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Abstract—We study the interaction between two interfering condition and the other interferer satisfies an extremetnst
Gaussian 2-user multiple access channels. The capacity feg is  nterference condition. In this case, we show that the dapac
characterized under mixed strong—extremely strong interérence region of the IMAC is bounded by the capacity region of

and individually very strong interference. Furthermore, the sum . .
capacity is derived under a less restricting definition of vey the MAC formed by the two desired signals and the strong

strong interference. Finally, a general upper bound on the sm  interfering signal at each receiver. This region is actiévay
capacity is provided, which is nearly tight for weak cross lnks.  using Gaussian codes, decoding the extremely strongénéerf
Index Terms—Gaussian MAC, capacity, bounds, strong inter- first and subtracting it from the received signal, and then
ference, very strong interference. using the capacity achieving scheme for the resulting MAC
to decode the remaining three signals.
A condition for individually very strong interference is
A scenario where several transmitters each want to delivederived, and when this condition is satisfied, interferethoes
message to a common receiver is known as the multiple accees decrease theapacity regionof each of the interfering
channel (MAC). This setup models mobile users that want MACs, i.e., their interference freeapacity regioncan be
communicate with a central base station in a cellular ndtworachieved. Furthermore, another condition is derived (very
for example. The MAC capacity region is known since 1974trong combined interference), under which interferermesd
(4], 2. not decrease th&um capacityf each of the interfering MACs,
Another intensively studied model in information theory ise., their interference-freeum capacitycan be achieved.
the interference channel (IC). In this model, two transmit- The simple scheme of treating interference as noise at each
receive pairs want to communicate while causing interfegenreceiver gives a sum capacity lower bound for the IMAC.
to each other. First proposed in 1978 [3], the interferentésing a genie aided approach similar [to [6], we obtain a sum
channel is still not fully understood. Its capacity is knoamly —capacity upper bound which, although not coinciding wité th
in special cases, e.g., the very-strong interference meddly lower bound of treating interference as noise, is fairlytig
the strong interference regime [5], and the noisy interfeee the interference power is low.
regime [6]-18] where only its sum-capacity is known. The

sum-capacity of the interference channel with mixed irterf ) _“' SY_STEM MODEL )
ence was analyzed ifl[9]. We consider thenterfering MAC (IMAC)channel depicted

The MAC and the IC are the two building blocks of thdn Figurell, in which two 2-user multiple access channels use

model considered here. We consider a setup that models the same transmission resource and therefore interfete wit
interfering 2-user MACs. This is a very practical situatio§@ch other. In this channel, transmitters 1 and 2 would like t

which occurs frequently in cellular networks, where mutip S€nd independent messages to receiver 1, while transsritter
mobile stations communicate with the base stations in th&pd 4 have independent messages for receiver 2. Each of the
respective cells. The degrees of freedom of this setup wédf¥ receiver nodes observes the combination of two desired
studied in [10] and[[21]. We follow the naming i [11] where2nd two interfering signals.

the interfering multiple access channel was called the IMAC We constrain our attention to the symmetric real-valued
We study this model and obtain new capacity results. memoryless Gaussian setting, where the channel inputs are
The capacity region of the IMAC is derived for a casé&eal numbers, the observation noise is additive Gaussiah, a

h at each time instance, the channel outputs are given by

|I. INTRODUCTION

of mixed strong—extremely strong interference. That isem
at each receiver, one interferer satisfies a strong intaréer Yi = X1+ Xo+ hi X3+ ho Xy + Z1, 1)
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unit variance Gaussian random variables. The channelsnputlt is well-known [12] thatC* (S, j, N) C R'f‘ is specified
X, are controlled by the corresponding transmit nedand by the inequalities

are subject to the average power constraints )
oz 2 p
E[X?] < P, E[X2] < Py — P, ;RZ < 5 log <1+;h”R/N> , VT CS,
E[X3] < P, E[X]] < Py = P».

whereh;; € {1, h1, ho} is the channel coefficient from thiéh
The channel is therefore completely symmetric with respelénsmitter to thejth receiver.
to exchanging the two multiple-access channels. It is param When convenient, we abbreviaté(S, j, 1) asM (S, j) and
terized by the tuplé Py, Py, hy, hs). CM (S, j,1) asCM(S, j). The following lemma will be useful
in the proof of subsequent theorems.
XI(MI) O\\ 1

hy

Lemma 1. The capacity of the IMAC is included inC, i.e.
ccc
whereC =

(Rl, RQ) S CM({I, 2}, 1)

