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Abstract 

Flexibility is an indispensable quality attribute of long-living information 
systems. Today’s enterprises heavily rely on information systems for run-
ning their businesses. In domains like banking, insurance, or aviation, in-
formation systems are even a core enabler of competitiveness. In a dy-
namic business world, requirements evolve and software has to follow. 
How much implementation effort a change requires is strongly impacted 
by a system’s architecture. Despite the availability of paradigms like SOA, 
BPM, or EDA, which come with flexibility mechanisms and are widely ex-
pected to bring inherent flexibility, today’s systems are often not as flexi-
ble as expected. A major reason for missing flexibility is the lack of sys-
tematic, constructive support for flexibility in architecture definition 
methods.  

An in-depth characterization of the quality attribute flexibility is our 
foundation for systematically defining flexible architectures for software 
systems. Particular focus is on the role of architecture and on how it can 
contribute to a system’s flexibility. We introduce a metric for flexibility, 
measuring on flexibility scenarios and architecture models. We condense 
key facets of flexibility in a conceptual model. 

The key methodical contribution of this thesis is the constructive support 
for defining flexible architectures. We build on existing architecture defi-
nition methods and enhance them. The detailed characterization of flex-
ibility is crucial for providing constructive guidelines and heuristics for ar-
chitects. Beyond the localization of change impact, the alignment of flex-
ibility mechanisms and business logic is of particular importance for flex-
ibility. Consequently, we support it with design heuristics. Furthermore, 
we support architects with automated, near-real-time feedback on the 
achieved level of flexibility, allowing quick corrections of architectural 
decisions. This is facilitated by a new architectural view, the change im-
pact view, which is modeled by the architect and supports reasoning 
about flexibility. For paradigms like SOA, we show how they can be  
leveraged in architecture design to consequently exploit their flexibility 
potential. This methodical contribution is a conceptual plugin for archi-
tecture definition methods which adds specific support for flexibility. 

With an implementation of the automated flexibility measurement as an 
AddIn of Enterprise Architect, we demonstrate the feasibility of this me-
thodical part. Within a controlled experiment we confirmed the hypothe-
sis that architects come up with significantly more flexible architecture 
designs when they explicitly model change impact views. In projects with 
industrial customers we experienced the effectiveness, efficiency, and 
applicability of the contributions and collected qualitative results.  
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1 Introduction  

“It is change, continuing change, inevitable change  
that is the dominant factor in society today.  

No sensible decision can be made any longer without 
taking into account not only the world as it is,  

but the world as it will be.” 
Isaac Asimov 

1.1 Business Drives IT, and Business Drives (too) Fast 

Today, nearly all enterprise organizations heavily rely on IT-systems1 to 
support their businesses in various ways. Information systems handle the 
increasing amount of data, provide automation of recurring and compu-
tation-intensive tasks, support various types of business processes involv-
ing single persons or even multiple organizations, and guide people 
through their IT-supported tasks.  

IT has become an indispensable and costly asset of organizations. The 
result of this is that IT has conquered a prominent position in enterprises, 
which leads to the danger of IT becoming an end-in-itself and produces 
fancy but useless solutions. Thus, it is important that the roles of busi-
ness and IT are clearly stated and accepted. “Business drives IT” [Len11, 
AH06] summarizes the relationship that IT always has the responsibility 
to provide the best possible support for business, and it is widely accept-
ed by practitioners [Wit07, MER10, Bal09]. Of course, there is also a crit-
ical relationship in the other direction. “IT drives Business” [Len11] ex-
presses that many of today’s business models and business capabilities 
would not exist without IT and IT is a strongly evolving enabler of busi-
ness [MER10], forcing business to change for keeping pace with compet-
itors.  

Business is not static. It must continuously change according to internal 
or external forces in order to stay competitive. That might be to evolve 
business models and differentiators, standardize parts of the business 
that become commodity, conduct mergers with other companies, or 
follow regulatory requirements [Spr05]. “Business drives IT” leads to the 

                                                      
1 IT-System: Also named “Information System” (IT = Information Technology) 

Business 
relies on IT 

Business 
drives IT 

Business 
changes  
require  
IT changes 
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demand for IT-systems to allow fast and cheap changes. This ability is in 
particular decisive for IT-systems supporting the competition and differ-
entiation [GBD08] of an enterprise. Today’s IT-systems are often old and 
have accompanied the history of a company and its business. Over time, 
more and more automation and coverage of business have been 
achieved and the degree of integration among systems has increased. 
These changes are often expensive [Par94] and the resulting systems are 
even more expensive to change. 

Flexibility is the property of IT-systems, which expresses how well an IT-
system supports certain changes to it that are necessary to follow 
changes in business. Intuitively, flexibility measures how easy or cheap it 
is to conduct these changes. In practice, flexibility is widely perceived as 
a key property of IT-systems [GS06, MER10]. Beyond the pure properties 
of the involved IT-Systems, an enterprise also needs the ability to con-
duct the changes of business, organization, and IT in an aligned, con-
trolled, and efficient way. This ability is called “Organizational / Business 
Agility” [Sch04]. Figure 1 illustrates the relationships between business 
and IT as described. Beyond the flexibility of a system, there are many 
other factors that influence how easily changes can be conducted 
[BAA10]. 

Airline industry is an apparent example illustrating the aspects described 
above. The key business of airlines is transporting people or goods from 
one point to another. To provide this service, a large number of business 
processes and IT-systems are necessary (excluding the systems in air-
planes). Important business processes are booking, check-in, or baggage 
handling [LSY11a, Ama11]. While in the early days many of these busi-
ness processes have been done manually, nowadays there is a high and 
even increasing degree of automation. This can be directly observed 
when buying tickets on the internet, checking in online or at the desk, 
and getting baggage delivered quickly and reliable even at huge airports. 
Certainly, not all airlines follow the same business models. On one end 
of the spectrum there are airlines offering high-quality service, on the 

 

Figure 1:  Relationships between business and IT 
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other end there are airlines offering extremely low prices. However, all 
different types of business models highly rely on and are partially only 
enabled by IT-systems. The fact that business demands change of IT-
systems can be observed in all facets. New systems like the ones for self-
boarding have been introduced to reduce cost for required staff at the 
boarding desk [LSY11b]. In the airline industry, acquisitions of smaller 
airlines are quite popular, which leads to large organizations that have to 
harmonize and integrate their IT-systems for saving effects. Regulatory 
requirements in particular are a tough challenge, originating in govern-
ments worldwide or being provided by an organization like IATA (Inter-
national Air Transport Association) [IATA]. Exemplary are the rules about 
the exchange of passenger information provided by the United States 
[EPIC]. If an airline’s IT-systems are flexible enough they can save the air-
line a lot of money for changes and provide the airline with competitive 
advantages by being early on the market. 

Software is the key part of IT-systems that allowed for their big success 
over the last decades. Software development is a critical and costly activi-
ty which has a professional foundation in the discipline Software Engi-
neering [Som07]. The mission of Software Engineering is the construc-
tion and maintenance of large-scale software systems with predictable 
and adequate quality and cost. Software engineering has to cope with 
increasing complexity, which results from the inherent complexity of the 
systems being built, the increasing interconnection of systems and inte-
gration with existing systems, the continuous change of systems, and 
from the collaboration of development teams in complex situations 
[KKN11].  

In order to help control the increasing complexity, Software Architecture 
has emerged as an important discipline in Software Engineering since 
the early 1990’s [PW92, GS94, SG96] and is still strongly improving 
[BCK03, TMD09, RW05]. Software Architecture allows to use appropri-
ate abstractions to put order on complexity and get complexity under 
control. Software Architecture aims at early reasoning and prediction of 
properties of systems under development in order to get important de-
sign decisions right and avoid late and expensive rework [KKN11]. While 
this describes Software Architecture as a discipline, Software Architec-
ture is also something inherent of any software system. In that sense, it 
comprises the most important [TMD09] and often hard to change 
[Fow03] decisions made about a system.  

Flexibility is an important property of IT-systems and thus also software 
has to be flexible in order to follow changes of business. Although soft-
ware is often expected to be easy to change (as it is “soft”), practice 
shows us the opposite. One main reason for that is that changes often 
affect key design decisions made, which has far-reaching consequences 
and is thus costly. That is, flexibility to react on changes strongly depends 
on a system’s architecture and the design decisions made there. Conse-
quently, Software Architecture as a discipline has the responsibility to 

Software 
Engineering 

Software 
Architecture 

Architecture 
determines 
flexibility 
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build, among others, flexibility into a system by making the right deci-
sions [CN10, Naa11].  

Following the need for flexibility, many recent paradigms, trends, and 
technologies (like SOA, EDA, BPM, BRM2) for information systems explic-
itly address flexibility [AH06]. Architecturally, these approaches come 
with architectural mechanisms and technologies that have the potential 
to construct flexible systems.  

Due to this inherent flexibility potential and many marketing activities of 
tool-vendors and consulting companies [IBM06], practitioners expect the 
resulting systems to be flexible and see this flexibility as one of the big-
gest advantages of the approaches [GS06]. For example in the study 
“SOA Check 2010” [MER10], “Increasing Flexibility” was ranked the 
most important strategic goal (29%) which companies aim at when in-
troducing SOA. Not only in 2010, also in 2007, 2008, and 2009, this 
was the top-ranked strategic goal (see Table 1). 

Nevertheless, practice shows that many of today’s IT-systems following 
SOA or other paradigms are not as flexible as expected when looking at 
the propositions of the paradigms.  

In this thesis, we analyze why there are problems with flexibility in prac-
tice and why the state-of-the-art does not solve them. Based on this 
decomposition of problems and reasons, we provide an engineering 
approach that allows to make use of the flexibility potential of today’s 
paradigms, trends, and technologies and to turn it into true flexibility. 

                                                      
2 SOA: Service-Oriented Architecture | EDA: Event-Driven Architecture |  
BPM: Business Process Management | BRM: Business Rule Management 

 

Table 1: SOA Check 2010: “Which strategic goals does your company aim at with SOA?” [MER10] 

Trends with 
flexibility 
potential 

High  
expectations 

Missing  
flexibility in 
practice 

Why? 
What to do? 

� 
This thesis! 

2010 2009 2008 2007

Increasing flexibility 29% 27% 23% 28%

Optimization of processes 21% 21% - -

Reduction time-to-market 16% 14% 15% -

Increasing degree of innovation 10% 8% 9% 9%

Increasing customer satisfaction 5% 3% 13% 13%

Reduction cost 5% 5% 11% 15%

Increasing productivity 2% 7% 14% 13%



 Introduction 

  5 

In practice, business is obviously not always faster than IT. Rather IT of-
ten would allow much faster changes than business can do due to all 
organizational, legal, and social issues. However, business is the leading 
entity and thus it is worth-while to focus on the best possible support by 
IT. 

1.2 Research Method 

As a starting point of this thesis, we motivated that information systems 
in practice often are not as flexible as expected and we mentioned some 
problems this fact might cause. In this section, we outline the research 
method that has been applied for addressing this industry problem. The 
approach is also illustrated in Figure 2.  

The industry problem described is identified in several architecture con-
sultancy projects that Fraunhofer IESE conducted with customers from 
industry. Additionally, the problems and the background are confirmed 
by a review of articles on the state-of-the-practice. In order to work to-
wards a solution, we analyze the industry problem and identify main rea-
sons causing it. With the help of these reasons we are able to state more 
detailed goals for improvement. We describe the problem statements 
and their decomposition in Section 1.3. 

To achieve the improvement goals, we first select promising research 
directions based on general ideas from software engineering and soft-

 

Figure 2:  Research method of the thesis 
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ware architecture in particular. With the help of these solution direc-
tions, we check the current state-of-the-art and identify a set of derived 
scientific software engineering research challenges. Solutions to these 
research challenges are expected to contribute to the solution of the in-
dustry problem. The research ideas to the research challenges can be 
classified into different categories that are typical in software engineer-
ing. First, there are foundational aspects like terminology definition and 
model building. Second, there are methodical aspects that introduce 
new approaches and procedures as to how to improve certain engineer-
ing activities. Third, there are tool aspects that are necessary to enable 
practical applicability and scaling of the methods to industry-size engi-
neering projects. All these solution aspects are based on and integrated 
into Fraunhofer IESE’s architecture method ACES (Architecture-Centric 
Engineering Solutions). We applied the solution ideas early and partially 
in projects with our customers and iteratively refined the research chal-
lenges and solution ideas. We outline the key research directions, de-
rived research challenges, and the research ideas in Section 1.4.  

We formulate hypotheses as a prerequisite to validate our solution ideas 
[WRH+00, ER03]. At the level of the research challenges, we formulate 
internal hypotheses, which we partially evaluate in experimental settings. 
At the level of the industry problem, we formulate external hypotheses 
which are supported by project experiences. We present the hypotheses 
in Section 1.4.   

We explicitly describe the scope and context of the contributions and 
summarize the key assumptions made in Section 1.5. All research contri-
butions are summarized in Section 1.6.  

1.3 Problem Statement 

According to our research method described in Section 1.2, we summa-
rize in this section the industry problem, analyze the reasons for missing 
flexibility and derive research challenges to be solved in order to over-
come the problems in practice. 

Industry Problem  

As motivated in Section 1.1, missing flexibility is an important practical 
problem of today’s information systems. Even systems following para-
digms like service-orientation which offers concepts for flexibility and is 
expected to lead to flexibility, are often not as flexible as expected. We 
summarize these industry problems (I.P) in problem statements and con-
firm their relevance in a more detailed discussion.  

Hypotheses 
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I.P1: Information systems based on Service-Oriented Architecture are, in 
practice, often not as flexible as needed. 

I.P2: The flexibility potential of the paradigm Service-Oriented Architec-
ture is, in practice, often not exploited. 

In order to confirm the practical relevance of the industry problems iden-
tified, we look at two important aspects of the problems: frequency and 
severity. 

Frequency: The number of organizations using SOA as a paradigm to 
organize their IT-systems has continually been growing over the last 
years. The survey SOA Check 2010 [MER10] reports that the number of 
enterprises (participating in the study) using SOA increased from 31% in 
2007 to 63% in 2010. Table 1 also describes that flexibility is the most 
important strategic goal of enterprises when adopting SOA for their IT-
systems. At Fraunhofer IESE, we recurringly observed in projects with 
customers from industry that the flexibility of SOA-based information 
systems was not as good as expected (changes took more than three 
times as long as expected) and as it would be possible. Also in several re-
search projects that applied SOA as a key architecture style for building 
software systems, we came to the conclusion that the systems were not 
as flexible as expected. Still, there is an extremely large number of legacy 
information systems in use in enterprises. The increasing business pres-
sure on enterprises to integrate their IT-systems will lead to a further 
growing adoption of SOA or similar paradigms [GBD08, MER10]. Thus, it 
is important to appropriately apply the paradigm at an early point in time 
to achieve the flexibility needed. 

Severity: Conducting a particular change in an IT-system with ideal flex-
ibility is possible with little effort and time. On the other end of the spec-
trum, changes are possible that are so massive and have far-reaching ef-
fects that the resulting cost is similar to developing the system new. Typ-

Statement 

Relevance 

 

Figure 3:  Cost in IT and business caused by missing flexibility 
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ically, the cost for changes is of course not that high, but can easily cost 
several 10.000 or even 100.000 EUR and take months to even years, de-
pending on the IT-system and the change at hand. In the overall life-
cycle of a system, maintenance causes a large amount of the overall cost 
[Fri09]. Changes become particularly expensive when they lead to archi-
tectural mismatches that have to be resolved [GAO09] or when they af-
fect aspects of the system that require crosscutting solutions [Moo08, 
Fri09]. At the first glance these costs are costs for a development organi-
zation or an IT department of an organization only. However, as de-
scribed in Section 1.1, there is this strong dependency of business on IT. 
This means that missing flexibility leads to deferred changes of IT systems 
and thus to missing or delayed support for business, which can cause 
higher cost than changing the IT systems (see Figure 3). Awareness has 
increased that time-to-market or speed in software industry are abso-
lutely crucial for business success [Bos10, KL10]. This speed of change is 
prevented by inflexible IT-systems and thus the impact of missing flexibil-
ity is much higher than only the cost for changing the IT-systems. Miss-
ing flexibility of IT-systems supporting key business processes causes im-
mediate competitive disadvantages, which might cost millions of EUR. 

In accordance with the industry problems described we formulate the 
following industry level goals to be addressed in this thesis. 

I.G1: Support architects in constructing SOA-based information systems 
with improved flexibility. 

I.G2: Support architects in better exploiting the flexibility potential of ar-
chitectural mechanisms provided by the SOA paradigm. 

On the way towards achieving G1 and G2 it is crucial to reveal reasons 
why SOA-based information systems are not as flexible as expected and 
as the architectural mechanisms of SOA would allow. Thus, we describe 
in the following which reasons can be found leading to the problems de-
scribed. Based on these reasons we can refine G1 and G2 into research 
challenges. 

Identification of Reasons for Industry Problems 

We stated that an identification of reasons for missing flexibility in prac-
tice, despite appropriate architectural mechanisms that are in place, is 
necessary. Therefore, we first characterize the situation in which the 
problem arises. 

