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Abstract—We study the interaction between two interfering
Gaussian 2-user multiple access channels. The capacity region is
characterized under mixed strong–extremely strong interference
and individually very strong interference. Furthermore, the sum
capacity is derived under a less restricting definition of very
strong interference. Finally, a general upper bound on the sum
capacity is provided, which is nearly tight for weak cross links.

Index Terms—Gaussian MAC, capacity, bounds, strong inter-
ference, very strong interference.

I. I NTRODUCTION

A scenario where several transmitters each want to deliver a
message to a common receiver is known as the multiple access
channel (MAC). This setup models mobile users that want to
communicate with a central base station in a cellular network,
for example. The MAC capacity region is known since 1971
[1], [2].

Another intensively studied model in information theory is
the interference channel (IC). In this model, two transmit-
receive pairs want to communicate while causing interference
to each other. First proposed in 1978 [3], the interference
channel is still not fully understood. Its capacity is knownonly
in special cases, e.g., the very-strong interference regime [4],
the strong interference regime [5], and the noisy interference
regime [6]–[8] where only its sum-capacity is known. The
sum-capacity of the interference channel with mixed interfer-
ence was analyzed in [9].

The MAC and the IC are the two building blocks of the
model considered here. We consider a setup that models two
interfering 2-user MACs. This is a very practical situation
which occurs frequently in cellular networks, where multiple
mobile stations communicate with the base stations in their
respective cells. The degrees of freedom of this setup were
studied in [10] and [11]. We follow the naming in [11] where
the interfering multiple access channel was called the IMAC.
We study this model and obtain new capacity results.

The capacity region of the IMAC is derived for a case
of mixed strong–extremely strong interference. That is, when
at each receiver, one interferer satisfies a strong interference
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condition and the other interferer satisfies an extremely strong
interference condition. In this case, we show that the capacity
region of the IMAC is bounded by the capacity region of
the MAC formed by the two desired signals and the strong
interfering signal at each receiver. This region is achievable by
using Gaussian codes, decoding the extremely strong interferer
first and subtracting it from the received signal, and then
using the capacity achieving scheme for the resulting MAC
to decode the remaining three signals.

A condition for individually very strong interference is
derived, and when this condition is satisfied, interferencedoes
not decrease thecapacity regionof each of the interfering
MACs, i.e., their interference freecapacity regioncan be
achieved. Furthermore, another condition is derived (very
strong combined interference), under which interference does
not decrease thesum capacityof each of the interfering MACs,
i.e., their interference-freesum capacitycan be achieved.

The simple scheme of treating interference as noise at each
receiver gives a sum capacity lower bound for the IMAC.
Using a genie aided approach similar to [6], we obtain a sum
capacity upper bound which, although not coinciding with the
lower bound of treating interference as noise, is fairly tight if
the interference power is low.

II. SYSTEM MODEL

We consider theinterfering MAC (IMAC)channel depicted
in Figure 1, in which two 2-user multiple access channels use
the same transmission resource and therefore interfere with
each other. In this channel, transmitters 1 and 2 would like to
send independent messages to receiver 1, while transmitters 3
and 4 have independent messages for receiver 2. Each of the
two receiver nodes observes the combination of two desired
and two interfering signals.

We constrain our attention to the symmetric real-valued
memoryless Gaussian setting, where the channel inputs are
real numbers, the observation noise is additive Gaussian, and
at each time instance, the channel outputs are given by

Y1 = X1 +X2 + h1X3 + h2X4 + Z1, (1)

Y2 = h1X1 + h2X2 +X3 +X4 + Z2. (2)

Here, h1 and h2 denote the channel coefficients of the un-
desired cross-links. The noise termsZ1, Z2 are independent
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unit variance Gaussian random variables. The channel inputs
Xi are controlled by the corresponding transmit nodei, and
are subject to the average power constraints

E[X2
1 ] ≤ P1, E[X2

3 ] ≤ P3 = P1,

E[X2
2 ] ≤ P2, E[X2

4 ] ≤ P4 = P2.

The channel is therefore completely symmetric with respect
to exchanging the two multiple-access channels. It is parame-
terized by the tuple(P1, P2, h1, h2).

