10)
and Eq.(12), respectively. We do not have results for higher values of norms
in case of NLP-B, and for some values of norms in case of MKL because their
optimization problems take several days. On the other hand NLP-3 and NLP-
vMC are very fast as compared to multiclass MKL and NLP-B and take few
seconds and few minutes, respectively. Stacking results are presented using the
approach described in section 4. Finally, we present results by combining the
stacking kernel with the base kernels using MKL, NLP-3 and NLP-vMC.

5.1 Pascal VOC 2007

Pascal VOC 2007 [3] is a challenging dataset consisting of 20 object classes with
9963 image examples (2501 training, 2510 validation, and 4952 testing images).
Images include indoor and outdoor scenes, truncated and occluded objects at
various scales and different lighting conditions. Classification of 20 object cate-
gories is handled as 20 independent binary classification problems. We present
results using average precision (AP) [3] and mean average precision (MAP).

In general, kernels can be obtained from various feature extractors. To pro-
duce state-of-the-art results we use 5 kernels from various descriptors introduced
in [12, 19] computed for 2 sampling strategies (i.e., dense and interest points) and
spatial location grids [11]: entire image (1x1), horizontal bars (1x3), vertical bars

2 http://www.shogun-toolbox.org/
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(3x1) and image quarters (2x2). The descriptors are clustered using k-means to
form a codebook of 4000 visual words. Each spatial grid is then represented by
histograms of codebook occurrences and a separate kernel matrix is computed
for each grid. The kernel function to compute entry (¢, j) of the kernel matrix is
based on x? distance between features F; and F;.

K(F;, Fj) = e~ x%ist(Fi.Fy) "

where, A is a scalar for normalizing the distance, and is set to average x? distance
between all features.

We apply Support Vector Machine (SVM) as base classifiers for nonlinear
classifier level fusion schemes and the stacking proposed in this paper and com-
pare them with MKL schemes. The regularization parameter for SVM is in the
set {2(=2.03.710.15)1  The regularization parameter v for different CF methods
is in the range v € [.05,.95] with the step size of 0.05. Both SVM and CF regu-
larization parameters are selected on the validation set. The values for norms for
generalized classifier fusion are in the range p € {1,1+27>73712.3 4 8,10*}.
We consider each value of p as a separate fusion scheme. Note for p = 10000
we get uniform weights which corresponds to unweighted sum or ¢,. Figure 1
shows learnt weights on the training set of aeroplane category of Pascal VOC
2007 for several values of p using CLF. The plotted weights are corresponding to
the optimal value of regularization parameter C' of SVM. The sparsity of learnt
weights can be observed easily for low values of p. The sparsity decreases with
increased p, up to uniform weights (corresponding to £,) achieved at p = 10000.
Weights can also be learnt corresponding to best performing p on validation set.

The mean average precision for several fusion methods are given in Table 1.
Row MKL shows the results for nine MKL methods with different regularization
norms applied to 5 base kernels. Note that MAP increases with the decrease
in sparsity at higher values of norms. Similar trend can be found in CLF. Low
performance of MKL-£1-norm, which leads to sparse selection, indicates that
base kernels carry complementary information. Therefore, the non-sparse MKL
or CLF methods such as £5-norm and ¢..-norm, give better results as reported in
Table 1. Unweighted sum in the case of MKL is performing better than any other
MKL methods which reflects that in case of all informative channels, learning
the weights for MKL does not improve much on this dataset. The proposed
non-sparse CLF (¢3) schemes outperform the state-of-the-art MKL ({2-norm,
ls-norm) by 2 % and 1.1% respectively. The stacking is performing the best
among all the methods and outperforms MKL by 1.5%. Further improvements
can be gained by fusing the stacking kernel together with 5 base kernels in case
of both MKL and CLF. The combination of base plus the stacking kernel under
MKL produced state-of-the-art result on this dataset with a MAP of 66.24%,
and outperforms MKL and CLF by 3.3% and 2.3% respectively.