Typically, missing flexibility is not discovered when a system is built. It is 
rather discovered when changes have to be conducted in already fin-
ished system parts, an existing system, or an existing landscape of sys-
tems. We assume a software developer who has to conduct a certain 
change to a system or landscape of systems originating in a demand of 

Goals 

Situations in 
which flexi-
bility prob-
lems arise 
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business. This developer has to find out where the change has impact 
and which parts of the implementation have to be changed. If the 
changes cause hard effort, the system is said to be inflexible with respect 
to the change at hand. This is reflected in Definition 1, which is rather an 
intuitive definition. We will introduce a more formal definition in Chap-
ter 4. 

Definition 1 Flexibility (Intuitive) 

Intuitively, flexibility is the degree to which a system supports a set of an-
ticipated changes to its requirements. [adopted from CK06, Naa09] 

Obviously, the problem of effort and cost intensive changes is not 
caused in the situation when the change is conducted but when the 
system has been built or maintained which was at an earlier point in 
time in the life-cycle of the system.  

There are different potential sources of effort and cost intensive chang-
es, which can be classified according to product aspects, process aspects, 
and organizational aspects [LSR07]. Product aspects typically manifest in 
inadequate architectural decisions that cause widespread impact of the 
changes. Process aspects can express in adequate guidance to changes 
and expensive manual rebuilds of the system. Organizational aspects can 
express in unclear responsibilities for system parts which delay the reali-
zation of changes. However, the product is the key part in achieving flex-
ibility and it has to be appropriate as a foundation for the other aspects. 
Thus, we focus on architectural aspects of flexibility in this thesis, only. 
Definition 2 gives a definition of software architecture that will guide our 
further analysis of the problem. 

Definition 2 Software Architecture  

“A software system’s architecture is the set of principal design decisions 
made about the system.” [TMD09] 

For the further analysis of flexibility problems, we classify all types of 
potential changes to a system in a set notation [Naa11]. The classifica-
tion is mainly along two questions: Are the changes demanded by 
stakeholders? Are the changes possible according to the architectural 
decisions made about the system? As a prerequisite, we introduce defini-
tions in order to allow the classification. 

Definition 3 Flexibility Requirement  

A flexibility requirement is a requirement that expresses the potential 
need for changing the set of requirements of a software system in the 
future. 

Life-cycle 
aspects 

Focus:  
product /  
architecture 

Sets of 
changes as 
basis for 
analysis 
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Definition 4 Architecture Mechanism  

An architecture mechanism can be any type of architectural style, pat-
tern, tactic, etc., which is introduced in architecture design in order to 
address requirements. Architecture mechanisms are often realized by in-
frastructure technologies, which means that using such a technology 
means to introduce the respective architecture mechanism. 

Flexibility is facilitated by architectural mechanisms that allow changes to 
be conducted with as local and little effort as possible [Naa11]. For a giv-
en architecture of a system, it can be analyzed whether a certain change 
can be done with low effort, that means whether the system is flexible 
with respect to the change. Then, we say the change is in the flexibility 
potential of a system. 

Definition 5 Flexibility Potential  

The flexibility potential of a system is the set of all potential changes to 
requirements that can be realized with acceptable effort.  

This leads to a very important point: Only having the right architectural 
mechanisms (see Definition 4) in place in a system does not guarantee 
that flexibility is really achieved. For example, the architecture decision to 
organize the business logic along a uniform structure of services with 
clear interfaces is a good supporter of flexibility, but without knowing 
how the business logic is mapped (see Definition 6) to the services it 
cannot be decided whether the system is flexible with respect to particu-
lar change requirements. We demonstrate this significant difference in 
the upcoming example.  

Definition 6 Business Logic Mapping (BLM)  

Business Logic Mapping denotes the mapping of business logic to archi-
tectural element types, which are defined by a general architecture me-
ta-model or introduced by the application of particular architectural 
mechanisms. 

Consequently, we introduce a differentiation between 1) the flexibility 
potential that would be possible with the architecture mechanisms se-
lected and applied in a system and 2) the flexibility potential that remains 
after the business logic mapping has been done. The latter is by defini-
tion a real subset of the first one. This distinction is highly relevant for 
our characterization of flexibility. Figure 4 illustrates the resulting sets of 
potential changes and is explained in detail in the following. Below, we 
use the example from the airline domain to illustrate the different types 
of changes and the associated problems. 
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(0) All potential Change Requirements 
As described above, we start with the (hypothetic) set of all poten-
tial change requirements to a system. Please note that this set can-
not be written down; it is a mental support for the classification. 

(1) Flexibility Requirements 
The set of change requirements as defined in Definition 3. 

(2) Flexibility Potential of Architecture Mechanisms 
The set of change requirements that can be done with low effort in 
a system under the assumption that an appropriate BLM was done. 
This is a hypothetic set, which is a mental support for the classifica-
tion. 

(3)  Flexibility Potential Considering BLM 
The set of change requirements that actually can be done with low 
effort in a system. This is the actual flexibility potential as described 
in Definition 5. 

(4) Matching Flexibility Potential and Requirements 
The set of change requirements that are on the one hand demand-
ed (flexibility requirements) and on the other hand also in the actual 
flexibility potential.  

(5) Flexibility Requirements Missed due to BLM 
The set of change requirements that is demanded as flexibility re-
quirements and could be covered with the flexibility potential of the 
architecture mechanisms, but which is missed due to the chosen 
BLM. This is one key reason why SOA-based systems are in practice 
often not as flexible as expected, because BLM is often not seen as 
an architectural task and thus not done with the flexibility require-
ments in mind. 

 

Figure 4:  Set representation of requirements around flexibility 
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(6) Flexibility Requirements Missed due to Missing Arch. Mech. 
The set of change requirements that is demanded as flexibility re-
quirements but that is not addressed by any architecture mecha-
nisms providing the necessary flexibility potential.  

(7) Flexibility Potential beyond Requirements (after BLM) 
The set of change requirements that is provided as flexibility poten-
tial by a system but that is not demanded as flexibility requirements. 

(8) Flexibility Potential beyond Requirements (Arch. Mech. only) 
The set of change requirements that could be provided as flexibility 
potential based on the given architecture mechanisms, but with a 
different BLM. However, the requirements are not demanded as 
flexibility requirements. This set is not of much relevance and only 
included for reasons of completeness. 

To illustrate the key points described above, we come back to an exam-
ple from the airline industry. Please note that the example is strongly 
simplified with respect to the functionality described and to the detail of 
architecture modeling. It is restricted to the aspects needed to explain 
our points related to flexibility. The flexibility requirements are also sim-
plified in the sense that they all focus on business process aspects, which 
allows keeping the architecture modeling as simple as it is. Of course 
there are also other types of flexibility requirements which will be intro-
duced in Chapter 4.  

The example at hand is a CheckIn system that allows running a process 
with passenger identification, seat assignment and baggage handling 
(see Figure 5a).  

The following architectural decisions have been made and are also mani-
fested in architectural views shown in Figure 5b: 

� Service-orientation is used to organize the business logic (Architec-
ture mechanism) 

o Services provide encapsulated business logic 

o Separation between services and business process 

� Business processes are realized with descriptive process definition, 
which is executed by a BP Engine (Architecture Mechanism) 

� The user interface is automatically generated for business process 
steps by an UI Engine and can handle sequential handling of process 
steps (Architecture Mechanism) 

� Three services are provided: Identify, Seating, Baggage (BLM) 

� One process is defined with the sequence: Identify, Seating, Baggage 
(BLM) 

Example 
from airline 
industry 

Functionality 

Architecture 
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� A passenger is the key entity; seats and baggage items are assigned 
to passengers 

Having the architecture designed with architectural decisions as de-
scribed, we now look at flexibility requirements and how well they are 
supported by the architectural decisions. 

We illustrate with different flexibility requirements (all belonging to set 
(1)), what makes them fall into the sets (4), (5), and (6). 

FR1:  Change in the CheckIn process the order of Seating and Baggage. 
This change should be easily possible by adapting the declarative 
process definition, as Seating and Baggage don’t have a correlation, 
they are only correlated to the identified passenger.  

� Matching flexibility requirement and flexibility potential (4) 

FR2: Change in the CheckIn process the order of Identify and Seating. 
This change is not easily possible as Seating needs a passenger to 
which a seat can be assigned. That means to conduct this change 
would mean to change at least the Seating service and the way 
how a seat can be first reserved and then assigned to a passenger 
after the identification. In principle, this change requirement would 
be possible with the architecture mechanisms, but the BLM pre-
vents it. 

� Flexibility Requirement Missed due to BLM (5) 

FR3: Change the CheckIn process in a way that Seating and Baggage can 
be worked on in parallel on the same screen. 

 

Figure 5:  a) CheckIn process b) Simplified architecture of airline system 
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This change is not easily possible as the UI Engine only supports se-
quential processing of process steps. Conducting that change 
would at least require a significant change to the UI Engine and to 
the interplay with the BP Engine. That means that the appropriate 
architecture mechanisms to support this change are not in place. 

� Flexibility Requirements Missed due to Missing Arch. Mech. (6) 

This example illustrates the key sets of change requirements as intro-
duced in our model ((1), (4), (5), (6)). The other sets are rather hypothet-
ical and cannot be enumerated, but they are very helpful to construct 
and understand the model. In the following, we will summarize the re-
sults from this classification and the derived reasons for missing flexibil-
ity. 

Analysis Summary and Resulting Goal Hierarchy 

Analyzing the reasons for missing flexibility can be done best from the 
perspective of flexibility requirements. In the previous section, we sepa-
rated flexibility requirements in three subsets. Based on these three sub-
sets, we can highlight reasons for missing flexibility now. 

(6) Flexibility Requirements Missed due to Missing Arch. Mech. 
In this case, a flexibility requirement has explicitly not been ad-
dressed, either because it was not known or because it was deliber-
ately dropped due to some architectural decision making, or be-
cause some design mistakes happened. 

(5) Flexibility Requirement Missed due to BLM 
In this case, a flexibility requirement is not in the flexibility potential 
although architectural mechanisms are in place that would allow 
for it. However, the chosen BLM prevents covering the flexibility re-
quirement by the flexibility potential. This case, which is often expe-
rienced in practice, happens when developers believe they would 
directly achieve flexibility by applying particular architecture mecha-
nisms, which is not true as shown above. 

(4) Matching flexibility requirement and flexibility potential 
In this case, a flexibility requirement is covered by the actual flexibil-
ity potential of a system, resulting from the architecture mecha-
nisms and the BLM. This is the desired case for all flexibility re-
quirements. In order to express this explicit match of flexibility re-
quirements and flexibility potential, we introduce the term “True 
Flexibility” in Definition 7. Typically, when one speaks of the flexibil-
ity of a system, this is exactly what True Flexibility means, namely 
the flexibility with respect to anticipated flexibility requirements.  
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Definition 7 True Flexibility  

True flexibility denotes the set of matching flexibility requirements and 
actual flexibility potential.  

Figure 6 (left) depicts True Flexibility as a real subset of the Flexibility Re-
quirements, as often found in practice. The goal to be addressed in this 
thesis in order to support the industry level goals I.G1 and I.G2 is to, vis-
ually speaking, move the Flexibility Potential over all Flexibility Require-
ments and thus achieve True Flexibility for all Flexibility Requirements. 
This is formulated as I.G3, which can be decomposed into two sub-
goals.  

I.G3: Improve the degree to which a system’s flexibility potential covers 
its flexibility requirements. (Point in time: Over full life-cycle of system) 

Derived from Figure 4, it can be seen that the sets (5) and (6) have to be 
reduced or eliminated. Reducing set (5) means to improve the BLM for 
the given flexibility requirements. Reducing (6) has two aspects: First, al-
ready anticipated requirements have to be addressed with appropriate 
architecture mechanisms and BLM. Second, the anticipation of flexibility 
requirements at the point in time when the system is constructed can be 
improved. The following two sub-goals express these aspects. 

I.G3.1: Improve the degree to which a system’s architecture mechanisms 
and BLM cover anticipated flexibility requirements. (Point in time: When 
the system is constructed / maintained) 

I.G3.2: Improve the degree to which flexibility requirements are appro-
priately anticipated when a system is constructed / maintained. 

Figure 7 illustrates the relationships among the industry problems and 
the industry goals as described in this section. 

1.4 Solution Ideas and Hypotheses 

After defining and focusing the problem domain in the previous section, 

 

Figure 6:  Illustration of true flexibility 
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we now concentrate on necessary research to address the identified 
goals. Practical problems can potentially be addressed with many differ-
ent solution ideas resulting in completely different contributions. There-
fore, we first outline research directions, the initial ideas how to address 
the goals. Based on these research directions (R.D), we outline research 
challenges (R.C) not covered by the current state-of-the-art. To solve 
these research challenges, we sketch our research ideas (R.I) and finally 
state research hypotheses (R.H) about expected improvements. 

Research Directions  

We describe research directions (R.D) as general ideas, where research 
contributions should be made in a way that the industry goals stated be-
fore can be addressed. We introduce a separation of research directions: 
First, we consider it necessary to extend architecture design methods in 
general to give better support for flexibility, independent of SOA-
specifics. Second, we see the incorporation of SOA-specifics as a promis-
ing direction to guide architects even better towards the exploitation of 
the provided flexibility potential. 

As a basis for methodical contributions, we need a clear foundation of 
concepts and terminology. 

R.D1: Clarify theoretical foundation of relationship between flexibility 
and architecture. 

Improving the architecture design process with respect to a specific 
property of the system under design, in our case flexibility, can be done 
with constructive and analytical support. Constructive means to give the 
architect more specific guidance in the design process in order to achieve 
the system properties. Analytical means to give the architect feedback on 
the level of achievement of the property in order to allow quick rework 
cycles. We include both variants as research directions. 

 

Figure 7:  Derivation of industry goals 
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R.D2: Enhance architecture design processes to guide architects towards 
alignment of architecture mechanisms and BLM with respect to flexibil-
ity. 

R.D3: Move flexibility measurement from a manual and often neglected 
task to an automated solution, which allows continuous feedback about 
a system’s flexibility to the architect. 

After equipping the architecture design process with specific support for 
flexibility, we also want to benefit from the fact that the class of systems 
we deal with is restricted to SOA-based information systems.  

R.D4: Integrate SOA-specific architecture mechanisms with the architec-
ture design process for optimized exploitation of flexibility potential. 

Research Challenges 

Each of the described research directions bears research challenges. In 
the following, we describe the research challenges (R.C) addressed in 
this thesis. They are directly mapped to the research directions, as also 
depicted in Figure 9. For each research challenge we describe very briefly 
the gap to the state-of-the-art, which is presented in detail in Section 3. 

R.C1: How can the relationship between flexibility and architecture be 
precisely characterized and how can this be used for 1) better elicitation 
of flexibility requirements, 2) more guidance for architecture design, 3) 
measurement of flexibility? 

In the state-of-the-art, the relationship between flexibility and architec-
ture is characterized from many perspectives, in particular in the context 
of evaluation of flexibility. We have to synthesize a consistent meta-
model which serves all aspects from flexibility requirements over archi-
tecture to the concrete realization at code-level. In particular the con-
structive aspect is missing in related work, which has to be extended. 

 

R.C2: How can an architecture construction process support architecture 
design for flexibility with appropriate architectural mechanisms and busi-
ness logic mappings? 

In the state-of-the-art, flexibility as a quality attribute is not in the focus 
of specific guidance in architecture definition approaches. However, ar-
chitecture mechanisms like styles and patterns offering flexibility poten-
tial are widely published. Existing approaches rather focus on functional 
decomposition or abstract design for quality attributes, but in particular, 
the combination always stays very abstract and is a gap to be filled by 
this thesis. 

SOA-specific 
aspects 
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R.C3: How can the flexibility of an architecture under design be auto-
matically predicted for near-time feedback on flexibility to an architect? 

In the state-of-the-art, analyzing architectures for flexibility (or maintain-
ability, modifiability, …) is the best-populated field. Many approaches 
focusing on different aspects exist, like the estimation of resulting 
change costs or the judgment of investments into flexibility. However, all 
these approaches need human involvement for evaluating the impact of 
changes on the system. We do not provide completely new flexibility 
metrics but want to come up with an idea as to how the analysis can be 
automated using metrics similar to the ones used in previous approach-
es. 

 

R.C4: How should architectural information about paradigms / technolo-
gies like SOA be described and used in architecture construction in order 
to exploit their flexibility potential? 

In the state-of-the-art, architecture mechanisms of SOA are often de-
scribed in much detail, but without pinpointing the flexibility potential. 
The flexibility potential is mostly rather implicitly assumed. We aim at 
making this flexibility potential more explicit in order to systematically 
exploit it during architecture definition. 

Research Ideas 

For each research challenge, we describe a short summary of the key re-
search ideas (R.I) addressing the challenge. A comprehensive elaboration 
of the ideas is given later in the thesis. 

R.I1: We decompose flexibility and architecture as concepts and clarify 
the relationships, as already started in Section 1.3. In particular, the role 
of architecture mechanisms and business logic mapping are central. We 
reflect that architecture is only an abstraction of implementation and a 
means to master the complexity. We build a conceptual model describ-
ing the relevant concepts connecting flexibility and architecture as a ba-
sis for engineering support. We use architectural knowledge to support 
working with flexibility requirements.  