Fig. 1. Multiple access channel with interference. Users 1 and 2 want to
communicate with receiver 1, while users 3 and 4 want to communicate with
receiver 2.

A (n, 2nR1 , 2nR2 , 2nR3 , 2nR4) code for the IMAC consists
of message setsMi = {1, . . . , 2nRi}, four encoding functions
fi : Mi → R

n (one for each transmitting node), and four
decoding functionsgi : Rn → Mi (two for each receiving
node). The probability of decoding error for the codec is

P (n)
e = P (M̂i 6= Mi for somei ), (3)

where the messagesMi are uniformly and independently
drawn from the message sets, and̂Mi are the detected mes-
sages at the receivers, resulting from applying the decoding
functionsgi.

A rate tuple(R1, R2, R3, R4) is achievable in the IMAC if
there exists a sequence of(n, 2nR1 , 2nR2 , 2nR3 , 2nR4) codes
such thatP (n)

e → 0 asn → ∞. The capacity regionC of the
IMAC is the closure of the set of all achievable rate tuples.
The sum capacity is the largest achievable sum-rate

CΣ = max
(R1,R2,R3,R4)∈C

R1 +R2 +R3 +R4. (4)

III. M AIN RESULTS

Before we state the main results of this paper, we need the
following definition for simplicity of exposition. Consider the
MAC channels that are contained in the IMAC.

Definition 1. Let M(S, j, N) denote the multiple access
channel (MAC) from transmittersi ∈ S ⊆ {1, 2, 3, 4} to
receiverj ∈ {1, 2} with additive Gaussian noise of variance
N . Let CM (S, j, N) be the capacity region of this MAC.

It is well-known [12] thatCM (S, j, N) ⊆ R
|S|
+ is specified

by the inequalities

∑

i∈T

Ri ≤
1

2
log

(

1 +
∑

i∈T

h2
ijPi/N

)

, ∀T ⊆ S,

wherehij ∈ {1, h1, h2} is the channel coefficient from theith
transmitter to thejth receiver.

When convenient, we abbreviateM(S, j, 1) asM(S, j) and
CM (S, j, 1) asCM (S, j). The following lemma will be useful
in the proof of subsequent theorems.

Lemma 1. The capacity of the IMACC is included inC , i.e.

C ⊆ C

whereC =






































Ri ≥ 0 :
(R1, R2) ∈ CM ({1, 2}, 1)
(R3, R4) ∈ CM ({3, 4}, 2)
(R1, R2, R3) ∈ CM ({1, 2, 3}, 1) if h2

1 ≥ 1
(R1, R2, R4) ∈ CM ({1, 2, 4}, 1) if h2

2 ≥ 1
(R1, R3, R4) ∈ CM ({1, 3, 4}, 2) if h2

1 ≥ 1
(R2, R3, R4) ∈ CM ({2, 3, 4}, 2) if h2

2 ≥ 1







































(5)

Proof Sketch: The bound on(R1, R2) is trivial since
M({1, 2}, 1) is the interference-free version of the first MAC,
and the presense of interference cannot improve the rates.
Similarly (R3, R4) ∈ CM ({3, 4}, 2). For the other bounds,
assume thath2

1 ≥ 1. If we giveM4 to the first receiver as genie
information, it can construct a less noisy version ofY n

2 from
its own observationY n

1 . Therefore,M3 can then be reliably
decoded fromY n

1 , i.e., (R1, R2, R3) ∈ CM ({1, 2, 3}, 1). The
other bounds are obtained similarly.

A. Capacity with mixed strong–extremely strong interference

Consider the following special case of the IMAC.

Definition 2. The IMAC has mixed strong–extremely strong
interference MSES(i, j) if for i, j ∈ {1, 2}, i 6= j, we have

h2
j ≥ 1 + P1 + P2 + h2

iPi, (6)

h2
i ≥ 1. (7)

wherehi represents the strong interference channel, andhj

the extremely strong one.

The capacity region then follows from this theorem.

Theorem 1. The capacity region of the IMAC with mixed
strong–extremely strong interference MSES(1, 2) is given by

C =







(R1, R2, R3, R4) ∈ R
4
+ :

(R1, R2, R3) ∈ CM ({1, 2, 3}, 1)
(R1, R3, R4) ∈ CM ({1, 3, 4}, 2)







(8)

Note that due to symmetry in the channel, the sets
CM ({1, 2, 3}, 1) and CM ({1, 3, 4}, 2) are in fact equal. A
similar result holds for the other case MSES(2, 1).