5.2 Flower 17

Flower 17 [14] consists of 17 categories of flowers common in UK with 80 im-
ages in each category. The dataset is split into training (40 images per class),
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norms _3 _2 1
Fusion Methods 1 (142 142 142 2 3 4 8 loo

MKL 55.42| 56.42 | 58.53 | 61.07 [61.98/62.45]62.61[62.81(62.93
CLF 63.71| 63.94 | 63.97 | 63.98 [63.97|63.97|63.77 |63.69(63.11
Stacking 64.44

MKL (Basc | Stacking) |64.39] 64.55 | 65.06 | 65.75 |66.06]66.23]66.24]66.09]65.93
CLF (Basc 1 Stacking) _ |65.18] 65.20 | 65.45 | 65.57 |65.65]65.63] 65.59 |65.54]65.48

Table 1. Mean Average Precision of PASCAL VOC 2007.

p=1 p=1+2"% p=1427° p= 14271 p=2 p=10%

1 1 1
05’—| I ’_Illll_‘
o _ ll

12345

Fig. 1. Pascal VOC 2007. Feature channels weights learned with various ¢, for CLF(¢},)

validation (20 images per class) and test (20 images per class) using 3 prede-
fined random splits by the authors of the dataset. There are large appearance
variations within each category and similarities with other categories. For ex-
periments we have used 7 RBF kernels from the 7 x? distance matrices provided
online®. The features used to compute these distance matrices include different
types of shape, texture and color based descriptors whose details can be found
n [14]. We have used SVM as a base classifier and its regularization parameter
is in the range {10(-2~1-+3)}, The Regularization parameter for different CLF
is in the range v € {0.05,0.1,...,0.95}. Both SVM and CLF regularization pa-
rameters are selected on the validation set. To carry out a fair comparison, the
regularization parameters and other setting are the same as in [6].

The results given in Table 2, show that the baseline for MKL, i.e., MKL-
avg(loo) gives 84.9% [6], and baseline for classifier level fusion, i.e., CLF({y,)
gives 86.7%. The MKL results are obtained using the SHOGUN multiclass MKL
implementation for different norms. Nonlinear versions of classifier fusion per-
form better than their sparse counterparts as well as state-of-the-art MKL. The
best result in CLF is obtained by the proposed NLP-vMC (¢2) and NLP-8 (¢4).
They outperform the MKL baseline by more than 2.5% and multiclass MKL
by 0.6%. Stacking yields the best results on this dataset, outperforming MKL
baseline by more than 4.5%, MKL by more than 2% and the best CLF method
by more than 1.5%. Combining the stacking kernel with the 7 base kernels us-
ing multiclass MKL also shows similar results. Note that the performance drops
when the stacking kernel is combined with the 7 base kernels using MKL ({o)
or CLF ({). This highlights the importance of learning in fusion methods.
However, when the stacking kernel is combined with the 7 base kernels using
classifier fusion, it produces state-of-the-art results on this dataset, and outper-
forms MKL, the best in CLF and stacking by 3%, 2.3% and 0.8%, respectively.

The second half of Table 2 shows comparison with published state-of-the-art
results. According to our knowledge the best performing method using the 7