X5(Mz) O—1
o,

,’hl (R33R4) € CM({374}32)
Ho(Ms) O—, (Ri, R, Rs) € CM({1,2,3),1)if 3 >1 §  (5)
) (Rl,R27R4) S C]M({l,2,4}, 1) if h% >1
by (R1, R3, Ry) € Cij({11374}12) if h; >1
v Ro, Ry, Ry) € CM({2,3,4},2) if h2 > 1
Xo(My) O (Ra, B3, Ra) ({2,3,4},2) if 13

Proof Sketch: The bound on(R;, Rs) is trivial since
Fig. 1. Multiple access channel with interference. Usersnd awant to M ({1, 2}, 1) is the interference-free version of the first MAC,
communicate with receiver 1, while users 3 and 4 want to comicate with 54 the presense of interference cannot improve the rates
i 2. L '
recener Similarly (Rs, Ry) € CM({3,4},2). For the other bounds,
5 : : . .
A (n,2nF 9nRz onfts gnRa) code for the IMAC consists assume thats > 1. If we give M, to the first receiver as genie

of message setst; = {1 9nR:}, four encoding functions information, it can construct a less noisy versionygf from
fi: M; — R" ((;ne for each transmitting node), and foulS OWn observatior¥y". Therefore,M; can then be reliably
Lt ' n o M

decoding functiongy; : R" — M, (two for each receiving decoded fromyy", i.e., (Ry, Rz, Rs) € C7({1,2,3},1). The

node). The probability of decoding error for the codes other bounds are obtained similarly. u

Pe(") — P NI, £ M; for somei ), 3) A. Capacity with mixed strong—extremely strong interfeeen
Consider the following special case of the IMAC.

where the messaged/; are uniformly and independently

drawn from the message sets, ahf] are the detected mes-

sages at the receivers, resulting from applying the degodi

functionsg;. h3 > 1+ P+ P, + ki P, (6)

A rate tuple(R;, Ro, Rs, R4) is achievable in the IMAC if B2 > 1 @

there exists a sequence of, 27t 2nF2 gnks onki) codes =

such thatP™ — 0 asn — co. The capacity regiod of the whereh, represents the strong interference channel, a@nd
IMAC is the closure of the set of all achievable rate tupleghe extremely strong one.

The sum capacity is the largest achievable sum-rate

Definition 2. The IMAC has mixed strong—extremely strong

wterference MSES, j) if for 4,5 € {1,2}, i # j, we have

The capacity region then follows from this theorem.

Ry + Ry + R3 + Ry. (4)  Theorem 1. The capacity region of the IMAC with mixed
strong—extremely strong interference M$ES) is given by

(R1,R2,Rs, Ry) € RY -
Before we state the main results of this paper, we need the C =< (Ry,R2, R3) €CM({1,2,3},1) (8)
following definition for simplicity of exposition. Considé¢he (R, R3, Ry) € CM({1,3,4},2)
MAC channels that are contained in the IMAC.

Cy = max
(R1,R2,R3,R4)€C

IIl. MAIN RESULTS

Note that due to symmetry in the channel, the sets
Definition 1. Let M(S,j, N) denote the multiple accessC™({1,2,3},1) and C*({1,3,4},2) are in fact equal. A
channel (MAC) from transmitters € S C {1,2,3,4} to similar result holds for the other case MSESL).
receiverj € {1,2} with additive Gaussian noise of variance  Proof Sketch: The outer bound is obtained from Lemma
N. LetCM(S, 4, N) be the capacity region of this MAC. [@. The inner bound is obtained using the following scheme.