Architects doing architecture design have to make decisions in order to 
balance and achieve quality attributes. In the architecture design process, 
we want to better support architects in addressing flexibility. 

R.I2: We provide a methodical extension to existing architecture design 
methods with a specific focus on flexibility. Therefore, we combine as-
pects of methods concentrating on functional decomposition and as-
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pects of methods focusing on quality driven design. We make the com-
bination concrete and guided by relating the process steps to concrete 
architectural element types (e.g. business and infrastructure elements) 
which are introduced to support the alignment of architecture mecha-
nisms and business logic mapping. We give heuristics for the process 
steps. 

Architects have to judge whether the architectural decisions made lead 
to the flexibility potential needed. This needs analysis and due to missing 
practical metrics for flexibility architects often do not analyze explicitly. 
Further, an architect has to deal with many different requirements that 
need addressing with different architectural solutions. Evolving the archi-
tecture design might harm already designed solutions for flexibility, 
which needs recurring analysis. Thus, we want to give architects contin-
uous and automated feedback on the current flexibility. 

As we defined flexibility relative to a set of flexibility requirements, the 
automated measurement of flexibility cannot operate only on an archi-
tecture model, but it has to consider the flexibility requirements. Fully 
formalizing flexibility requirements and putting them into relation to an 
architectural model does not seem to be a practical approach. Thus, we 
take a different approach: 

R.I3: We extend the architecture model to include all information for the 
automated analysis. This becomes possible by including the information 
how the architecture addresses the flexibility requirements. Concretely, 
that means that an architect has to model the impact of a change re-
quirement in the architecture model. We provide appropriate modeling 
notations to include this piece of information. The architect has to rea-
son about this in any case, now he also puts it explicitly into the model. 
We extend a modeling tool (Enterprise Architect) to automatically calcu-
late and display the current flexibility of a system under design.  

Finally, we improve the exploitation of flexibility potential of SOA archi-
tecture mechanisms. 

R.I4: We analyze the key architectural mechanisms of SOA for their flex-
ibility potential and how it should be used. This information is packaged 
for usage in the architecture design process.  

An overview of all presented research ideas and how they relate to a 
simplified description of an architecture design process is depicted in 
Figure 8. We give a more precise description of scope and context in the 
next section.  
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Research Hypotheses 

In alignment with our research ideas R.I1 (Conceptual Model), R.I2 (De-
sign Support), R.I3 (Evaluation Support), and R.I4 (SOA Flexibility Mecha-
nisms), we define research hypotheses. The research hypotheses address 
each research idea separately; additionally, we define research hypothe-
ses spanning across the ideas. Our research hypotheses cover the aspects 
Validity, Effectiveness, Efficiency, and Applicability. With our hy-
potheses, we sketch the space of expected benefits of our contributions 
(see Section 7.1).  

For a concrete and detailed validation, we focus. One aspect of the ef-
fectiveness of our flexibility evaluation contribution is the following hy-
pothesis: “By explicitly describing how a flexibility solution for a particular 

 

Figure 8:  Research ideas in the context of architecture design 

 

Figure 9:  Relationship between research directions, challenges, and ideas 
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scenario works, architects produce more flexible architectures.” We fur-
ther refine this hypothesis and evaluate it in an experiment. In the exper-
iment and in projects with industry we collected further qualitative re-
sults for additional hypotheses. 

Summary 

In this section, we elaborated the ideas how to address the industry 
problems and goals presented in Section 1.3. The research ideas in 
summary provide the solution for the goals; thus there is no concrete 
mapping. An overview of the directions, challenges, and ideas and their 
relationships is depicted in Figure 9. 

1.5 Scope, Context, and Assumptions 

The previous section described the ideas underlying this thesis. In order 
to ease understanding of the ideas and how they contribute to the 
goals, this section pinpoints the scope of the contributions and thus de-
scribes the context and assumptions made. 

 

Figure 10:  Scope and context of the thesis 
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As described in Section 1.1, business demands quick changes of support-
ing IT-systems. This thesis focuses its contributions on IT, and in particu-
lar on software engineering, but of course always aligned with the needs 
of business. 

The practical problem motivated in Sections 1.1 and 1.3 have SOA-
based information systems as a background. That is, the contribution 
is best tailored for this type of systems. It addresses both, single sys-
tems and landscapes of systems that are architected with service-
orientation. One key assumption when optimizing flexibility is that the 
systems are under control of the architect. If not, the measurement of 
flexibility still works and provides helpful insights for potential worka-
rounds. As a large part of our contributions is not system-specific, they 
are also transferrable to other system types like embedded systems. 

In Section 1.3, we described that architecture, development process, and 
organizational aspects are all relevant in order to achieve quick reactions 
on change requests. In this thesis, we concentrate on architecture as-
pects only, which means we bring the system into a shape that is the 
foundation of quick reactions on change requests. 

If changes to the behavior of a system are necessary, these changes can 
be principally conducted at development time or at runtime. Changes 
made at runtime are in any case already incorporated into a system and 
require self-monitoring of the system in order to recognize which con-
figuration of behavior to expose. We focus in this thesis on DevTime 
changes (see Figure 10a). All flexibility requirements are future but 
(potentially) anticipated requirements. They have not been realized yet 
but have to be realized by changes to the implementation of the 
system. The goal in this thesis is to make such changes as cheap as 
possible when they have to be realized. 

In the overall life-cycle of systems, the contributions of this thesis are 
mainly applied during the construction phase (see Figure 10b). During 
this phase, flexibility is built into the systems targeting at the exploita-
tion of flexibility at later points in time. Building in flexibility is an early 
investment which pays off later when quick reactions to change requests 
are necessary. In general, it is expected to be cheaper to build in the flex-
ibility potential than to change a system when the flexibility potential is 
missing. Also later in the life-cycle of a system there might be phases of 
major maintenance which can be used to create new flexibility poten-
tial for newly anticipated flexibility requirements. 

As described before, architecture is the key to facilitate flexibility in IT-
systems. Thus, this thesis focuses on architecting (see Figure 10c) to 
achieve flexibility. This thesis does NOT introduce a new architecting 
method. Rather it proposes methodical enhancements which combine 
aspects of existing architecture methods and is compatible with many 
existing methods. However, architecting for flexibility also requires to 
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look at the requirements level (since flexibility is always about change re-
quirements) and the implementation level (as architecture is only an ab-
straction of the implementation, which facilitates more efficient decision 
making; in fact, the key effort of expensive changes always has to be 
made to change the implementation). 

The method contributed in this thesis clearly targets at architects in 
software development projects and organizations. Thus, it is a method 
for a small group of experts, which can assume a high level of archi-
tectural knowledge as prerequisite.  

With the method contributed in this thesis, architects are guided and 
supported in key activities (see Figure 10d) of architecture design with a 
specific focus on flexibility: Design and decision making, modeling the 
decisions in a consistent model, and analyzing a current draft of the ar-
chitecture with respect to achieving true flexibility. An underlying as-
sumption is that architecture design, modeling, and analysis are cheap 
compared to the real implementation. That is valid for both construction 
and change. 

Architecture mechanisms are necessary to achieve flexibility. However, 
this thesis does not contribute new architecture mechanisms, rather it 
focuses on methodical support and shows how to make best use of 
them to achieve flexibility. 

Based on the ideas described in Section 1.4, the analysis of architec-
ture models with respect to flexibility is formally defined in such a 
way that it can be automated with tools. The tool calculates the cur-
rent achievement of true flexibility. The design and modeling activities 
are still manual tasks for architects. However, design and decision mak-
ing is supported in so far that the continuous analysis gives instant feed-
back as soon as the modeling of decisions is done. 

Flexibility is an important quality attribute, but there are other 
important quality attributes as well. Focusing so strongly on flexibil-
ity in this thesis does not mean that it is more important than other qual-
ity attributes. This prioritization depends on the concrete system. The 
approach we describe for flexibility can be rather seen as a small slice in 
software engineering cutting across all activities like requirements engi-
neering, architecting, or implementation. In the same manner, further 
research is conducted or still needed for other quality attributes. In the 
end, architecture is the point where to balance between competing 
quality attributes. When all quality attributes and their approaches ex-
tend the same architecture model, there can be much better support for 
tradeoff decisions than there is today. 
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1.6 Contributions Overview  

In the previous sections, we sketched the story of this thesis from the 
problem definition over the selection of research directions down to the 
concrete research ideas. In this section, we outline the key contributions 
this thesis makes: 

� Conceptual Model: We provide a conceptual model that partially 
formalizes and relates key aspects of flexibility and architecture. It is 
the foundation for a clearer understanding of what flexibility is and 
how it is addressed by the further contributions in this thesis. 

� Design method enhancement for flexibility: We provide con-
structive, methodical support for software architects targeting at high 
flexibility in their systems. This methodical enhancement makes de-
sign activities more explicit and gives guidance and heuristics with a 
specific focus on flexibility. It combines aspects from functional de-
composition and quality-driven design approaches and leads to well-
aligned architecture mechanisms and business logic mappings, tar-
geting at anticipated flexibility requirements. 

� Automated measurement of flexibility in architecture tool: We 
further enhance the design process by providing continuous feedback 
on the current flexibility level of the system being architected to the 
architect. This is supported by automated measurement which is in-
tegrated in the architecture tool “Enterprise Architect”. In order to 
support this automated measurement, architects enrich the architec-
ture model with information on the addressing of flexibility require-
ments 

� Packaged SOA flexibility mechanisms: We provide for typical ar-
chitecture mechanisms of SOA descriptions how they can be applied 
to contribute to flexibility. We achieve this by sketching for the key 
architecture mechanisms which flexibility potential they bear and to 
which typical challenges they contribute. 

� Validation results: In a controlled experiment we got empirical evi-
dence that explicitly modeling change impact during architecture de-
sign helps architects to create significantly more flexible architecture 
solution. 

 

The contributions of this thesis can be assigned to the following catego-
ries: 

� Foundations / Formalization: Contributions that have basic charac-
ter and provide the conceptual model the other contributions can 
built on 
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� Method: Contributions that represent or enhance an engineering 
method, which guide certain engineers in a particular activity in the 
software engineering lifecycle 

� Technique / Tool: Contributions that represent a concrete technique 
like algorithms for measurement. Further, there are contributions that 
make use of the fact that certain activities in the development pro-
cess can be fully automated due to their degree of formalization, 
which can be realized in engineering tools 

� Validation: Contributions that empirically validate certain aspects of 
the contributions to check whether the proposed benefits can be 
achieved 

Figure 11 visualizes the relationships between the contributions and the 
categories described. Further, in this figure we also link the research ide-
as as described in Section 1.4 to the contributions. 

1.7 Thesis Outline  

The introduction (i.e. this chapter) motivates this thesis and presents the 
key ideas. We state the practical problem and analyzed reasons which 
are used to find research directions. We derive research challenges and 
sketch the key ideas to address the challenges. In order to precisely de-
scribe the scope of the thesis, we put it into different aspects of context 
and stated the key assumptions. 

 

Figure 11:  Contributions of the thesis in categories 
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Chapter 2 continues with a description of foundations for this thesis in 
the areas of architecture-centric engineering and Service-Oriented Archi-
tecture (SOA).  

Chapter 3 describes the state-of-the-art, mainly in the areas of flexibility 
as a quality attribute, architecture design in general and architecture de-
sign in the context of SOA. Another closely related field of research is 
the analysis of quality attributes like flexibility or maintainability. 

Chapter 4 describes our conceptual formalization of flexibility as a quali-
ty attribute and the particular role of architecture for flexibility. It intro-
duces in particular our metrics for flexibility and the concept of change 
impact views as additional architecture views. Summarizing, all ideas are 
put into relation in a conceptual model of flexibility. 

In Chapter 5, our engineering method enhancements for flexibility are 
presented, along with the ideas on continuous flexibility measurement 
and the realization in Enterprise Architect.  

Chapter 6 presents the specific aspects of flexibility in SOA-based infor-
mation systems. Architectural principles, mechanisms, and technologies 
of SOA are collected and analyzed for their potential support of flexibil-
ity. 

In Chapter 7, our empirical validation is described. First, the space of hy-
potheses derived from our research is sketched. Then, a controlled ex-
periment with the gathered quantitative results is presented. Finally, we 
describe experiences from projects with customers from industry in 
which we collected further qualitative results. 

Chapter 8 concludes the thesis summarizing the results. We further dis-
cuss the achievements and their limitations and sketch future work.  
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2 Foundations of Architecture 

“Complex problems have simple,  
easy to understand, wrong answers.” 

H.L. Mencken 

In this thesis, we present an architectural approach towards the im-
provement of flexibility as a quality attribute of long-living information 
systems. Whereas we briefly described the scope and the context of the 
contributions in Section 1.5, we explain in this section the foundations of 
architecture as a basis of our contributions, and how we integrate the 
contributions. First, we will focus on architecting as an engineering activ-
ity in Section 2.1. Second, we will focus on SOA (Service-Oriented Archi-
tecture) as a paradigm of designing information systems in Section 2.2. 
As we see SOA as a wide-spread and promising candidate for architec-
tural support of flexibility in information systems, we explain the neces-
sary background as needed for our contributions. 

2.1 Architecting as an Engineering Activity 

Flexibility in software systems is achieved by making the right architec-
tural decisions in order to limit and focus the impact and effort of 
changes. The activities in software engineering aiming at an appropriate 
architecture are called architecture design or architecting. Thus, archi-
tecting is the activity that we enhance with the contributions of this the-
sis. Therefore, we highlight the essence of architecting and how it is typ-
ically done in practice. As a methodical framework for our contributions, 
we give an overview on the ACES (Architecture-Centric Engineering So-
lutions) architecture approach of Fraunhofer IESE. 

2.1.1 Definitions and Essence 

Architecture as an artifact or concept in software engineering has many 
definitions. We present a few very prominent ones to elicit the essence. 
The definition we use as the leading definition in this thesis (see Section 
1.3, Definition 2) is:  

Definitions 
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“A software system’s architecture is the set of principal design decisions 
made about the system.” [TMD09]  

“The software architecture of a program or computing system is the 
structure or structures of the system, which comprise software elements, 
the externally visible properties of those elements, and the relationships 
among them.” [BCK03] 

“Architecture is a set of concepts and design decisions about structure 
and texture of software that must be made prior to concurrent engineer-
ing to enable effective satisfaction of architecturally significant, explicit 
functional and quality requirements and implicit requirements of the 
product family, the problem, and the solution domains.” [JLR00] 

Summarizing, architecture is about key decisions of software systems 
which typically manifest in abstracted structures with elements, proper-
ties, and relationships. The last definition also includes a purpose, namely 
to allow fulfilling key requirements.  

Abstraction is a key concept of architecture [TMD09, BCK03, Gor06]. By 
abstracting from many details, architects can reason about essential 
design decisions on the level of a complete, large system or even land-
scapes of systems. This allows also to reason about a system which has 
not been built yet, as an architecture is much cheaper to build and easier 
to oversee and to analyze than the real system. 

Consequently, architecture is a critical asset in software engineering. 
Architecture provides support for all life-cycle phases of software sys-
tems: construction, maintenance, evolution, migration, and retirement. 
In order to make this support concrete, architecting activities around ar-
chitecture are necessary: Understanding requirements, designing archi-
tecture, documenting architecture, communicating architecture, analyz-
ing and evaluating architecture, implementing based on architecture, en-
suring of conformance of implementation to architecture [BCK03, 
Bos00].  

In the following sections, we present architecting activities as done in 
practice and we present the ACES approach for architecting. 

2.1.2 Architecting in Practice 

How architecting is done in practice covers a very broad spectrum re-
garding the level of sophistication. It ranges from no explicit architecture 
work at all to sophisticated architecture-based quality predictions with 
architecture models. We provide a brief overview on architecting in prac-
tice, mainly based on our experiences collected at IESE in more than 50 
recent architecture projects with customers from industry and based on 
reported experiences in literature. 
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Recently, the criticality of architecture for successful software develop-
ment is more and more recognized in industry [CS09, Boo06].  

Frequently the architecture’s only target is to prescribe the implementa-
tion. That means that architecture’s power to reason early about later 
properties of the system under construction are neglected [Boo07]. In 
particular, there is often no common understanding in companies why 
architecting is done and what the expected benefits are. This leads to 
the situation that it is very hard to decide how much to invest into archi-
tecting activities. However, there are also cases where companies use 
their architecture models for analyses like performance predictions or for 
generation approaches like in Model-Driven Development (MDD). 

Architecting in practice often means to only provide a high-level blue-
print of the system under construction. Accordingly, as an intermediate 
step from the requirements to the implementation, the system is de-
composed into smaller, manageable pieces.  

The resulting architecture blueprints often have only informal semantics 
and are ambiguous [CBB10]. Typically, they lack precision and prescrip-
tiveness for key architectural aspects and are often represented as “box-
es and lines”. Architecture modeling with tool-support is rather seldom, 
in particular explicit architecture models that support particular purposes 
are seldom.  

Although an appropriate architecture is a crucial factor for achieving key 
quality attributes of software systems, there is still little focus on these 
quality attributes in practical architecture work. Quality attributes are 
mostly stated rather vaguely and the opportunity to analyze the fulfill-
ment of quality attributes with the help of architecture is mostly missed. 
In particular, development time quality attributes like flexibility are often 
not explicitly addressed in architecture design. On the one hand, indirec-
tions and uncertainty seem to make architecting for these quality attrib-
utes difficult; on the other hand design methods only give rather limited 
guidance for architects. If development time quality attributes are ad-
dressed this is typically done based on previous experiences of the archi-
tect. If development time quality attributes are evaluated this is typically 
done with informal expert estimations. 