Proof Sketch:The outer bound is obtained from Lemma
1. The inner bound is obtained using the following scheme.



Receivers decode the extremely strong interfering signal first
while treating all other signals as noise. That is,Xn

4 is
decoded first at receiver 1 while treatingXn

1 , Xn
2 , andXn

3

as noise, andXn
1 is decoded first at receiver 2 while treating

Xn
2 , Xn

3 , and Xn
4 as noise. This is reliably possible due

to condition (6). Then the receivers remove the contribution
of the decoded interference from their received signal, and
decode the remaining signals in a MAC fashion, achieving
the outer bound.

B. Capacity with individually very strong interference

Inspired by the interference channel with very strong inter-
ference [4], where the presence of cross-links does not impair
the capacity region, we now consider the following special
case of the IMAC.

Definition 3. The IMAC has individually very strong interfer-
ence if

h2
1, h

2
2 ≥ 1 + P1 + P2, (9)

We call this individually very strong, since both cross-link
gains have to satisfy separate conditions.

Theorem 2. The capacity region of the IMAC with individually
very strong interference is

C =







Ri ≥ 0 :
(R1, R2) ∈ CM ({1, 2}, 1),
(R3, R4) ∈ CM ({3, 4}, 2),







(10)

As in the case of the interference channel, the capacity
region is not impaired by the presence of cross-links, i.e.,
the interference-free capacity is achieved. Note that because
of symmetry in the channel, the setsCM ({1, 2}, 1) and
CM ({3, 4}, 2) are in fact equal.

Proof Sketch: The outer bound is given by Lemma
1. This outer bound is achievable as follows. Transmit-
ters use Gaussian codebooks. Each receiver decodes both
interfering signals first while treating both desired signals
as noise. Reliable decoding of interference is possible if
(R1, R2) ∈ CM ({1, 2}, 2, 1 + P1 + P2) and (R3, R4) ∈
CM ({3, 4}, 1, 1 + P1 + P2). Then, each receiver subtracts
the contribution of the interfering signals, and decodes the
desired signals interference free. Reliable decoding of the
desired signals is possible if(R1, R2) ∈ CM ({1, 2}, 1)
and (R3, R4) ∈ CM ({3, 4}, 2). Now if condition (9) holds,
then CM ({1, 2}, 1) ⊆ CM ({1, 2}, 2, 1 + P1 + P2) and
CM ({3, 4}, 2) ⊆ CM ({3, 4}, 1, 1 + P1 + P2) and hence the
regionsCM ({1, 2}, 1) andCM ({3, 4}, 2) are achievable.

As shown in Figure 2, condition (9) guarantees that the
region CM ({3, 4}, 2) (solid blue) is completely contained in
CM ({3, 4}, 1, 1+P1 + P2) (dashed red). The intuition is that
the first receiver can decode the messages from transmitters3
and4 even under the additional noise caused by the first two
transmitters.
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Fig. 2. The interference-free MACM({3, 4}, 2) as compared to
M({3, 4}, 1, 1 + P1 + P2) under the scenarios of Theorem 2 (individually
very strong, IVS) and Theorem 3 (very strong combined, VSC).

C. Sum capacity with very strong combined interference

Now consider a weaker condition than (9).

Definition 4. The IMAC has very strong combined interfer-
ence if

h2
1P1 + h2

2P2 ≥ (P1 + P2)(1 + P1 + P2), (11)

We call this the very strong combined interference regime
because the condition is on the sum of the interference powers
at each receiver. It is clear that individually very strong
interference implies very strong combined interference. The
converse, however, does not hold.

This special case permits the following result.

Theorem 3. The sum capacity of the IMAC with very strong
combined interference is

CΣ = log(1 + P1 + P2). (12)

This means that the sum capacities of the interference-free
MACs M({1, 2}, 1) andM({3, 4}, 2), namely1/2 · log(1 +
P1 + P2) each, are achievable in the IMAC.