Receivers decode the extremely strong interfering signstl fi
while treating all other signals as noise. That &} is
decoded first at receiver 1 while treatidg, X7, and X%

as noise, and({" is decoded first at receiver 2 while treating
X3, X3, and X' as noise. This is reliably possible due
to condition [6). Then the receivers remove the contrilutio
of the decoded interference from their received signal, and
decode the remaining signals in a MAC fashion, achieving

0.6} ' <
the outer bound. | ——CM({3,4},2) , .
04r = =M o({3,4}, 1,1 + Py + Py) 5
B. Capacity with individually very strong interference 02t o CM L ({3,4}, 1,1+ P + Py) !
Inspired by the interference channel with very strong inter 0 02 024 06 08 1 312 12 16
ferencel[4], where the presence of cross-links does notirmpa R

the capacity region, we now consider the following special _
Fig. 2. The interference-free MACM ({3,4},2) as compared to

case of the IMAC. M({3,4},1,1 4+ P1 + P») under the scenarios of Theorém 2 (individually

L . trong, IVS) and Th 3 t bined, VSC).
Definition 3. The IMAC has individually very strong interfer- "¢ 51" ) and Theoreff] 3 (very strong combine )

ence if
C. Sum capacity with very strong combined interference

h2,h2>1+4 P + P, 9
b= ' ° ®) Now consider a weaker condition thdd (9).
We call thisindividually very strongsince both cross-link Definition 4. The IMAC has very strong combined interfer-
gains have to satisfy separate conditions. ence if
Theorem 2. The capacity region of the IMAC with individually B3P, 4+ h2Py > (P, + P)(1 + P, + Py), (11)

very strong interference is
We call this the very strong combined interference regime

R >0: because the condition is on the sum of the interference gower
C=<{ (Ri,Ry) €CM({1,2},1), (10) at each receiver. It is clear that individually very strong
(R3, Ry) € CM({3,4},2), interference implies very strong combined interferenclee T

converse, however, does not hold.

As in the case of the interference channel, the capacityThis special case permits the following result.
region is not impaired by the presence of cross-links, i.el,
the interference-free capacity is achieved. Note that lmea
of symmetry in the channel, the se®&“({1,2},1) and
CM({3,4},2) are in fact equal. Cs =log(1 + P, + P). (12)

Proof Sketch: The outer bound is given by Lemma ) N )
M. This outer bound is achievable as follows. Transmit- 1NiS means that the sum capacities of the interference-free

ters use Gaussian codebooks. Each receiver decodes BbfFs M({1,2}, 1) and M ({3,4},2), namely1/2 -log(1 +

interfering signals first while treating both desired signa’1 + F2) each, are achievable in the IMAC.
as noise. Reliable decoding of interference is possible if Proof Sketch: From the outer bound in Lemnid 1, we

(Ri,R2) € CM({1,2},2,1 + P, + P») and (Rs,Ry) € Xnow thatthe sum capacity is upper boundeddyy(1+ P +
CM({3,4},1,1 + P, + P,). Then, each receiver subtracts™2). Now, by using the scheme in the proof of Theorem 2,
the contribution of the interfering signals, and decodess thve show that the following region is achievable

desired signals interference free. Reliable decoding ef th _
desired signals is possible iRy, R;) € CM({1,2},1) —,

and (Rs, Ry) € CM({3,4},2). Now if condition [9) holds, ,
then C?”({l,2}71) C CM({1,2},2,1 + P, + P») and (R1, Ry) € CM({1,2},1)NCM({1,2},2,1+ P + P,)

CM({3,4},2) C CM({3,4},1,1+ Pi + P») and hence the \ (Ff3:Fa) € CY({3,41,2)NCY({3,4}, 1,1+ P + Py)
regionsCM ({1,2},1) andC* ({3, 4}, 2) are achievable. m Under condition[{I1), the maximum of the sum of the achiev-
As shown in Figurd12, conditior[](9) guarantees that thable rates irC is log(1+ P, + P,) which is equal to the upper

regionCM ({3,4},2) (solid blue) is completely contained inbound. [ ]
CM({3,4},1,1+ P, + P,) (dashed red). The intuition is that An example is shown in Figure[]12. Although
the first receiver can decode the messages from transniitted" ({3,4},1,1 + P, + P) (dot-dashed green) is not a
and4 even under the additional noise caused by the first tveoiperset of CM ({3,4},2) (solid blue), it still does not
transmitters. constrain the sum rate to a value below the sum capacity of

heorem 3. The sum capacity of the IMAC with very strong
combined interference is

(Rl,RQ,R3,R4) S Ri :



h2P,

Po(1+ Py + Pg) (P + P2)(1+ P1 + P3)
Sum Rate(bits/channel use)