3 http://www.robots.ox.ac.uk/ vgg/data,/flowers/17 /index.html
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ML-Methods 1 142 %]14+27"7 2 3 4 8
MKL 87.24+2.7 [74.9£1.7|72.2+3.6(71.2+£2.7| 70.6+3.8 | 73.14+3.9 [81.0£4.0
NLP-3 86.51+3.3 [86.6+3.4(86.61+1.1({86.7+1.2| 87.4+1.5 |87.9+1.8|87.8+2.1
NLP-vMC 85.54+1.3 (86.64+2.0|87.6+£2.2(87.7+2.6(87.8+2.1| 87.7+£2.0 |87.8+1.9
NLP-B 84.64+2.5(84.64+2.4|84.8+2.6(84.8+2.5( 85.5+3.7 | 86.9£2.7 |87.3+£2.7
Stacking 89.4 £+ 0.5
MKL(Base 89.3+0.9 [79.7+2.7|77.6+1.2]74.7+£2.4| 73.842.6 | 77.84+4.3 [86.3£1.9
+Stacking)
NLP-B(Base 90.2+1.5[89.3+0.7(89.6+0.5[89.2+1.6( 89.3+1.2 | 89.1+1.4 [89.0£1.0
+Stacking)
NLP-vMC(Base| 86.1+2.5 [87.3+1.4|88.5+0.5[88.6+0.9] 83.6+0.9 | 88.84+1.1 [88.9£1.2
+Stacking)

Comparison with State-of-the-Art
MKL-prod [6] (7 kernels) 85.5 + 1.2
MKL-avg (¢ ) [6] (7 kernels) 84.9 + 1.9
CLF ({o) (7 kernels) 86.7 + 2.7
MKL-avg (£o) (7 kernels + Stacking kernel) 88.5 + 1.1
CLF (£ ) (7 kernels+ Stacking kernel) 88.8 + 1.4
CG-Boost [6] (7 kernels) 84.8 + 2.2
MKL (SILP or Simple) [6] (7 kernels) 85.2 + 1.5
LP-3 [6] (7 kernels) 85.5 + 3.0
T.D-B [6] (7 kernels) 854 L 2.4
MKL-FDA (¢,,) [23] (7 kernels) 86.7 + 1.2
L.-BRD [22] (30 kernels) 89.0 £+ 0.6

Table 2. Classification Rate on Flowerl?7.

distance matrices provided by the authors is giving 86.7% which is similar to the
CLF baseline. Our best CLF method outperforms it by 1.2% while our stacking
approach outperforms it by 2.7% and our CLF combination of base plus stacking
outperforms it by 3.5%. It is important to note that while comparing fusion
methods, the base feature channels (kernels) must be the same across different
schemes. For example, the comparison of Flower 17 with state-of-the-art in [22]
is not justified as it uses 30 kernels while normally the results are reported using
the 7 kernels provided online. Nevertheless, our best method outperforms this
by 1.2% which can be considered as a significant improvement in spite of using
4 times fewer feature channels.

5.3 Flower 102

Flower 102 [13] is an extended multiclass dataset containing 102 flower categories
commonly present in UK. It consists of 8189 images with 40 to 250 images in
each class. The dataset is split into training (10 images per class), validation
(10 images per class) and test (with a minimum of 20 images per class) using a
split predefined by the authors of the dataset. For the experiments we have used
the 4 x? distance matrices provided online?. The details of the features used to
compute these distance matrices can be found in [13]. RBF kernels are computed
using Eq. (14) and these four distance matrices. The experimental setup is the
same as for Flower 17.

The results are given in Table 3. We have not reported the variance of the
results as the authors of the dataset have given only 1 split online and for a fair

4 http://www.robots.ox.ac.uk/ vgg/data,/flowers/102/index.html
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ML-Methods 1 [1+27%1+27] 2 3 4 8 loo
MKL 69.9 64.7 65.3 65.9 65.7 - - 73.4
NLP-3 61.2 75.7 73.5 74.7 73.0 73.9 74.6 73.0
NLP-vMC 72.6 73.1 73.2 73.3 73.4 73.4 73.4 73.0
NLP-B 73.6 - - - - - - 73.0
Stacking 7.7
MKL(Base+ 79.8 65.9 66.2 65.8 65.5 - 68.9 76.4
Stacking)
NLP-B(Base 79.2 77.8 77.8 78.3 79.0 79.4 80.3 7.2
+Stacking)
NLP-vMC(Base| 77.6 77.3 77.1 77.2 7.2 7.2 77.2 77.2
+Stacking)