Architecture work can be only effective if the architecture is consistently 
reflected in the implementation. In practice, we often observed that 
companies do not intensively care about consistency between architec-
ture and implementation [Kno11]. 

In industry, senior developers often become software architects. Unfor-
tunately, there is no common educational foundation for architects, 
which is also rarely taught at universities. This results in a situation where 
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architects even in the same company do not have a common idea and 
language about architecture and they also do not have a common ap-
proach to architecting [Cle10]. 

In recent years, agile development has become highly popular in soft-
ware companies. The most popular method, Scrum, [SB01] actually does 
not tell anything about how architecture work should be done in agile 
projects. Rather, it only states process aspects as to how to realize re-
quirements iteratively. Often this leads to the perception that architect-
ing as an activity and architecture as an artifact are not needed any more 
in agile development [ABK10, Kru10].  

Architecture is being established as a discipline in software engineering 
also in practice. However, many potential benefits of architecture have 
still not been achieved due to missing knowledge, missing methodical 
guidance, and also missing scalability of available approaches. We target 
in this thesis at providing more methodical guidance for the quality at-
tribute flexibility in architecting and design method and tool support in a 
form that scales to real-world systems.  

2.1.3 The ACES Approach 

Fraunhofer ACES (Architecture-Centric Engineering Solutions) is Fraun-
hofer IESE’s approach to architecting [KKN11]. ACES is not intended to 
be a completely new architecture method. Rather, it integrates aspects 
of several existing architecting approaches [BCK03, Bos00, RW05] and 
focuses on strong practical applicability, as the overall idea of Fraunhofer 
proposes. Besides integrating and tailoring existing approaches, ACES al-
so adds completely new concepts like the so-called architecture en-
gagement purposes or a separation in architecture core competence and 
domain competence. ACES has been applied in dozens of projects with 
industrial customers and is continually evolved with the aid of practical 
applications and IESE’s research contributions around architecture. 

ACES [EKK+10, KKN11] is the methodical foundation of the contribu-
tions of this thesis. 

Architecture Engagement Purposes  

In practice, the value of architecture work is often hard to grasp and 
hard to demonstrate. As architecting always means to spend effort it is 
important for the activities to clearly target at goals and do not become 
an end-in-itself. Generally, architecture serves two main goals: Support-
ing decision making and realizing the decisions. The respective decisions 
can be all types of decisions around IT: investment, personnel, technical, 
organizational decisions. Summarizing: Architecture work is an invest-
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ment to achieve particular benefits around software development or us-
age. 

In ACES we introduced the concept “Architecture Engagement Purpose” 
(AEP) which describes a clear purpose why a particular company does 
architecture work. We provide a template for describing an AEP in more 
detail, containing for example the stakeholders and perspectives in-
volved, the purposes and questions, the context, and the expected re-
sults of working with architecture. AEPs guide architects in justifying why 
architecture work is needed, how much has to be invested in architec-
ture, which level of detail is needed, and in deriving the architecting ac-
tivities that have to be performed.  

We identified three classes of AEPs that contribute to the goals of deci-
sion making and realization (see Figure 12):  

� Prediction: A key purpose of architecture is to analyze and predict 
certain properties of software systems. The reason why this is done 
with architecture, and not for example with the implementation, is 
that a system’s architecture allows focusing on the essential aspects 
of a system for the particular prediction. During system construction, 
an architecture can be designed at much lower cost than the imple-
mentation. After the construction of a system, architecture provides 
the advantage to concentrate on the relevant aspects and thus cope 
with the often high complexity of the implementation. The key prin-
ciple of architecture allowing these advantages is abstraction. Archi-
tecture abstracts from many details and thus allows concentrating on 
the relevant aspects for an analysis or prediction. Prediction AEPs 
mainly serve the goal of decision-making. Prediction is used directly in 
the construction of architectures in order to make the right architec-
ture decisions or later to check the validity of decisions.  

� Derivation: A second key purpose of architecture is the derivation of 
other artifacts. Architecture can be seen as a blueprint of an imple-
mentation and has a prescriptive nature for all implementers. Not on-
ly the implementation can be derived from architecture; it could also 
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Figure 12:  Architecture engagement purposes 
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be project plans, test cases, etc. For derivation, architecture has to be 
well described and understandable for the respective stakeholders. 
Derivation AEPs mainly serve the goal of decision-realization. 

� Control: A third key purpose of architecture is to control whether ar-
tifacts derived from the architecture are compliant with the architec-
ture. The effort invested in designing an architecture and making the 
predictions about properties of the resulting system only pay off if 
the actual implementation also realizes the architectural decisions. 
However, in practice there are often deviations introduced for multi-
ple reasons [Kno11]. Thus, there are also AEPs targeted at controlling 
the compliant realization of the architecture, which contributes to the 
goal of decision-realization. 

In order to achieve benefits from architecture, investments are necessary. 
Architecture has to be available in a form that serves the expected pur-
poses. In particular, architecture has to be made explicit to be useful. Ex-
plicit means any type of model or documentation which is appropriate to 
use the architecture to achieve the purposes. For communication of cer-
tain well-known aspects, a rather high-level sketch of the architecture 
might be enough, whereas a reliable performance prediction requires a 
detailed architecture model with all information that impacts perfor-
mance. Although every system has an architecture [BCK03], an implicit 
architecture does not help achieving the benefits as sketched. Providing 
an explicit form of architecture is typically done in the activities architec-
ture design (for new or changed architectures) and architecture recon-
struction (making implicit architecture explicit again by reconstructing it 
from the implementation) (see Figure 12). The effort to be invested in 
these activities mainly depends on the AEPs. 

Architecture-Centrism 

Software systems are intended to support a company’s business with 
technology-based solutions. Further, a software system is the crucial 
element for another company’s business: software development busi-
ness. Further players might be involved in the operation of the system. 
This shows that many companies might be connected in some way to a 
software system, and all have requirements to be fulfilled or impose 
constraints on the software system. These requirements might be com-
peting; very typically, a software system has to provide a certain quality 
and should be developed in a certain time for a certain amount of mon-
ey. In order to allow an appropriate software system to be built, the right 
design decisions have to be made supporting the requirements in an ac-
ceptable way. The architecture of the system is the right place to make 
these decisions. Visually speaking, architecture is the hub that connects 
all different sources of requirements and constraints and allows their 
balanced fulfillment. 
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Looking at a typical software development process, architecting is a 
strongly interconnected activity. Architecting has interdependencies with 
requirements engineering, the implementation, quality assurance, and 
project management as such. Architecting makes decisions to fulfill re-
quirements and the system is implemented according to the architecture. 
In a timeline view, architecting is not a phase at a certain point in time of 
software development. Due to the strong interdependencies of architect-
ing to the other development activities (in both directions), architecting 
as an activity is supposed to last for the whole development project in 
ACES. Of course, there are points in time where more or less effort is 
spent on architecting. The graphical illustration (see Figure 13) of the Ra-
tional Unified Process (RUP) [Kru03] is well suited to represent the facts 
described. 

While Figure 13 mainly represents the situation of system development, 
architecture also plays a crucial role in other life-cycle phases of soft-
ware, as in the maintenance phase or even the retirement phase. Also 
then, architecting is necessary to make appropriate decisions about the 
system and its context and to realize these decisions. 

Architecting with ACES 

An adequate architecture allows building or evolving a system with the 
right balance among all requirements of the stakeholders.  

Addressing stakeholders’ requirements adequately with architecture 
requires knowing the requirements in a precisely described form. ACES 
represents architecturally-significant requirements, in particular quality 
attributes, as architecture scenarios [CKK01, BCK03, RW05].  

In particular, quality attributes need crosscutting, uniformly realized ar-
chitectural solutions. Typically, quality attributes are addressed using 
architectural styles, patterns, or tactics [BCK03, Bos00, BMR97]. ACES 
provides an architecture design method involving the functional decom-
position of a system and the application of styles, patterns, or tactics to 
achieve the quality attributes. In ACES, as well as in other architecture 
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Figure 13:  Development phases according to RUP [Kru03] 

Architecting 
as the hub of 
all life-cycle 
phases 

Architectural 
requirement 

Architecture 
design 

Inception Elaboration Construction Transition

Requirements 
Engineering

Architecture

Implementation 
(CE & Integration)

Build, Test and 
Deployment

Project 
Management



Foundations of Architecture 

34 

design approaches, a general process for addressing quality attributes is 
provided. Additionally, selected sets of tactics supporting particular quali-
ty attributes can be given.  

Architecture as an abstraction of the system under construction offers 
the possibility to predict whether the system will have the intended qual-
ity properties before implementing the system at high cost. In the archi-
tecture design method, there is a recurring analysis step that checks with 
predictions of the quality properties whether the architecture is adequate 
or has to be improved. How precise and automated such a prediction 
can be done depends on the precision and formalization of the architec-
ture description. 

In ACES, architectural decisions are manifested in architectural models. 
The resulting models are the foundation for analysis and prediction, for 
communication, or for the generation of well-readable architecture doc-
uments. As there are typically many different aspects of architecture, as 
for example runtime structures or development structures, deployments 
and technologies, or data aspects, ACES also uses the concept of archi-
tectural views and viewpoints [CBB10, RW05, HNS99, Kru95, IEEE00]. 
ACES provides a generic framework (ADF: Architecture Decomposition 
Framework) that covers all architecturally relevant information and that is 
project-specifically instantiated to create the appropriate set of architec-
tural views. The necessary information depths and precision depends on 
the concrete AEPs that should be applied to the architecture model. Ide-
ally, there is one architecture model with the selected views on it, which 
is the basis for all AEPs. Then it is also possible to determine tradeoffs 
among quality attributes on the architecture model. 

An adequate architecture is only of value if it is compliantly realized in 
the implementation. Thus, ACES provides guidance for the derivation of 
an implementation from the architecture and further allows the checking 
of compliance with tool support. 
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Figure 14:  Competence packaging in ACES 
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Competence Packaging in ACES 

All described aspects of ACES are packaged in six competence areas (see 
Figure 14). ASR (Architecture Significant Requirements) covers all com-
petences around eliciting and representing requirements for architecture 
work. ADF (Architecture Decomposition Framework) covers all compe-
tences around the documentation of architecture with models, views, 
etc. DMM (Design, Modeling, and Migration) covers all competences 
around the methodical guidance for making architecture decisions and 
representing them in models. DPR (Decision Propagation and Reflection) 
covers all competences around the connection of architecture with im-
plementation and other derived artifacts. RATE (Rapid ArchiTecture 
Evaluation) covers all competences for evaluating adequacy of architec-
tures and their compliant realization. ALM (Architecture Lifecycle Man-
agement) covers all competences around the management of architec-
tural artifacts over time, managing complex models, and aligning archi-
tecture activities with other development activities. 

In ACES, the standard tool for architecture modeling is Enterprise Archi-
tect (EA) [EA11a]. ACES reflects the ADF via MDG Technologies in EA 
and uses the Add-In mechanism [EA11b] of EA for enhanced support of 
architects. With the help of the SAVE (Software Architecture Visualiza-
tion and Evaluation) tool [BHS+08, KMN+06, KMN06, KMN08], ACES 
supports reverse engineering of architecture and compliance checking of 
intended architectural models with the actually implemented architec-
ture. 

ACES as an approach to architecting is independent of particular do-
mains or system paradigms. In order to provide better support for archi-
tects of certain system types, it is important to analyze and understand 
the specific challenges of these systems. This can be in particular com-
mon business goals and common requirements like quality attributes. 
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E.g., mobile applications often share requirements like offline capability. 
Based on these common challenges, common solutions can also be pro-
vided, typically in form of styles, patterns, or tactics [BCK03, Bos00, 
BMR97], as described before. Finally, common solutions are often real-
ized in form of reusable technologies (e.g. communication technologies), 
which are highly relevant for architects to efficiently realize systems. De-
signing architectures for a particular domain of systems highly benefits 
from the knowledge of typical challenges, solutions, and technologies 
[CJM+08]. Figure 15 depicts the overview of core competence and do-
main competence. In this thesis, the methodical part belongs to the do-
main-independent core competence whereas the specialization towards 
SOA belongs to a domain competence. 

ACES provides the foundation to integrate the contributions of this the-
sis. The contributions extend in particular DMM by adding more concrete 
guidance for designing, modeling, and analyzing flexible architectures. 
However, our contributions can be also used with other architecture 
approaches. 

2.2 Service-Oriented Architecture 

SOA is a paradigm for the construction of information systems, which is 
widely used today. It comes with mechanisms for flexibility, which in 
practice are rarely effectively exploited. This led us, as described in Chap-
ter 1, to the motivation for this thesis. As SOA is also a widely used term 
with many different notions, we provide in this section a brief overview 
on different perspectives on SOA, how SOA is used in practice, and what 
it architecturally means to organize a system along the principles of ser-
vice-orientation. 

2.2.1 Definitions and Essence 

Service-Oriented Architecture as a term was coined by Gartner as early 
as 1996 [SN96]. In recent years in particular, it was used heavily in IT 
industry. Nevertheless, there are still many different perspectives on and 
definitions of SOA available. They are also considerably diverging regard-
ing their level of abstraction, scope, and focus. A set of different per-
spectives is given in [Til08]. Typical extremes in a spectrum of definitions 
are very high-level business-oriented definitions like “A paradigm to 
achieve better alignment of IT and Business with the goal to get more 
flexibility for business processes.” [Til08] and on the other end very tech-
nical definitions like “A standardized technical architecture, based on 
XML, SOAP, WSDL, UDDI, and further WS-*-Standards.” [Til08]. The first 
one might be from the perspective of managers with a strong focus on 
IT strategy and cost savings, the latter one might be from the perspective 
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of developers developing in a service-oriented environment with some 
standard technologies. 

There are also definitions from standardization bodies like OASIS (Organ-
ization for the Advancement of Structured Information Standards): “Ser-
vice Oriented Architecture (SOA) is a paradigm for organizing and utiliz-
ing distributed capabilities that may be under the control of different 
ownership domains.” [OAS06, OAS09]. Further, there are also books on 
SOA giving definitions like in [KBS04]: “A Service-Oriented Architecture 
(SOA) is a software architecture that is based on the key concepts of an 
application frontend, service, service-repository, and service bus. A ser-
vice consists of a contract, one or more interfaces, and an implementa-
tion”.  

It can be observed that SOA is often seen as a paradigm (which is the 
broadest scope, covering many sub-aspects like architecture or technol-
ogies), whereas other definitions aim at particular sub-aspects like archi-
tecture or technologies only. One key aspect that is found in nearly all 
definitions is the relation to the service concept, as also indicated in the 
name SOA. While the technical and architectural aspects behind SOA are 
mainly not new [KBS04], the alignment of business and IT along the ser-
vice concept might be the distinguishing aspect of SOA. For this thesis, 
we use the following definition of SOA:  

Definition 8 Service-Oriented Architecture  

“SOA as a paradigm aims at an adequate support of business through IT-
systems. Therefore, business and IT are conceptually aligned by the utili-
zation of the service concept.” [ANT+11] 

Similar to other paradigms, architectural styles, or design patterns, SOA 
is a way to capture and describe best practices for a certain type of sys-
tems (see also Figure 15). More characterization of this type of systems is 
given in the subsequent sections. 

Although SOA has a lot to do with business, it is not a paradigm tailored 
to a certain business domain like financials. Rather, each organization 
and business can build IT-systems according to their own needs along 
the principles of SOA. Consequently, SOA is nothing that someone can 
simply buy out of the box (similar to object-orientation as a paradigm for 
programming). SOA is not a product rather it has to be applied in a con-
crete context with appropriate engineering techniques. 

Because SOA as a paradigm comes with so many aspects, it has often 
been misconceived. Several of these misconceptions will be presented in 
Section 2.2.2 and should support a better understanding of SOA. In Sec-
tion 2.2.3, we present a conceptual model for SOA, which aims at a 
more in depth explanation of the different aspects of SOA, in particular 
Business, Architecture, Technology, and the role of Services and Engi-
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neering. For this thesis, the focus is on architecture (which of course also 
involves business and technology aspects). An introduction into the ar-
chitectural background of SOA is given in Section 2.2.4 and more details 
can be found in Chapter 6. 

One approach often helps to characterize a term: We give criteria for the 
decision whether a certain system is built according to SOA principles or 
not. Therefore, we give the following criteria which have to be fulfilled 
for a system to be recognized as a SOA system: 

� Organization of the business to be supported by the IT-system ac-
cording to service concepts (clear modeling of services and business 
process, e.g. as described in Section 2.2.3) 

� Fulfillment of key architectural characteristics as described in Section 
2.2.4 (self-contained services with clear interfaces, etc.) 