: ] Individually velry strong' | i i i i
1 I Very strong combined EEi 0 2 4 6 8 10
'E5 Mixed strong-extremely stromg

N

|
I S e it - — - = P
l L, -7 Fig. 4. Sum Capacity upper bound and lower bound for an IMAGhwi
0o p PL(1+ Py + Py) (P1 + P2)(1 + Py + Py) P, =P, =P, hy =0.3, andhs = 0.15.
h2P,
Fig. 3. In the parameter range within the shaded area [[$gettf@)capacity 1

region of the interference free MAC37({1,2},1) and M({3,4},2) is

achievable simultaneously, while in the range within theieally dashed area

(see[(T1)), this holds only for the sum capacities. The botally dashed area 0.8
denotes the parameter range with mixed strong—extremelpgstnterference.

0.6

CM({3,4},2). Therefore, the overall sum rate of the IMAC <
is not impaired by the presence of cross-links. 0.4

We note in passing that the achievable rate redian the
proof above is a cartesian product, i.e., it does not contain
conditions that couple the two constituent MACs. We tharefo
do not expect this region to be optimal in general.

Figure[3 shows the channel parameter range where the % 0.2 04 06 08

0.2

1
capacity regionof the interference free MAC3/({1,2},1) hy
andM ({3,4}, 2) are achievable, as compared to the parameter _
; i ; Fig. 5. This plot shows the gaf’s; — Cy, as a function ofr; andh2 when
range where theisum capacitieare achievable. Py = P, = 5. Each region denotes a Set of paifs, hz) where the gap is
D. Sum capacity upper bound for the IMAC smaller than the indicated valuel, 0.2...

In this subsection, we provide an upper bound on the sum
capacity of the symmetric IMAC. In_[6]=[8], a genie aided_,,
technique was used to obtain a sum capacity upper bound
the IC that coincides with the simple lower bound of treatin t thei : ized by G o St 1 2
interference as noise. Thus the sum capacity of the IC in the, | €Irsum 1S maximized by \>aussian mputsi! =P
so-called noisy interference regime was obtained. We used 3 “ By evalu.atlng the upper bound for Gaussian inputs, we

é)taln the desired expression. [ ]

similar technique to that used inl[6] to obtain an upper bouri : i _ i )
for the IMAC. This upper bound is stated in the following A SUm capacity lower bound is obtained by using Gaussian

= M X5 + ho X} + W3 where W; ~ N(0,1) and
J('/Vl-Zi] = p;, 1 = 1,2. After adding the bounds, we observe

theorem. codes and treating interference as noise, namely
Theorem 4. The sum capacity of the IMAC is upper bounded Co> o —toe (14 P+ Py (14)
by C's, e G W Sy Oy Py )
— 1
Cxy <Cx % min lo <1+—<INR+7)> _
= pel-1.1], & 72 1—p2+INR In Figure[4, we plot the upper bourds, and the lower
nsl-p 13 boundCy, for an IMAC with P, = P, = P, hy = 0.3, and
(13) ho = 0.15. Notice that this upper bound is nearly tight up
whereINR = h2P; + h3P,, and to some value ofP. Intuitively, this means that below some

5 5 5 threshold value ofNR, treating interference as noise achieves
A= Pi(n = ph1)” + Po(n — ph2)” + PrPa(hy — ha)”. sum rate very close to the sum capadity.
Proof sketch: We boundR; + R, and Rs + R4 by using Figure[ shows the gap betweén; and Cy. in bits per
a genie aided approach similar {d [6]. We give receiver 1 tlebannel use for an IMAC withP’, = P, = 5 versush; and
genie signalS? = hi X7 + he X3 + m W and receiver 2 hs.



IV. CONCLUSION

In this paper, progress has been made towards understanding
the interfering MACs (IMAC) channel. The capacity region
was characterized under various special cases, namelydmixe
strong—extremely strong interference, individually vetsong
interference, very strong combined interference. In thgoep
site extreme, when the interference is weak, a genie-based
upper bound was obtained which is asymptotically tight and
nearly tight for reasonably weak cross links.
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