Comparison with State-of-the-Art
MKL-prod 73.8
MKL-avg 73.4
MKL [13] 72.8

Table 3. Mean accuracy on Flower 102 dataset.

comparison with previously published results we use the same split as used by
other authors. The baseline for MKL gives 73.4%, and baseline for CLF gives
73.0%. Multiclass MKL is not performing well on this dataset with the best
result achieved by MKL (¢1) and performs 3.5% lower than the trivial baseline.
The best among classifier level fusion is the NLP-3 (¢, 5-3) scheme. It performs
5.8% better than multiclass MKL and 2.3%, 2.7% better than MKL and CLF
baselines, respectively. Note that NLP-vMC is performing worse than NLP-3 as
it has to estimate N times more parameter than NLP-3 in the presence of few
training example per category. We expect NLP-vMC to perform better in the
presence of more training data. Stacking achieves the best results on this dataset
and it performs 7.8% better than multiclass MKL and 4.3%, 4.7% better than
MKL and CLF baselines, respectively. The results can be further improved by
combining the stacking kernel with the 4 base kernels by using MKL or CLF.
However, the performance drops when the stacking kernel is combined with the
4 base kernels using MKL ({,) or CLF (¢ ). This highlights the importance of
learning in fusion methods. We achieve state-of-the-art results on this dataset
by combining the stacking kernel with the 4 base kernels using CLF. This com-
bination performs 10% better than multiclass MKL and 6.6%, 7% and 2.3%
better than MKL baseline, CLF baseline and stacking, respectively. Note that
we are unable to compute the mean accuracy for NLP-B, especially for ¢,-norm
greater than 1, due to a large number of constraints in the optimization problem.
The results for MKL are reported from [13] for comparison. In comparison to
the published results, our best method has an improvement of 7.2% which is a
significant gain. given that we are not using any new information.

5.4 Caltechl101

Caltech101 [4] is a multiclass dataset consisting of 101 object categories and a
background category. There are 31 to 800 images per category of medium reso-
lution (200 x 300). We follow the common practice used on this dataset, i.e., use
15 randomly selected images per category for training and validation, while up to
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50 images per category are randomly selected for testing. The average accuracy
is computed over all 101 object classes. This process is repeated 3 times and the
mean accuracy over 3 splits is reported for each method. In this experiment, we
combine 10 features channels based on the features introduced in [12,19] with
dense sampling strategies. The RBF kernel function to compute kernel matrices
from the x? distance matrices is given in Eq. (14). The experimental setup is
the same as for Flower 17.

ML-Methods 1 1+2%[1+271 2 3 4 8
MKL 68.64+2.2{61.2+1.1{58.1+0.8(57.44+0.7| 57.04+0.6 - 63.94+0.9
NLP-8 69.0+1.8(68.6+2.2{69.1+1.2|69.04+1.4{69.2+1.5|69.0+1.3 [69.0+1.3
NLP-vMC 67.4+2.4/68.7+1.8{68.44+1.0/68.5+0.8] 68.44+0.7 | 68.4+0.7 [68.4+0.7
NLP-B 64.14+0.7 - - - - - -
Stacking 68.0 + 2.4

MKL(Base+ 68.61+2.2(68.9+2.4(68.5+2.5(68.54+2.6| 68.5+2.5 - 69.61+2.2
Stacking)

NLP-B(Base 69.74+1.7{69.3+£2.3(70.0+1.7|70.64+1.8| 70.44+1.4 |70.7£1.9(70.6+1.9
+Stacking)

NLP-rMC(Base|68.1+3.0(69.0+£1.3(69.4+1.3(69.5+1.4| 69.6+1.4 | 69.6+£1.3 [69.7+1.3
+Stacking)

MKL-prod 62.2 + 0.6

MKL-avg ({o) 67.4 + 1.1

CLF ({o) 68.4 + 0.7

MKL-avg ({~) (Base + Stacking) 69.0 £ 1.3

CLF (o) (Base 4+ Stacking) 69.7 + 1.3

Table 4. Mean accuracy on Caltech101 dataset.