� Alignment (clear mapping / tracing) between the services at business 
level and the services in the IT-system 

2.2.2 SOA in Practice 

In early years, business was mainly supported by IT with very specialized 
and local systems which were often even not directly accessible for users. 
Later on, in the 1970s and 1980s, users got direct access to the systems 
with the emergence of terminals and personal computers. Then, a 
stronger integration of business functions into integrated product suites 
could be observed, as for example in SAP for ERP and financials. In the 
1990s, even more integration evolved. Technically, standards and prod-
ucts emerged for distributed computing, like RPC, CORBA, or DCOM. All 
types of systems became integrated, first locally, then more and more 
globally, and also across enterprise borders, with the appearance of the 
internet. Integrations were often done on a one-to-one basis with con-
siderable effort. EAI (Enterprise Application Integration) [Lin00] was one 
earlier concept addressing the integration issues.  

The term SOA was introduced in 1996 by Gartner [SN96]. In the earlier 
days, SOA mainly aimed at the integration of systems with clearly de-
fined services. With the appearance of Web Services [KBS04] a standard-
ized technology was available, which promised more interoperability by 
open, standardized, XML-based protocols like SOAP, WSDL, and UDDI 
that were defined and maintained by W3C [W3C]. Many of the underly-
ing concepts like interface definition languages had already been availa-
ble in CORBA [KBS04]. The rather new idea was to see services as a con-
tract between a service provider and a service consumer who are often 
not located in the same organization. 

In the 1990s and 2000s there was more and more tendency to support 
users in their workflows or business processes. This required the interplay 
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of different systems in the workflow of a user and the orchestration of 
activities among many users by a workflow system. As business process-
es are a key differentiation factor for many companies today, there is the 
need for high customizability. This led to the evolution of the SOA para-
digm that also business processes and their contribution to business ser-
vices became part of the representation. Consequently, also the technol-
ogies evolved towards larger stacks of protocols, covering also execution 
of service orchestrations with languages like BPEL [BPEL]. The resulting 
technologies are large modeling frameworks and runtime solutions, of-
ten centered around a central communication infrastructure, the so-
called Enterprise Service Bus (ESB) [Cha04]. ESBs are often based on Web 
Service technologies but add other infrastructure functionalities like 
managing services, transforming between different data formats, etc.  

In the meantime, SOA is quite wide-spread in industry [MER10]. Never-
theless, it is difficult to get reliable numbers about the real usage of SOA 
and about how much of today’s IT is organized according to SOA. This 
missing transparency is also caused by the fact that SOA is understood 
and lived as strongly diverging ideas in different enterprises [MER10]. 
The range is from only using Web Services technology to provide easier 
means for integration with external systems up to the organization of a 
complete enterprise and its IT according to service-oriented principles. 
The case that mainly technologies like Web Services are adopted is quite 
common as our practical experience has shown. 

Because many large enterprises see SOA as a promising paradigm to 
improve their IT’s support for more productive business and to reduce 
the cost for IT itself, there is a big business around SOA. Particularly, 
technology vendors (selling so-called SOA-stacks, i.e. infrastructure com-
ponents) and consulting services companies (often coming together in 
the same company) support enterprises to transform their IT towards 
SOA [GBD08, AH06]. Besides the enterprises using large IT systems, also 
many companies developing software products organize them along 
SOA principles for better integration into the customer’s IT environment. 
The alignment of SOA with other trends like BPM (Business Process 
Management), EAM (Enterprise Architecture Management), or BAM 
(Business Activity Monitoring) seems to be a further source for many 
consulting projects. 

Despite the wide adoption of SOA, many practitioners have been disap-
pointed with their SOA introduction projects in the past. However, scien-
tific or industrial publications rather focus on success stories. In internet 
articles and blogs there is a more open discussion on this topic going on 
(e.g. [Man09]). One key observation often described is that SOA is re-
duced to technology discussions about ESB or Web Services whereas the 
big picture, in particular the business aspects, are often neglected. 

A key reason for disappointment of practitioners is that they did not 
achieve their goals with SOA projects. Typically, SOA is introduced in en-
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vironments of highly complex, heterogeneous, distributed systems, with 
a focus on integration of legacy and standard software and the 
achievement of critical quality requirements like performance, scalability, 
flexibility, and security. These are a lot of challenges, which have caused 
a lot of problems for IT in the past and the expectation was that SOA 
would overcome these problems. Such expectations are not least caused 
by marketing claims of technology vendors and consulting companies.  

Several expectations, which did not fulfill in practice, can be summarized 
as common misconceptions and have been widely observed in practice 
[LMS+07, NP07, Naa08, Pro11]. In the following, some of the common 
misconceptions are briefly described: 

� “SOA defines a system’s complete architecture”: SOA defines ra-
ther an architectural style or a reference architecture than the com-
plete architecture of a system. There are still many architectural deci-
sions open, in particular how to represent the business logic in terms 
of a service-based architecture. Further decisions are necessary for 
constructing user interfaces, defining appropriate deployments, or 
addressing quality attributes like performance. 

� “SOA vendor stacks provide a system’s architecture”: SOA ven-
dor stacks are big collections of all types of technologies in SOA, like 
communication infrastructures as ESB, engines for service orchestra-
tion with BPEL, etc. Although such vendor stacks realize several key 
architectural decisions and solutions of SOA, they do not cover all 
necessary architectural decisions, as described also in the previous 
point. 

� “SOA leads to a high degree of flexibility and reuse”: Only the 
fact that SOA comes with several architecture mechanisms that allow 
constructing for flexibility and reuse does not automatically lead to 
the achievement of these goals, as described and motivated in Chap-
ter 1 of this thesis. Rather, a lot of further reasoning and engineering 
is necessary to get the architecture right. 

� “SOA enables interoperability by standardization”: Interopera-
bility of systems has many aspects, e.g. the syntactic interoperability 
and the semantic interoperability. By standardized communication 
protocols and the possibility to execute transformations SOA provides 
a means to overcome syntactic heterogeneity. However, there are a 
lot of further assumptions made in systems which often make practi-
cal integration a real challenge, even with a SOA. 

Analyzing different misconceptions may lead us to the conclusion that 
SOA often offers the appropriate architecture mechanisms to achieve re-
quired properties a system. However, for the further decisions needed, 
sound engineering and governance is necessary, because they cannot be 
provided by architecture and technology only. As a conclusion, engineer-
ing is important also in the world of SOA, which is known in recent days 
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as Service-Oriented Engineering (SOE). The next section describes a con-
ceptual model as a background for SOE. 

2.2.3 A Conceptual Model for Service-Oriented Engineering 

As described in previous sections, there is not THE definition for SOA 
which would be generally accepted or applicable. Further, we discov-
ered, that sound Engineering might be one of the key missing aspects 
why many SOA initiatives and projects fail in practice. In order to have an 
adequate foundation for engineering methods, we decided to define a 
conceptual model that should put all the concepts and aspects of SOA 
into relationship, which is not possible in a crisp definition. This model is 
described in [ANT10, ANT+11] and will be briefly introduced in this sec-
tion as context information for this thesis. 

The key goals for the definition of the conceptual model are the follow-
ing: 

� Unification of perspectives: As described in Section 2.2.1, many 
different perspectives on SOA exist, of which most are somehow 
right, but seem to be incompatible. Our conceptual model aims at 
covering all these aspects at least in a way that an easy mapping of 
the known perspectives is possible in order to allow discussions fo-
cused on content rather than on terminology. 

� Foundation for communication with customers: All enterprises 
and people have some perception of SOA, which might be restricted 
to one specific perspective. Talking about SOA with customers re-
quires to sketch the big picture and to be able to clearly describe the 
role of the customer in the overall SOA model. This needs to be cov-
ered in the conceptual model. 

� Foundation for service-oriented engineering and methods: En-
gineering IT systems based on service-oriented concepts requires a 
thorough understanding of the relationships between business as-
pects and potential solutions in IT. The conceptual model has to ex-
press all these aspects in a consistent and traceable way as a basis for 
derived artifact models and process models. 

There is also earlier and related work detailing the SOA paradigm with 
conceptual models. The standardization organization OASIS published 
two documents called reference model [OAS06] and reference architec-
ture [OAS09] which describe models with an intention similar to ours. 
The SOA method described by sd&m in [EHH08] comes with a conceptu-
al model, too. Our model is not intended to come up with something 
completely new. Rather, it is strongly inspired by the two sources named 
and it adds the aspects important to us. These are in particular the fol-
lowing aspects: 
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� Seamless coverage from business concepts to IT systems 

� Strong focus on engineering, in particular on the quality of the sys-
tems considered 

� Strong focus on user perspective in addition to enterprise perspective 

� Explicit description of all types of organizations involved around SOA 
(usage, operation, development) 

 

SOA as a paradigm is not a general-purpose development paradigm for 
building any type of IT-systems. Rather, it is dedicated to a certain type 
of systems with common characteristics and shared challenges. Only by 
such a level of specialization of system types [GAO09], the solution as-
pects in terms of architectures (see also Section 2.1.3), technologies and 
tailored engineering methods can be specific. In the following, some 
common characteristics of typical SOA-based systems are listed (taken 
from [ANT+11]). 

� supporting of business and business processes 

� serving multiple users 

� constituting system landscapes (systems-of-systems) 

� integrating multiple heterogeneous systems 

� integrating legacy or COTS systems 

� being complex and distributed 

� being developed for long life-time and maintenance 

� being continuously evolved following business 

� being controlled by distributed responsibilities 

 

Our conceptual model is based on the following key ideas which are 
here briefly described below: 

� View-based documentation and glossary: The number of ele-
ments described in the model is too large to be described in a single 
diagram. Therefore, we decided to represent it in different views 
showing coherent aspects. 

� Organization in 5 key areas (see Figure 16): Business, Architecture, 
Technology, Service, Engineering. Business expresses the real world 
which is to be supported by the IT-systems at hand. Technology is 
the technological world of a physical realization and operation of IT-
systems. Architecture is the set of principal design decisions made in 
order to achieve IT-systems which fit the business’ needs. Service is 
included as a key area as it is seen as the linking theme in service-
orientation which spans from business over architecture to technolo-
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gy. Finally, Engineering is included as an area which is needed to 
construct the IT-systems at hand in alignment with business. The or-
ganization in these areas is also inspired by [Mas07], where the areas 
Architecture, Enterprise, Computing, Platform, and Engineering are 
distinguished. 

� We distinguish three main classes of services which are necessary to 
express all constellations of enterprises and the business services they 
offer to each other. The first, and typically anticipated, category is 
called Plain Business Service in our model . This can be any service, 
organizations offer or consume which might be totally independent 
of software or supported with software. An example would be a lo-
gistics service. The other two service types became necessary to bring 
more light into very general sentences like “company X offers a ser-
vice for stock exchange values”. This might be a company offering 
the plain business service delivering data. Or it might be also a com-
pany operating such a service. Alternatively, it might even be a com-
pany developing the software for such a service. Or a combination of 
the aforementioned. Thus, we introduced two new service types: 
Operation Service and Software and Systems Engineering Ser-
vice. First this classification is only at the business level but has of 
course several connections to services at the software level. 

 

As described above, the conceptual model is described with the help of 
views, showing particular aspects of the model. In total, there are cur-
rently 14 views, each described with the rationale behind the view. Addi-
tionally, there is a glossary explaining all the elements in the conceptual 
model. In order to give an idea what such views look like, Figure 17 gives 
some insight. It describes with a focus on the service term which types of 
services we distinguish in our model, and particularly how they relate to 
each other. All details can be found in [ANT+11]. 

Architecture as the core topic of this thesis has a specific role in service-
orientation, too. This is also part of the conceptual model, mainly what it 

 

Figure 16:  Key areas of service-orientation 
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means to look at SOA as an architectural style or a reference architec-
ture. These aspects are described in more detail in the following section. 

2.2.4 SOA as Architectural Style and Reference Architecture 

SOA is often perceived as defining an architectural style or a reference 
architecture as a blueprint for designing software systems. Because of 
the architectural focus of this thesis, we describe these aspects of SOA as 
a foundation here. More details, in particular on the support of SOA for 
flexibility, are presented in Chapter 6.  

Both, architectural styles and reference architectures aim at a common 
goal, but with a different focus. They provide proven solutions and best 
practices for recurring challenges in the construction of IT systems. By 
focusing on a class of systems with more or less abstract commonalities, 
for example the need to achieve particular quality attributes like main-
tainability, it becomes possible to find reusable solution concepts. Be-
sides describing an abstract solution idea, architectural styles and refer-
ence architectures also provide a common language that eases commu-
nication among stakeholders in software development.  
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Figure 17:  Example view from conceptual model for service-orientation 
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Architectural styles [GS94, BCK03] define component types, connector 
types among these components and rules how a system might be con-
structed from these components and connectors. Architectural styles 
typically do not have any prescription about functionality of a system, ra-
ther they define only abstract meta-elements that can be used to organ-
ize the functionality and allow communication among such elements. 
Well-known examples of architectural styles are the layering style, black-
board style, or client-server style. 

Reference architectures [NAB11] define more detailed but still abstract 
architectures that are shared by a class of systems in order to solve their 
common challenges. Reference architectures can also be domain-specific 
and thus might give a standard decomposition of the domain-specific 
functionality. Reference architectures are often composed of multiple ar-
chitectural styles and typically cover the whole scope of a system, 
whereas architectural styles only cover certain aspects quite abstractly. 
The level of detail of reference architectures can vary widely due to dif-
ferent purposes of reference architectures. A well-known example is the 
reference architecture for Java Enterprise Applications [JEE]. 

As described in Section 2.2.3, SOA also aims at providing solutions for 
common challenges in the targeted system class. Such challenges are at 
an abstract level: 

� Flexibility for changes following an evolving business 

� Distribution serving multiple users and their business processes 

� Integration of heterogeneous systems from multiple sources 

 

The so-called “SOA-Triangle” [Erl06] (see also Figure 18a) is widely per-
ceived as the architectural style prescribed by SOA. In particular due to 
the spreading of Web Services [KBS04] as a realization technology, it has 
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Figure 18:  a) SOA triangle [Erl06] b) SOA element types [KBS04] 
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gained popularity. It prescribes that there are service providers and ser-
vice consumers. The key connection is that a service consumer requests a 
service provided by a service provider. This can also be done indirectly by 
querying a service registry which returns at runtime an address of the 
service provider and thus facilitates a kind of runtime flexibility in select-
ing an appropriate service provider. It is important to note that this type 
of flexibility is not the one in the focus of this thesis which deals with 
changing the system at development time (see Section 1.5). A similar 
definition of the architectural style defined by SOA is given in [KBS04] 
(see also Figure 18b): There, it is made more concrete that also applica-
tion frontends are needed which offer the user interface and consume 
services, whereas the main business logic is offered via services. The ser-
vice registry is also there; in addition a service bus is added which is a 
more concrete representation of the connector responsible for the com-
munication among service providers and service consumers. 

Beyond this initial description of element types, there are also proposals 
on the properties of single services [e.g. Erl06, KBS04, HHV06, Jos07]. It 
is proposed that services should be stateless, idempotent, technology-
agnostic, etc.  

Based on the SOA architectural style, several reference architectures are 
currently available. The most prominent example is the IBM S3 (Service-
oriented Solution Stack) SOA Reference Architecture [AZE+07a, 
AZE+07b]. This reference architecture is a compilation of best practices 
in IBM’s SOA consulting projects and comprises several architectural as-
pects. They are covered in two views (see Figure 19): The solution stack 
view and the middleware view. These two views cover important design 
ideas like the separation of business processes and services, or different 
types of services and their communication via a service bus. This refer-
ence architecture does not cover any domain-logic related parts, but it 
offers the placeholder elements how to organize concrete business logic.  

Summarizing, the term SOA is used for an architectural style, a reference 
architecture and finally also for the concrete architecture of a system or 
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Figure 19:  a) Solution stack view b) Middleware view [AZE+07a, AZE+07b] 
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system landscape following the ideas of SOA. The relationship between 
these aspects is depicted in Figure 20. A SOA-based reference architec-
ture is typically based on the SOA architectural style. A concrete SOA-
based system architecture is typically based on a reference architecture 
or at least on the SOA architectural style. This categorization also has a 
close relationship to the five key areas of our conceptual model we in-
troduced in Section 2.2.3. By means of dashed ellipses Figure 20 shows 
abstract areas which denote a different coverage of the five key areas 
and the decisions taken about software in these areas. While the archi-
tectural style only covers some architectural concepts and the service 
concept, the reference architecture already incorporates aspects of busi-
ness and technology. The concrete system architecture has the largest 
coverage as it has to resolve decisions that might be left open by archi-
tectural styles or reference architectures. For example, a concrete system 
architecture has to care about all concrete business-specific instances of 
business processes and services. 

In Section 2.1.3, Figure 15 described how architecture domain compe-
tence and best practices can be captured (challenges, solutions, technol-
ogies). So far, we describe key challenges and solution concepts of SOA-
based systems. For SOA, many technologies in form of frameworks, plat-
forms, protocols, etc. exist [Jos07, KBS04]. In the following, we will list 
some of the most prominent ones: 

� Web Services 

o Service-Interface-Language (like WSDL) 

o Communication languages (like SOAP) 

� Enterprise Service Bus (ESB) 

 

Figure 20:  Facets of SOA and their relationships 
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� Process Execution Engines (with or without generation of graphical 
user interfaces) (like for BPEL) 

� REST (Representational State Transfer) 

2.2.5 New Paradigms in Service-Orientation 

Today, the term “service” is prominently found in another context: the 
different service models [MG09] in cloud computing are called: 

� Software-as-a-Service (SaaS) 

� Platform-as-a-Service (PaaS) 

� Infrastructure-as-a-Service (IaaS) 

The key idea behind these services is that the consumer of the services 
can use software (SaaS), runtime execution platforms (PaaS), or infra-
structure entities like computational power or data storage volume 
(IaaS), which are provided and particularly operated by the service pro-
vider. By offering such services to multiple customers, the service provid-
er can achieve and realize economic benefits (economies of scale by 
sharing resources, balancing resources between consumers, more effi-
ciency in management of resources), which makes cloud computing a 
successful business model in today’s IT. 