Proof Sketch: From the outer bound in Lemma 1, we
know that the sum capacity is upper bounded bylog(1+P1+
P2). Now, by using the scheme in the proof of Theorem 2,
we show that the following region is achievable

C =






(R1, R2, R3, R4) ∈ R
4
+ :

(R1, R2) ∈ CM ({1, 2}, 1)∩ CM ({1, 2}, 2, 1 + P1 + P2)
(R3, R4) ∈ CM ({3, 4}, 2)∩ CM ({3, 4}, 1, 1 + P1 + P2)







Under condition (11), the maximum of the sum of the achiev-
able rates inC is log(1+P1+P2) which is equal to the upper
bound.

An example is shown in Figure 2. Although
CM ({3, 4}, 1, 1 + P1 + P2) (dot-dashed green) is not a
superset ofCM ({3, 4}, 2) (solid blue), it still does not
constrain the sum rate to a value below the sum capacity of
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CM ({3, 4}, 2). Therefore, the overall sum rate of the IMAC
is not impaired by the presence of cross-links.

We note in passing that the achievable rate regionC in the
proof above is a cartesian product, i.e., it does not contain
conditions that couple the two constituent MACs. We therefore
do not expect this region to be optimal in general.

Figure 3 shows the channel parameter range where the
capacity regionsof the interference free MACsM({1, 2}, 1)
andM({3, 4}, 2) are achievable, as compared to the parameter
range where theirsum capacitiesare achievable.

D. Sum capacity upper bound for the IMAC

In this subsection, we provide an upper bound on the sum
capacity of the symmetric IMAC. In [6]–[8], a genie aided
technique was used to obtain a sum capacity upper bound for
the IC that coincides with the simple lower bound of treating
interference as noise. Thus the sum capacity of the IC in the
so-called noisy interference regime was obtained. We use a
similar technique to that used in [6] to obtain an upper bound
for the IMAC. This upper bound is stated in the following
theorem.

Theorem 4. The sum capacity of the IMAC is upper bounded
by CΣ,

CΣ ≤ CΣ , min
ρ∈[−1,1],

η2≤1−ρ2

log

(

1 +
1

η2

(

INR+
A

1− ρ2 + INR

))

(13)

whereINR = h2
1P1 + h2

2P2, and

A = P1(η − ρh1)
2 + P2(η − ρh2)

2 + P1P2(h1 − h2)
2.

Proof sketch: We boundR1+R2 andR3+R4 by using
a genie aided approach similar to [6]. We give receiver 1 the
genie signalSn

1 = h1X
n
1 + h2X

n
2 + η1W

n
1 and receiver 2
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Fig. 4. Sum Capacity upper bound and lower bound for an IMAC with
P1 = P2 = P , h1 = 0.3, andh2 = 0.15.
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Sn
2 = h1X

n
3 + h2X

n
4 + η2W

n
2 where Wi ∼ N (0, 1) and

E[WiZi] = ρi, i = 1, 2. After adding the bounds, we observe
that their sum is maximized by Gaussian inputs ifη2i ≤ 1−ρ2j ,
j 6= i. By evaluating the upper bound for Gaussian inputs, we
obtain the desired expression.

A sum capacity lower bound is obtained by using Gaussian
codes and treating interference as noise, namely

CΣ ≥ CΣ = log

(

1 +
P1 + P2

1 + h2
1P1 + h2

2P2

)

. (14)

In Figure 4, we plot the upper boundCΣ and the lower
boundCΣ for an IMAC with P1 = P2 = P , h1 = 0.3, and
h2 = 0.15. Notice that this upper bound is nearly tight up
to some value ofP . Intuitively, this means that below some
threshold value ofINR, treating interference as noise achieves
sum rate very close to the sum capacityCΣ.

Figure 5 shows the gap betweenCΣ and CΣ in bits per
channel use for an IMAC withP1 = P2 = 5 versush1 and
h2.



IV. CONCLUSION

In this paper, progress has been made towards understanding
the interfering MACs (IMAC) channel. The capacity region
was characterized under various special cases, namely mixed
strong–extremely strong interference, individually verystrong
interference, very strong combined interference. In the oppo-
site extreme, when the interference is weak, a genie-based
upper bound was obtained which is asymptotically tight and
nearly tight for reasonably weak cross links.
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