The results of the proposed methods are presented in Table 4 and compared
with other techniques. The baseline for MKL gives 67.4% and the baseline for
CLF gives 68.5%. The best result among MKL is achieved by multiclass MKL
(£1). Tt performs 1.2% better than the MKL baseline and performs similar to CLF
baseline. Stacking does not perform well on this dataset. It performs 0.6% better
than the MKL baseline, however, it performs worse than both CLF baseline
and multiclass MKL. Classifier level fusion achieves best results on this dataset
(NLP-8/3)). It performs 1.8% and 0.7% better than MKL and CLF baselines and
performs 0.6% better than multiclass MKL. The results can be further improved
by using the stacking kernel with the 10 base kernels. We achieve state-of-the-art
results on this dataset by combining the stacking kernel with the 10 base kernels
using CLF. This combination performs 3.3%, 2.7%, 2.2% and 2.1% better than
the MKL baseline, stacking, the CLF baseline and multiclass MKL. Note that
we are unable to compute the Mean accuracy for NLP-B, especially for £,-norm
greater than 1, due to a large number of constraints in the optimization problem.

It is well known that the type and the number of kernels have a large impact
on the overall performance. Therefore, a direct comparison of scores with the
published methods is not entirely fair. Nonetheless, it can be noted that the best
performing methods on Caltech101 in [7] and [6] using a single kernel are giving
60% and 61% respectively. The performance in [6] using 8 kernels is close to 63%
while the performance using 39 feature channels is 70.4%. Note that our best
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method gives 70.7% using 10 feature channels only, which can be considered as a
significant improvement, given that we have used 4 times fewer feature channels.

6 Conclusions

In this paper we proposed a nonlinear separable convex optimization formula-
tion for multiclass classifier fusion (NLP-vMC) which learns the weight for each
class in every feature channel. We have also extended linear programming for
binary and multiclass classifier fusion (ensemble methods) to nonlinear separa-
ble convex classifier fusion by incorporating arbitrary norms. Unlike the existing
methods, these formulations do not reject informative feature channels and make
the classifier fusion robust to both noisy and redundant feature channels which
results in an improved performance.

We also extended stacking in the case of both binary and multiclass datasets.
By considering stacking as a separate feature channel, we can combine the stack-
ing kernel with base kernels using any proposed fusion method. We have per-
formed comparative experiments on challenging object recognition benchmarks
for both multi-label and multiclass cases. Our results show that optimal p is
an intrinsic property of kernels set and can be different for different datasets.
It can be learnt systematically using validation set. In general if some channels
are noisy £1-norm is better (sparse weights). For carefully designed features non-
sparse solutions, e.g., {o-norm, are better. Note that both are special cases of
our approaches. The proposed methods perform better than the state-of-the-art
MKL methods. In addition to this, the non-sparse version of the classifier fu-
sion is performing better than sparse selection of feature channels. We achieve
state-of-the-art performance on all datasets by combining the stacking kernel
with base kernels using classifier level fusion.

The two step training of classifier fusion may seem as an overhead. However,
the first step is independent for each feature channel as well as each class and can
be performed in parallel. Independent training also makes the systems applicable
to large datasets. Moreover, in MKL one has to train an SVM classifier in a-step
before getting the optimal weights. As MKL is optimizing parameters jointly,
one may argue that the independent optimization of weights in case of classifier
fusion is less effective. However, as our consistently better results show, these
schemes seem to be more suitable for visual recognition problems. The proposed
classifier fusion schemes seem to be attractive alternatives to the state-of-the-
art MKL approaches for both binary and multiclass problems and address the
complexity issues of the MKL.
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