Although SOA and cloud computing share common ideas around ser-
vices, there are significant differences. Whereas SOA mainly targets at 
the construction and integration of system landscapes, cloud computing 
targets at outsourced and scalable operation of IT services.  

The quality attribute flexibility is also often mentioned in the context of 
cloud computing, but with a different meaning than the one underlying 
this thesis. The expectations for flexibility in cloud computing mainly tar-
get at changing and adapting providers, services, or resources [IBM11]; 
the change of the software itself is rather out-of-scope.  

Cloud  
Computing 
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3 Flexibility: State of the Art 

"The only constant is change" 
Heraclitus 

Flexibility as a quality attribute of software has many facets. This reaches 
from the principal understanding of what makes software flexible over 
constructive and analytical methods for engineering to concrete architec-
tural mechanisms and technologies that can induce flexibility in a certain 
domain of systems. Consequently, also the analysis of state-of-art 
around flexibility has to consider these facets. This chapter presents the 
current state-of-the-art around flexibility and describes how it contrib-
utes to the research challenges and research ideas addressed in this the-
sis. 

To contribute solution aspects to the practical problems described in 
Chapter 1, we derived research directions to which this thesis contrib-
utes. We also described in Chapter 1, which research challenges we de-
rived for focusing and which research ideas are supposed to address the 
challenges. These research challenges and ideas are obviously depending 
on the current state-of-the-art in the sense that they build on many ex-
isting ideas and exceed them in certain points. While Section 1.4 only 

 

Figure 21:  State-of-the-art in the context of research directions 
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outlined the challenges and ideas, this chapter presents the background 
on existing work.  

Figure 21 describes the role of state-of-the-art and related work in the 
context of this thesis. From our research directions, the areas of related 
work are derived. The identification of research challenges and research 
ideas is an iterative process of shaping the contributions of this thesis by 
inspirations of state-of-the-art work and the identification of gaps in this 
work which would be worth to be filled. 

The following research directions are approached in this thesis (see Sec-
tion 1.4). They are used for an according categorization of related work 
(summarized in few words): 

� R.D1: Theoretical foundation of flexibility and architecture [3.1] 

� R.D2: Constructive support of flexibility [3.2] 

� R.D3: Flexibility measurement and evaluation (automated) [3.3] 

� R.D4: Flexibility for SOA (mechanisms and how to use them) [3.4] 

The following sections describe related work belonging to the research 
directions. Obviously, research approaches are not always matching ex-
actly one research direction, but we will assign them to the most appro-
priate one. Section 3.5 summarizes the related work and the gaps found 
and explains how our research challenges can be derived. 

3.1 Flexibility as a Quality Attribute 

In this section, we first describe flexibility as a quality attribute in a field 
of other similar quality attributes (3.1.1). Then, we describe flexibility as 
researched in the area of information systems (3.1.2) and in other disci-
plines like systems engineering for space ships (3.1.3). Finally, we com-
pare flexibility to the key characteristic in product line engineering, which 
is variability (3.1.4). 

3.1.1 Flexibility and Related Quality Attributes 

Flexibility is one among several so-called development time quality at-
tributes. That is, these quality attributes denote how well a software 
system supports development activities. Many different terms and defini-
tions for development time quality attributes are around, e.g. maintaina-
bility, evolvability, flexibility, changeability, modifiability, adaptability. 
Mostly, they are not precisely defined and interchangeably used in prac-
tice. One reason for difficulties in distinguishing these quality attributes is 
that their concrete meaning for a system can only be expressed with the 
help of architecture scenarios [CKK01], but not with a brief definition of 
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the quality attribute. Consequently, the definition of quality attributes 
can give only rough directions and characterize quality attributes with 
certain properties. In this section, we refer to typical definitions to show 
how flexibility can be delineated from other quality attributes. Figure 22 
shows a sketch of refinement relationships among quality attributes; 
however, according to different definitions it could also look quite dif-
ferently. 

Maintainability serves as our starting point for exploring the quality at-
tributes. Maintainability is probably the most frequently used name for 
quality attributes in the area discussed [IEEE90, ISO1926, Bar03]. Typical-
ly, maintainability is characterized via different types of changes (correc-
tive, perfective, adaptive), and it covers several aspects that are needed 
to allow easy changes to a software system. First, there is of course the 
inherent property of the software to require only little portions of the 
software to be touched or not (changeability / modifiability). Second, 
there is the question how fast engineers can understand the system to 
conduct changes (analyzability). Third, there is the question how well the 
system can be tested after conducting the change (testability). A more 
detailed quality model for maintainability is described in [BDP06, 
DWP+07, WDF08], where maintainability is defined via a two-
dimensional matrix of maintenance activities vs. artifacts impacted by 
these activities. 

Modifiability [BCK03] is often seen as the property of the software sys-
tem to handle changes locally. Therefore, architectural mechanisms are 
used [BCK03] in order to control the impact of certain changes. In the 
understanding of this thesis, flexibility is that part of modifiability which 

 

Figure 22:  Relationships among quality attributes 
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has no corrective aspects. Other definitions of flexibility [BKL+95] have a 
broader focus. 

Evolvability is an often found term, too, which spans across many as-
pects of change [MM98, BCE08, BC10]. We classified it here as being 
everything concerning changes except for corrections of a system. 

The ultimate goal of a company relying on software is Agility [Sch04], 
which means on the one hand that software systems have the properties 
to be easily changed (maintainability) and that on the other hand the or-
ganization is able to conduct these changes efficiently. Therefore, opti-
mal processes and organizational prerequisites are necessary, as well as 
adequate alignment of processes and organization with the system’s ar-
chitecture (producibility [Car12]). Please note that this interpretation of 
Agility does not directly match to agile development processes. 

Further aspects of change are often called adaptatability or adaptivity 
[Che08]. However, these changes mostly mean that a system is prepared 
to adapt to different contexts during runtime. That is, all change behav-
ior is already built in and has to be selected and activated. 

For all characteristics and definitions given above, different terminologies 
and definitions exist. It is not the intention of this thesis to come up with 
consistent definitions of all terms. For the context of this thesis, a precise 
definition and scope of Flexibility is given in Chapter 4. 

3.1.2 Flexibility in Information Systems Research 

Information Systems are one type of software systems which are often 
described as opposed to Embedded Systems. In that sense, they are a 
particular system class or domain in which the methods and technologies 
of software engineering are applied. Beyond this definition, there is an-
other interpretation of Information Systems: the one which mainly cares 
about the business to be supported by IT-systems and how this can be 
best done3. There is a lot of research on Information Systems around 
that is often rather dedicated to economic sciences. 

From this perspective of Information Systems, flexibility is an important 
quality attribute of software systems and some research exists, mainly by 
Judith Gebauer, Franz Schober et al.  

In [GL05], a conceptual model for flexibility in information systems is in-
troduced. A major distinction is made between flexibility-to-use and flex-
ibility-to-change. While flexibility-to-use is a property which is visible to 
the user of a system due to the possibility to provide different behavior 

                                                      
3 In German: Wirtschaftsinformatik 
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in different contexts, flexibility-to-change is the kind of flexibility which is 
also in the focus of this thesis. 

In [GS06], an extension is provided which is based on the characteriza-
tion of business processes. Three major characteristics are described: Un-
certainty, Variability, and Time Criticality. In combination with decision 
variables that indicate whether to go for flexibility-to-use or for flexibility-
to-change, calculation models are presented which allow determining 
business process performance in terms of cost. In [GL08], based on the 
elaborated model, strategies and considerations for the introduction of 
new information systems in enterprises are presented. The latest publica-
tion [SG11] is based on the calculation models and is dedicated to the 
question of determining the value of flexibility for information systems. 
Whereas these publications deal with detailed mathematical models 
concerning the economic value of flexibility, they do not go into detail 
about achieving flexibility as it is in the focus of this thesis. 

Business Process Management (BPM) is a discipline that unifies parts of 
the economic world and of the technical world (software systems sup-
port business). There is a strong need for flexibility in business processes 
and thus in the supporting IT systems as well [OS03, ENS07]. Business 
Process Management Systems often explicitly target at process flexibility 
by decoupling processes from functions and making processes descrip-
tive first class development artifacts (see Chapter 6). 

3.1.3 Flexibility in other Disciplines 

Flexibility as a quality attribute is not only important for software sys-
tems, but also for other types of systems or products. Consequently, 
there is research on flexibility in other disciplines, which is briefly 
sketched in this section. Most of the research is conducted in the envi-
ronment of Massachusetts Institute of Technology (MIT). 

In the area of industrial goods and products, for example electronic 
tools, there are publications about methods for the analysis of flexibility. 
In [RWC+03], a method called CMEA (change modes and effects analy-
sis) is described. It works by decomposing the product into modules and 
parts and then reasoning about potential change causes, potential 
changes on the causes, and potential effects of the changes. Then, the 
flexibility is ranked with the help of a table which assigns a value of 1 to 
10 (10 is lowest impact) to the estimated effects. Additionally, the occur-
rences of changes and the readiness for changes are rated in a similar 
way. Finally, the overall flexibility is calculated taking all potential chang-
es into account. In [RWC+05], further case studies of applying the meth-
od are presented. The method is purely analytical and based on an idea 
similar to change scenarios. Further research in this direction is presented 
in [TSW09], but with a different way of measuring: There, the so-called 
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high-definition design structure matrix is used for the representation of 
change impacts and interdependencies. 

More research on flexibility can be found in the domain of space vehicles 
like satellites. Such systems often have a very long life-span and are no 
longer physically accessible having been launched. Nevertheless, changes 
are necessary to react to recognized situations, which means they need 
more flexibility. Early publications [SHN01, SHN03] start with the obser-
vation that flexibility is important for many disciplines but is not well-
defined and often mixed up with other quality attributes like robustness. 
One reason is the valid but too simple definition “Flexibility is the ability 
to handle change”. In order to further explore flexibility, the authors 
pose some questions which are a good foundation for any type of quali-
ty attribute to explore, and which are also tackled in our thesis: 

� “What is flexibility? How does a formal definition look like?” 

� “Why or when is flexibility needed in system design?” 

� “How can one design for flexibility? What are the design principles?” 

� “What are tradeoffs associated with flexibility?” 

The papers [SHN01, SHN03] focus on the first question and therefore 
broaden the definition of flexibility with the following aspects, which are 
also included in our characterization: 1) time and occurrence of change 
during system life-cycle; 2) characterization of what is changing; 3) clear 
metrics for flexibility. Their resulting definition is: “Flexibility is the prop-
erty of a system that allows it to respond to changes in its initial capabili-
ties and attributes – occurring after the system has been fielded, i.e. is in 
operation, in a timely and cost-effective way”. In a later publication 
[RRH08], the definition is further refined, mainly with the focus of de-
scribing changeability as the core concept of other quality attributes 
(modifiability, flexibility, scalability, adaptability), which is mainly in line 
with our classification in Section 3.1.1. They add three aspects to classify 
change: 1) change agents: where does the change originate (external or 
internal to the system); 2) change effects: what changes in the system or 
is kept constant on external triggers; 3) change mechanisms: what is 
necessary to bring the system from the original state to the target state 
of change. Further work on calculation of flexibility metrics is published 
in [NHJ05, SWV+08]. Additionally, several doctoral theses have been 
published in this research area: 1) [Sal02] describes how to weave time 
into system architectures as an enabler for flexibility; 2) [Suh05] describes 
the design of flexible product platforms; 3) [Nil05] describes a framework 
concerned with the value of space system flexibility.  

Building houses needs dealing with flexibility, too. [TMD09] describes an 
analogy to software with typical aspects of a house that are easy to 
change (e.g. the furniture) or hard to change (the main walls). The dif-
ferent levels of ease of change are described as “Shearing Layers”.  
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3.1.4 Variability in Product Line Engineering 

Product Line Engineering (PLE) is a discipline in software engineering 
which aims at generating benefits from the fact that multiple but similar 
systems have to be built. The idea is to realize savings by explicitly ex-
ploiting the commonalities among different systems and by managing 
their variabilities [CN07, LSR07]. Variability [GBS01] is one key property 
in PLE which is challenging to handle for development organizations. 
Managing variability means to minimize the impact of variations and to 
localize variations in well-defined variation points. In that sense, variabil-
ity is similar to flexibility. During design of software product lines, the 
elicitation of commonalities and variabilities is a key activity. Often, this 
activity is called Scoping [Sch02] and aims at coming up with economi-
cally feasible product instances and well-defined commonalities and vari-
abilities. In that sense, scoping has similarities to the elicitation of flexibil-
ity requirements. Further, product lines evolve over time like single sys-
tems do. Thus, there is also the need for flexibility in product lines. Elici-
tation of evolution requirements is supported by methods as described in 
[VDG08, VEG08].  

3.2 Construction for Flexibility 

Flexibility as a quality attribute is mainly addressed analytically in re-
search. That means, there are dedicated methods and metrics as to how 
to evaluate the flexibility of a certain software system. This research is 
explored in Section 3.3. Constructively, there is not much support for 
flexibility. In this section, we summarize how contemporary architecture 
methods support definition of flexible architectures. First, we give an 
overview on the elicitation of flexibility requirements (3.2.1). Second, we 
look at architecture definition methods (3.2.2). Third, we describe archi-
tectural mechanisms for flexibility (3.2.3) which can be applied during in 
the process of designing. Finally, we present how SOA design approach-
es support flexibility, a key quality attribute in SOA (3.2.4). 

3.2.1 Elicitation of Flexibility Requirements 

Flexibility is a quality attribute or also called non-functional requirement 
(NFR). In the field of requirements engineering, many methods exist (e.g. 
TORE, Task-Oriented Requirements Engineering [PK04, ADE+09]), which 
support the elicitation of functional as well as non-functional require-
ments. Additionally, there are more specialized methods to elicit quality 
attributes and their particular meaning for a software system at hand 
(e.g. [Doe11]). Such methods typically support the requirements engi-
neer with a systematic approach and with guidelines characterizing the 
quality attributes [VEG08, VDG08]. Flexibility as a development time 
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quality attribute is often not as well supported as other quality attributes 
that are directly visible for the user of the system. 

As an input for architecture design, it is a wide-spread practice to ex-
press quality attributes precisely with architecture scenarios [BCK03]. In 
particular the flexibility evaluation methods as described in Section 3.3 
heavily rely on architecture scenarios [e.g. BB99, BB00, BB01, Ben02, 
LRV99a, LRV99b].  

Stating flexibility requirements is in a way a prediction of what will be 
needed in the future. Therefore, flexibility requirements are often uncer-
tain. That is, it is not clear whether the requirements stated will ever be 
realized and it is not clear whether all important changes have been 
foreseen. Lassing et al published a study on how well flexibility require-
ments have been foreseen in a specific context [LRV99b, LRV03]. Bengts-
son and Bosch conducted an experiment on identifying change scenarios 
[BB00] and found that groups come up with better scenarios than indi-
viduals. Interesting observations of the experiment are that nearly always 
changes to a database and operating system are assumed changes and 
that change scenarios cover significantly more often changes to interfac-
es and hardware than to the application logic. 

3.2.2 Architecture Definition Approaches 

In this section, we explore architecture definition approaches for their 
support for the specific quality attribute flexibility.  

Very early work in the direction of flexibility has been done by David Par-
nas. In [Par72], he writes about decomposition of systems into modules, 
which is a very early approach for architecting software systems. There, 
he already brings the idea in to determine likely changes (similar to 
change scenarios) and to encapsulate the changes. He proposes to fol-
low the principles of Information Hiding and Localization of Change. In 
[Par79], this work is followed up. In [Par94], Parnas describes the phe-
nomenon of software aging and demands planning for change (“To ap-
ply this principle [design for change], one begins by trying to characterize 
the changes that are likely to occur over the “lifetime” of the product. 
[…] Since we cannot predict the actual changes, the predictions will be 
about classes of changes.”) 

In our problem statement (Section 1.3), we identified the need for 
alignment of architectural mechanisms and business logic mapping in 
order to achieve flexibility. Contemporary architecture definition ap-
proaches can be classified in three major groups, according to their sup-
port for architecture mechanisms and to the decomposition of business 
logic. 
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First, there are approaches mainly concentrating on the achievement of 
quality attributes, like [BCK03] by Bass, Clements, and Kazman. The 
focus is on the design for quality attributes, which is also reflected in the 
name of the design method: Attribute Driven Design. Implicitly, there is 
of course also the assumption that the system under design is first func-
tionally decomposed and then the mechanisms are applied, but there is 
little guidance on how this decomposition is done and in particular on 
how it is aligned with the architecture mechanisms to achieve quality at-
tributes like flexibility. 

Second, there are approaches mainly concentrating on the decomposi-
tion of the domain and on the system in components of a software ar-
chitecture. [ABB+02] for example completely neglects the design for 
quality attributes in the design process and focuses only on functional 
decomposition. Further approaches in this category are the SOA model-
ing approaches as described in more detail in Section 3.2.4. Siedersleben 
describes in [Sie04] an architecture approach which focuses on function-
al decomposition, but with a strong focus on the separation of business 
logic and infrastructure. Thereby, he does not focus on system-specific 
quality attributes but rather presents typical reference solutions which 
can be entitled as best practices and might work for a larger amount of 
systems. 

Third, there are approaches that incorporate aspects of both, functional 
decomposition and design for quality attributes. Bosch describes in 
[Bos00] an approach that iteratively decomposes a system and then ap-
plies so-called Architecture Transformations to achieve quality attributes, 
which means to introduce architectural mechanisms like styles. Several 
further architecture approaches exist that cover both aspects, e.g. 
[Kru03, Gor06, TMD09, Fai10]. It is common to all these approaches that 
they address the interplay of architecture mechanisms and the resulting 
elements of a functional decomposition only very roughly. That is, an 
alignment of architectural mechanisms and business logic mapping as 
needed for flexibility in particular, is not part of these methods. This is a 
gap that is identified as an open research question in this thesis. 

Besides the methodical aspects, the knowledge about architectural 
mechanisms to achieve flexibility is crucial. The next section explores the 
state-of-art concerning such mechanisms. 

3.2.3 Architecture Mechanisms for Flexibility 

In Definition 4, the term Architecture Mechanism is defined. We use the 
term architecture mechanism as there are many different terms (style, 
pattern, tactic, etc.) in literature which have similar meanings but are 
also used differently in some contexts. Architecture mechanisms are ap-
plied to solve certain requirements, in particular quality attributes which 
cannot be achieved by a simple decomposition and which often affect 
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many components of a system. For example, flexibility or performance 
require the usage of architecture mechanisms. Architecture mechanisms 
are often described as best practice solutions to recurring problems in a 
certain context, often known as patterns. 

Architecture mechanisms for flexibility typically base on abstract and 
general software engineering principles like separation of concerns 
[Dij82, ER03], information hiding [Par72, Par79, ER03], low coupling & 
high cohesion [SMC74, ER03] and make them more concrete.  

In [BCK03, BBN07], the term Modifiability Tactics is used. The key goal 
for modifiability is localization of change and avoidance of ripple effects 
(see [Bla01]). Further work in this context [OKK07a, OKK07b] deals with 
the value achieved by introducing architectural tactics and patterns. 

In [TMD09], architectural adaptation is motivated and described. There, 
the term adaptation is also mainly in line with our flexibility definition. 
Architectural styles are mentioned as the mechanisms supporting 
change. For example, the styles Application Programming Interface (API), 
Scripting Languages, Plug-Ins, or Event Interfaces are mentioned. 

There are several books available specializing on patterns for design and 
architecture. The so-called Gang-of-Four (GoF) patterns [GHJ94] are 
originally used at a more concrete design level, but many of the ideas 
can be applied at the architectural level, too. Often, these patterns target 
at the separation of concerns and thus they can contribute to flexibility if 
appropriately used (“Each design pattern lets some aspect of system 
structure vary independently of other aspects, thereby making a system 
more robust to a particular kind of change.” [GHJ94]). A further source 
of many patterns is the Pattern-Oriented Software Architecture (POSA) 
[BMR97] series, which also provides many patterns supporting flexibility. 

Evolution styles [GBS+09, GS09] are no typical architectural styles, but 
the idea is quite close to supporting an architect in conducting changes 
to a software system. An evolution style captures a domain-specific set 
of evolution paths which determine constraints on how evolution has to 
take place starting from an initial architecture and resulting in a target 
architecture.  

3.2.4 Design Approaches for SOA 

Due to the popularity of SOA, several design approaches specializing on 
the properties of SOA-based systems were defined. SOA design ap-
proaches mainly focus on functional decomposition of systems and the 
mapping of functionality on the architectural element type Service. That 
is, these approaches rather focus on the properties of single services 
than on the overall architecture. Thus, design for flexibility is mostly no 
inherent property of these methods. 
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Quasar Enterprise by sd&m [EHH08] is an extensive approach for design-
ing service-oriented application landscapes which gives detailed guide-
lines on the step-wise analysis and design of SOA-based systems. Addi-
tionally, typical challenges like integration and the usage of SOA tech-
nologies are addressed. In [HHV06], more information on desirable 
properties of single services is described, like coarse-grained or context 
free. 

IBM specialized the Rational Unified Process (RUP) [Kru03] towards a 
method for service-oriented systems: It is called Service-Oriented Model-
ing and Architecture (SOMA) [AGA+08, AA06]. SOMA describes how to 
analyze the business to be supported and then how to identify and re-
fine services which adequately support the business and its processes. 
Zimmermann developed a further approach in IBM, which is described in 
[Zim09]: A framework is developed which supports making and model-
ing architectural decisions for service-oriented systems. The focus in this 
work is on making knowledge about SOA-design explicit and use it to 
guide architects in designing their own systems.  

Erl describes a method for service-oriented analysis and design [Erl06]. 
He decomposes the business and its business processes and identifies 
service candidates which are assigned to three categories (entity services, 
task services, and utility services). Erl gives extensive guidelines on the 
decompositions, but focuses on the functionality only. 

Lee et al describe an approach for developing service-oriented product 
lines [LMN08, LMN10]. The analysis step is based on feature models and 
the features are translated to services. Therefore, guidance on service 
identification and definition is given.  

The Software Engineering Institute (SEI) describes in the report “Archi-
tecting Service-Oriented Systems” [BLM+11] typical properties and chal-
lenges of service-oriented systems. Less focus is on the method. Rather, 
the architecture mechanisms like Enterprise Service Bus or Business Pro-
cess Engine are discussed in the light of their impact on quality attrib-
utes. 

The Object Management Group (OMG) defined a new UML-based lan-
guage standard for the description of service-oriented systems [OMG09]. 
The language extensions are mainly meta-model elements and UML ste-
reotypes, adapted to the SOA terminology.  

Gebhart proposes an extension for SOA design approaches which focus-
es on a high-quality design [Geb11]. As quality, he proposes properties 
like Unambiguous Categorization, Retrievability, Loose Coupling, and 
Autonomy for individual services. For these properties, he introduces 
metrics and proposes how to identify problems regarding these proper-
ties and how to improve the design. 
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All approaches outlined focus on the definition of single services and 
lack support for proactively designing quality attributes like flexibility into 
a system.  

3.3 Measurement and Evaluation of Flexibility 

Measuring and evaluation of flexibility is in the focus of several methods 
and approaches. Different names for the quality attribute under evalua-
tion are used, mainly maintainability, modifiability, and flexibility, but the 
general ideas are mostly transferrable. In the following sections, we will 
briefly sketch different research directions and approaches for the evalu-
ation of flexibility.  

3.3.1 General Overview on Architecture Evaluation Methods 

Architecture is the appropriate level of abstraction to analyze and evalu-
ate many important questions about software systems. Thereby, archi-
tecture offers the possibility to focus on the most relevant facts for a cer-
tain question and to abstract from less relevant facts. Additionally, archi-
tecture offers the advantage that architectural ideas can be made availa-
ble quite early in the development lifecycle, which allows the analysis of 
crucial properties of the resulting systems, without the need to build 
them first. 

Different types of architecture evaluation methods exist which mainly 
differ with respect to the different prerequisites they require (point in 
time in system lifecycle, availability of artifacts and documentation, avail-
ability of resources and time for evaluation) and to the type of evaluation 
result (questions to be answered, required level of confidence) they can 
produce.  

A very widespread type of architecture evaluation is scenario-based eval-
uation. Therefore, important requirements are elicited from stakeholders 
and precisely expressed with so-called architecture scenarios [BCK03]. 
Then, evaluators and architects discuss together how the architecture at 
hand fulfills the scenarios and where there are gaps or risks in fulfill-
ment. Well-known approaches of this type are SAAM (Software Archi-
tecture Analysis Method) [KAB96] and ATAM (Architecture Tradeoff 
Analysis Method) [CKK01] by the SEI (Software Engineering Institute). 
These methods can be applied at any level of detail of architecture speci-
fication. Of course, a low level of precision in input artifacts also results 
in lower confidence in the evaluation results. Scenario-based architecture 
evaluation methods like SAAM and ATAM are typically targeting at qual-
ity attributes in general, but do not provide specific support for quality 
attributes like flexibility. 
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For more confidence in the evaluation results, more detailed evaluation 
inputs and more focused evaluation methods are necessary. That means 
that typically formal architecture models have to be provided which cov-
er specific information for the analysis at hand. For example that would 
mean that for detailed performance analyses architecture models must 
cover the necessary timing information. Many of the architecture evalua-
tion methods for maintainability and flexibility as described in the follow-
ing sections fall into this category. However, there is still a broad range 
in the degree of formalization. With a high degree of formalization, also 
automatic calculations and simulations [Bos00] become possible, as real-
ized in this thesis. 

A survey of architecture evaluation methods is published in [RG08]. 

3.3.2 Evolution Complexity 

Eden and Mens introduced the term Evolution Complexity [EM06] fol-
lowing the idea of Computational Complexity. Thus, they introduce simi-
lar to the Big Oh notation a notation which expresses the complexity of 
changes in classes of growth; that means a change is independent of the 
system size (O(1)) or grows linearly with the system size (O(n)). They 
count the number of affected modules for a certain change scenario in a 
software system. However, there are basically only two complexity clas-
ses in evolution and thus these metrics are not accurate enough.  

Consequently, in a second step they introduce more evolution metrics, 
for example depending on the number of lines of codes affected or on 
the cyclomatic complexity of the affected modules. In a number of case 
studies they apply their metrics on well-known Java design constructs or 
on architectural styles and calculate the metrics for assumed change sce-
narios. 

Summarizing, they introduce interesting ideas for measuring flexibility 
but they do not provide a consistent idea of how to use these metrics 
and of how to embed them into engineering practices. 

3.3.3 Analyzing Modifiability at Architecture Level 

Two major (and intertwining) research streams in architecture-level mod-
ifiability analysis can be observed and are described in the following. 

Lassing, van Vliet et al describe two larger case studies of evaluating flex-
ibility of software architectures [LRV99a, LRV99c]. They base their analy-
sis on scenario-based architecture evaluation methods [KAB96], but they 
do an explicit analysis of the quality attribute flexibility / modifiability and 
derived criteria. These criteria (Impact level in terms of components af-
fected by change; Multiple owners; Arising conflicts from multiple ver-
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sions of software) are used to evaluate how flexible a system is with re-
spect to a particular scenario. For their case studies, they describe the ar-
chitecture of the systems (system itself (micro architecture) and system in 
context (macro architecture)) and discuss for a set of elicited flexibility 
scenarios how well they are supported by the architecture. 

Bengtsson and Bosch developed a method “Architecture Level Prediction 
of Software Maintenance” (ALPSM) [BB99], which aims at analyzing 
maintenance effort during architecture design. It is a scenario-based ap-
proach as well and introduces a weighting of change scenarios and an 
estimation of component sizes. In a step “scripting the scenarios”, the 
change impact of scenarios is analyzed and in a final calculation the av-
erage size (in LoC) of a change is derived, from which, with several as-
sumptions, maintenance efforts can be derived. 

In the following, Lassing, van Vliet, Bengtsson, and Bosch published to-
gether and called their method “Architecture-Level Modifiability Analy-
sis” (ALMA) [BLB+00]. The core of the method is scenario-based, aiming 
at the analysis of change impact of anticipated scenarios. In [LRV01], ar-
chitectural viewpoints that provide information for modifiability analysis 
are introduced (context, technical infrastructure, conceptual, develop-
ment viewpoints) which represent a meta-model of architecture.  

Refinements, more case studies, and experiences with ALMA have been 
published in [BB01, Ben02, LBV+02, BLB+04]. This thesis bases on sever-
al ideas introduced in ALMA, e.g. the weighting of scenarios and the 
calculation of impact sizes. While ALMA puts more focus on the calcula-
tion of maintenance efforts and the process of scenario elicitation, we 
put more focus on the integration of flexibility evaluation in the architec-
ture construction process and in particular on more explicit separation of 
business logic and infrastructure. Additionally, we provide a notation for 
modeling change impacts as part of the architecture model. This allows 
automatic calculation of flexibility metric values in architecture modeling 
tools. 

3.3.4 Modifiability and Real Options Theory 

Bahsoon and Emmerich developed an approach to calculate the value of 
investing into architectural flexibility, which is called “ArchOptions” 
[BE03, BE04, Bah05, BE06]. They put architectural stability [Jaz02] as a 
major goal as it leads to moderate cost for occurring changes. In order to 
achieve architectural stability, the architecture has to be flexible enough 
to absorb the changes. They developed a model based on real options 
theory: Put simply, they see investing into flexibility similar to buying real 
options which allow conducting a certain change at a certain later point 
in time at a certain price. They found analogies for typical parameters in 
real options theory and thus can use the calculation models provided by 
the model they used. Consequently, they provide interpretation guide-
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lines which allow a judgment on whether the investment into flexibility 
for certain changes is worthwhile or not. 

There is little overlap of this work on real options theory and the work of 
our thesis. We do not emphasize the ratio of investment into flexibility 
and the payoff in detail; thus this work complements our approach well. 

3.3.5 Palladio and Maintainability Prediction 

At Karlsruhe Institute of Technology (KIT), the Palladio Component Mod-
el (PCM) [RBB+11] was developed. It is an architectural framework 
providing methods for architecture definition and analysis. The basis of 
the framework is an architecture meta-model and a distinction of roles 
involved in development and their relationship to the models. Architec-
ture modeling and architecture analysis based on PCM are supported 
with Palladio Bench, an Eclipse-based tool-suite [Palladio]. 

Palladio supports architecture analysis for several quality attributes like 
performance, reliability, or maintainability. In [BKR07, BKR09], they de-
scribe how PCM is utilized to represent the relevant information for per-
formance prediction and how the model can be analyzed. For maintain-
ability, the Karlsruhe Maintainability Prediction (KAMP) [SR09] approach 
is defined. It is also based on PCM and supports the calculation of 
change effort for certain anticipated change scenarios. A detailed  
change impact analysis for a scenario is conducted which can be cali-
brated with bottom-up effort estimations for conducting the changes.  

KAMP bases on some ideas about the analysis of maintainability that are 
similar to the ones of our thesis: It works in a scenario-based way and 
calculates maintainability based on impacted architectural elements. 
While KAMP prescribes in more detail how to take architectural elements 
like components and interfaces into account, our approach stays rather 
general and allows including any architectural element as needed by the 
architect. KAMP supports the automatic derivation of change impact by 
model comparison whereas our approach targets at a light-weight and 
more abstract modeling of change impacts by the architect during archi-
tecture design. KAMP rather supports the execution of changes at a cer-
tain point in time by estimating the change effort and deriving work 
plans for the change whereas our approach targets at the construction 
time of the architecture when the flexibility needed is built in. Further-
more, KAMP takes activities like deployment into account for the effort 
estimation. 

3.3.6 Enterprise Systems Modifiability Analysis 

Lagerström, Johnson et al developed an approach for analyzing the 
modifiability of enterprise systems; they target at application landscapes 
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with an enterprise-wide focus. First, they developed so-called Extended 
Influence Diagrams [PLN+07] as a basis for the expression of their meta-
models. In [Lag07], the first meta-model for maintainability is developed. 
Thereby, maintainability is seen in our broadest sense, comparable to 
what we called “Agility” in Section 3.1.1 (covering aspects of Personnel, 
Process, Documentation, Architecture Quality, Platform Quality, Source 
Code Quality). As a quantitative basis for the meta-model, Probabilistic 
Relational Models (PRM) are used. The analysis is done scenario-based 
and the evaluation results are probabilistic values, too. 

In [LFJ+09], a method for creating enterprise architecture meta-models is 
introduced, which is then applied for modifiability (renamed from main-
tainability). The resulting models have a qualitative part with elements, 
attributes, and causal relationships (see Figure 23) and a quantitative 
part which contains probabilistic calculations for the derivation of the 
overall modifiability or cost values. A more detailed meta-model is pre-
sented in [LJE10], which is dedicated to software change cost estimation. 
It describes different views of the meta-model (organizational, project, 
documentational, system) and hierarchical views for characterizing sys-
tem parts in order to control the model complexity. In [LJH10], the au-
thors summarize the evaluation models and methods and illustrate their 
usage with case studies. 

The approach of Lagerström and Johnson differs from our approach 
mainly in the coverage of aspects concerning changes. Whereas they try 
to cover all relevant aspects influencing modifiability in the broadest 
sense, we aim at a much smaller scope, namely at the impact of archi-
tectural decisions on flexibility, and thus achieve a higher accuracy. Fur-
ther, we also support constructive aspects. An approach like the one dis-

 

Figure 23:  Modifiability meta-model [LFJ+09] 
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cussed is helpful in the sense that it covers the relationships among dif-
ferent types of influence factors and allows identifying where investment 
into improvements is promising. It could be combined with our approach 
in the sense that our approach delivers more accurate evaluation results 
for a small excerpt of the overall evaluation. 

3.3.7 Further Related Research 

In this section, we present some more related individual research results.  

In [ZYX+02] an approach for change impact analysis at the architectural 
level is introduced in order to support evolution. This approach defines 
the notions of slicing and chopping at the architectural level. The main 
usage from a change impact analysis perspective is to identify in an ar-
chitecture how changes propagate to other components in case a cer-
tain component has to be changed. Doing so does not take the relation-
ship to change requirements into account but works at architectural el-
ements only. Consequently, this approach is complementary to the ap-
proach introduced in this thesis: It could be used for auto-completion of 
change impact views after adding first impacted architectural elements. 

In [AFL+05], an experiment on the exploitation of flexibility is described. 
They have several findings: developers not always make use of built-in 
flexibility; even sophisticated flexibility mechanisms might not be recog-
nized and used; their conclusion is that besides a sound documentation 
also the intention behind flexibility mechanisms has to become clear. 
Further, deterioration of architecture has to be prevented to benefit from 
flexibility in the long run. 

Sneed provides a method for estimating maintenance cost [Sne95]. For a 
specific change he also analyzes the size of the so-called Impact Domain 
and applies several adjustment factors like the complexity factor, the 
quality factor, and the project influence factor. Finally, the effort for the 
change is derived from a maintenance productivity table. The approach 
is more related to cost estimation work than to our approach; however, 
it uses similar mechanisms for the impact estimation and the variation 
with influence factors. 

3.4 Flexibility in SOA-Based Information Systems 

Flexibility is often promised and expected as one of the key benefits of 
SOA (see Chapter 1). However, there is not much research on this topic. 
One publication with a strong focus on business flexibility and some ar-
chitectural aspects is [Spr05]. Mostly, when it comes to the idea of flexi-
bility in SOA, runtime adaptation is in focus, as described in [Smi08]. 
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SOA as an architectural style with some implications for flexibility is de-
scribed by IBM in [Lub07].  

A SOA research agenda has been published under the supervision of SEI 
and others [LSK07]. It identifies among many other research questions 
also those that are closely related to our thesis. In the Engineering Do-
main, Architecture and Design and Maintenance and Reengineering 
have been identified. With respect to Architecture and Design, we pro-
vide our architecture approach for flexibility as well as the SOA-specifics 
in Chapter 6. With respect to Maintenance and Reengineering we pro-
vide proactive tool-support for maintenance activities and impact analy-
sis, mainly by the change impact views and our tool support. 

As architecture mechanisms for flexibility in SOA, ESB (see Section 2.2) 
[Cha04], BPM [Wes07], or BRM [BS09, End04] are often found. Howev-
er, these descriptions typically describe only the architectural mecha-
nisms and not how to use them in terms of business logic mapping for 
achieving True Flexibility, as aimed at in our thesis. 

Another branch of research that is related to BPM deals with process 
flexibility [RSS06, SMR+08, Kan09, Kan10]. This typically means that 
processes which are supported by workflow languages and engines can 
be changed flexibly, even during the runtime of the system. This type of 
flexibility is out of scope of this thesis. 

3.5 Summary and Conclusion 

In the previous sections, we described related work to all our research di-
rections as sketched in the introduction of this chapter and provided 
one-to-one comparisons. In this section, we summarize the analysis of 
related work and the gaps to be filled by this thesis.  

It turned out that there is no single comparable approach, which is sup-
posed to be improved in this thesis. Rather, for all the research direc-
tions, there are many related ideas and approaches which provide partial 
foundations for our thesis. This thesis contributes mainly in the area of 
design for flexibility, with support of analytical methods and refinements 
for SOA-based systems. Therefore, a consistent and crosscutting ap-
proach around the quality attribute flexibility is introduced.  

The center of this thesis is the constructive support for flexibility. As de-
scribed in Section 3.2, current architecture definition approaches in gen-
eral and SOA design approaches in particular do not offer this support. 
We introduce a more detailed process and guidance on how to achieve 
flexibility in combining the application of adequate architecture mecha-
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nisms (based on quality-driven design) and business logic mappings 
(based on functional decompositions). 

A key idea of our approach is to support an architect with immediate 
feedback on the flexibility of the architecture under construction. Most 
of the related work we found is on evaluation of flexibility or similar 
quality attributes at architecture level (see Section 3.3). Consequently, 
there is a strong foundation for our analytical support. However, the ap-
proaches found still require manual analysis and interpretation for flexi-
bility evaluation, which is not desired in our approach. Therefore, we 
need an idea of how to achieve an automated analysis of flexibility. 

As a basis for our methodical contributions, we need a consistent foun-
dation in terms of defining flexibility and the relationship to architecture. 
Thus, we reviewed related work on flexibility and related quality attrib-
utes from different domains (see Section 3.1). This related work gives a 
solid foundation to synthesize a consistent meta-model of flexibility at 
architecture level, similar to what others did for different scopes. 

Finally, we explored how flexibility is addressed in research for SOA-
based systems (see Section 3.4). There we found that although many ar-
chitecture mechanisms with inherent flexibility potential exist, it is not 
clear how they are to be selected and utilized in architecture definition. 
This is the gap we fill there. 

From our research directions (R.D1 – R.D4) and the related work we de-
rive the following research challenges (see Section 1.4):  

� R.C1: How can the relationship between flexibility and architecture 
be precisely characterized and how can this be used for 1) better elic-
itation of flexibility requirements, 2) more guidance for architecture 
design, 3) measurement of flexibility? 

� R.C2: How can an architecture construction process support architec-
ture design for flexibility with appropriate architectural mechanisms 
and business logic mappings? 

� R.C3: How can the flexibility of an architecture under design be au-
tomatically predicted for near-time feedback on flexibility to an archi-
tect? 

� R.C4: How should architectural information about paradigms / tech-
nologies like SOA be described and used in architecture construction 
in order to exploit their flexibility potential? 

As described in Section 1.4, the research ideas R.I1 – R.I4 are followed 
(see Figure 24) in order to address the research challenges.  

In summary, we provide an approach for guiding architecture definition 
towards flexibility. One aspect is direct feedback about the achieved level 
of flexibility to the architect, which requires extending existing flexibility 
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evaluation methods towards automated evaluation. As a basis we need a 
consistent meta-model of flexibility at architecture level. Finally, we con-
tribute support for making best use of typical SOA architecture mecha-
nisms in achieving flexibility. 

 

Figure 24:  Overview on research ideas of the thesis 
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4 Flexibility as a Quality Attribute of Software 

"Flexibility is the root of all evil." 
Scott Jenson 

Scott Jenson writes in “The Simplicity Shift” [Jen02]: “Flexibility is the 
root of all evil”. Although not written for software systems and their in-
ternal organization but rather for industrial product design and the relat-
ed user interfaces, this citation and its explanation hold also for flexibility 
of software: Flexibility per se is not evil, but trying to make everything 
flexible leads to poor design. On the other hand, flexibility can be very 
valuable when fitting the needs. We will describe these ideas more for-
mally and grounded for the world of software in this chapter. 

In this chapter, we provide an elaborate definition and discussion of 
characteristics and aspects around flexibility. Our definitions are based 
on existing definitions and concepts but aim at more depth in clarifying 
concepts and their relationships. We introduce or reference definitions of 
the key terms in this chapter. Some of the definitions have already been 
introduced in Chapter 1 for precisely describing the problem addressed 
in this thesis. 

In [SHN01] (see Section 3.1.3), flexibility research in the area of space 
systems is introduced. Questions are posed which also guide our re-
search well. These questions will be addressed in this and the next chap-
ter. 

� “What is flexibility? How does a formal definition look like?” 

� “Why or when is flexibility needed in system design?” 

� “How can one design for flexibility? What are the design principles?” 

� “What are tradeoffs associated with flexibility?” 

First, we start with a characterization of flexibility in Section 4.1. Then, 
we elaborate on flexibility requirements in Section 4.2. For the achieve-
ment of flexibility, the role of architecture is discussed in Section 4.3. Fi-
nally, all concepts are summarized and formalized in a conceptual model 
for flexibility in Section 4.4. 
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4.1 Characterization of Flexibility 

In this section, we characterize flexibility. First, principle characteristics 
are sketched (4.1.1). Second, flexibility is viewed in the perspective of the 
software product lifecycle (4.1.2). Then, the relationship of flexibility to 
software engineering artifacts is outlined (4.1.3). Finally, flexibility is de-
scribed in a spectrum of uncertainty (4.1.3). 

4.1.1 Principle Characteristics 

Flexibility is always about changing software in the future. In practice, 
software is often expected to support any type of change, as it is inher-
ently “soft”. Theoretically, most changes can be conducted but the ef-
fort for conducting a change can be enormous. Thus, flexibility always 
means to support changes with little effort and acceptable cost.  

Definition 9 Software Change (or simply “Change”)  

A change of a software system is a change of implementation artifacts 
of the system (and consequently the executable system) in order to fulfill 
changes in the system’s set of requirements. 

Flexibility is always about future, anticipated requirements to a sys-
tem which have not been realized yet and can only be realized via 
changes to the system at development time. Keeping effort for 
changes little requires that only local changes to a few implementation 
artifacts are necessary. The realization of a software system always leads 
to the situation that certain requirements have encapsulated realizations 
while other requirements have crosscutting realizations (determined by 
the architecture and the nature of requirements). Consequently, there 
are always potential changes to requirements which cannot be conduct-
ed with little effort, which means that a system cannot be flexible 
with respect to all changes of requirements. This is depicted in Figure 
25, where all potential changes to requirements are sketched with an as-
sumed effort for conducting the changes. Thus, most approaches to-
wards flexibility (see Chapter 3) state that flexibility of a system can only 
be judged with respect to certain anticipated changes. Such antici-
pated changes are expressed as flexibility requirements (see Definition 
3). On the other hand, for the same reasons there are changes in each 
system that can be easily conducted. For these, the term flexibility po-
tential (see Definition 5) is introduced. Only if the changes expressed in 
flexibility requirements are covered by the changes supported by the 
flexibility potential, the system has valuable flexibility (= true flexibility, 
see Definition 7).  

Besides the effort for changing implementation artifacts (as men-
tioned above), changing a software system leads to effort caused by 
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other activities like first analyzing and understanding the system, testing 
the system after change, putting the system into production after 
change, etc. However, these efforts are related to the quality flexibility as 
defined in this thesis, but they are expressed in other quality attributes 
like understandability and maintainability, as delineated from flexibility in 
Section 3.1.1. Please note that this is the definition for this thesis and it 
is not commonly agreed on as described in Section 3.1. 

As flexibility requirements are requirements about changes of re-
quirements in the future, there is an inherent indirection, which makes 
flexibility in practice often harder to understand, to construct for, and to 
evaluate than other quality attributes. An additional complexity is intro-
duced as flexibility requirements are often not sharp and clearly defined 
but rather fuzzy (see Section 4.2). Definition 10 gives a summarizing def-
inition of flexibility covering the aspects discussed. A more formal and 
measurable definition is described in Section 4.3.3.2. 

Definition 10 Flexibility  

Flexibility is the property of a software system to allow conducting cer-
tain anticipated changes to the system (expressed in flexibility require-
ments) with acceptable effort for modifying the system’s implementation 
artifacts. This means that the flexibility requirements are covered by the 
flexibility potential of the system.  

Consequently, when we use the term flexibility, true flexibility is meant. 
True flexibility is thus an additional term that was introduced to make 
the distinction between flexibility and flexibility potential clear. Actively 
designing for flexibility means to come to a situation where only little ef-
fort is needed for important changes and high effort is needed for 
changes never conducted, rather than having a random relationship. 

An architect aiming at flexibility has to accept limitations with respect to 
flexibility requirements that can be covered. This has several reasons for 
this: 

 

Figure 25:  Distribution of change effort to change requirements 
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� A system cannot be flexible with respect to all flexibility requirements 
at the same time (see arguments above) 

� Introduction of flexibility often comes with additional cost (see Sec-
tion 4.3.4) 

� Flexibility typically requires tradeoffs with other quality attributes (see 
Section 4.2.3) 

4.1.2 Flexibility in the Software System Lifecycle 

Flexibility affects the whole life cycle of a software system from initial 
development to retirement. As described, flexibility is the property of a 
system to support changes to a software system at acceptable cost. 
Changes to a software system typically occur during maintenance activi-
ties or also in later phases of initial system development. In order to ben-
efit from flexibility later on, it has to be designed and built into a system 
earlier. Designing and building in flexibility is very typical during initial 
system development, but it can be also done in larger maintenance pro-
jects when the need for flexibility is recognized. We distinguish mainly 
two high-level activities around flexibility (see Figure 26):  

1. Designing and building in flexibility 

2. Exploiting flexibility 

Both activities can basically happen at all times in the system lifecycle. Of 
course flexibility has to be first built in with respect to a particular 
change, otherwise exploitation is not possible. This thesis focuses on de-
signing and building in flexibility (see Chapter 1), whereas the exploita-
tion of flexibility is not covered. 

Looking at flexibility requirements is possible from two points in time 
in the system life-cycle. From the a-priori point, flexibility requirements 
have been anticipated and weighted during system design and building. 
From the a-posteriori point, which means looking back at the changes 
conducted in a system, all actual change requirements can be listed and 

 

Figure 26:  System lifecycle phases and activities related to flexibility 
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also the effort to realize them is known. For our method and thesis, 
mainly the a-priori perspective is relevant. 

4.1.3 Flexibility and Software Engineering Artifacts 

Flexibility has a relationship to artifacts along the software engineering 
process. Thus, we sketch the role of requirements, architecture, and im-
plementation for flexibility.  

Flexibility requirements are non-functional requirements as many other 
requirements. A specific aspect is that they express some indirection: 
They are requirements about changing the set of requirements at a cer-
tain point in time in the future. Consequently, flexibility requirements are 
elicited and treated similar than other requirements. Guidelines for their 
elicitation and description are outlined in Section 4.2. 

According to our definition of flexibility (see Definition 10), flexibility 
means that changes can be conducted with acceptable effort for modify-
ing implementation artifacts. The key assumption behind this is that 
most of the effort for modifying system artifacts has to be spent on the 
implementation level. With implementation level we basically mean all 
artifacts that are developed to become part of the executable system, for 
example source code files in any programming language (e.g. Java, C, 
C#, Fortran files, etc.), scripts and descriptors as parts of technologies 
(like SQL queries, Java EE deployment descriptors, XML-based files for 
configuring Spring or Eclipse, etc.), or database definition schemas. In 
the context of model-driven development [Sel03], such implementation 
artifacts are often not directly created by programmers, but they are 
generated fully automatically from higher-level model artifacts. Inter-
preted in our understanding, the flexibility definition always refers to the 
last stage of implementation artifacts to which the modifications have to 
be done manually by programmers (because the update of the generat-
ed artifacts is very easy through automation). This can also be models. 
An example is the addition of a data field through all levels of software 
from database over the logic layer to the UI: If the system is described 
with a model that contains the data and can be updated and the respec-
tive code parts can be generated, there are a lot of changes to the code 
but only minimal effort for programmers, which results in high flexibility. 
Summarizing, we can say that flexibility is related to the artifacts that 
have to be changed by programmers or other engineers and cause the 
significant efforts. 

Referring to the definition of flexibility: Why is architecture important 
and why should we not care about the implementation level only? Archi-
tecture is the blueprint and manifestation of all design decisions which 
are realized at implementation level. Consequently, architecture is the 
abstraction used to design and measure flexibility without the need to 
consider every detail of the implementation level. In that sense, architec-
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ture allows controlling the high complexity of today’s systems when talk-
ing about flexibility and it allows us to plan for flexibility at an early point 
in time in the development lifecycle. Another aspect of architecture in 
the context of changing a system is that the architectural model and 
documents might undergo changes, too. Our assumption is that chang-
ing architectural models and documents causes negligible effort com-
pared to the effort for changing the implementation. One exception is in 
line with the discussion of model-driven development above: In case the 
architecture models can be directly used to generate the implementation 
artifacts, they are the artifacts that are changed by “programmers” and 
thus have to be considered for flexibility. Although the effort for chang-
ing a system is mainly caused at the implementation level, flexibility can 
be only designed for at architectural level, as flexibility requires the con-
sideration of crosscutting aspects in software. Thus, we strongly focus on 
the role of architecture for flexibility (see Section 4.2.3) and on how to 
design flexible architectures (see Chapter 5), always maintaining the rela-
tion to the implementation level. 

4.1.4 Flexibility in a Spectrum of Uncertainty 

Flexibility always comes with uncertainty. Changes have to be anticipat-
ed to design for and it is not clear what exactly the changes will look like 
and whether they will really happen (probability). In this section, we look 
at situations where the uncertainty is not given and at situations where 
the uncertainty is very high. This spans a spectrum in which flexibility is 
located. The idea is to compare flexibility with these situations and learn 
about the differences. Figure 27 depicts all the aspects discussed. 

 

Figure 27:  Flexibility in a spectrum of uncertainty 
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The situation with low uncertainty, in which changes can be anticipated 
rather easily, is typically addressed with Configurability [NM10], as often 
found in Product Line Engineering. That is, changes are well known and 
likely and can thus be built directly into the software system as alterna-
tive configurations. On the other end of the spectrum, uncertainty is 
high and no concrete changes can be anticipated. Of course, there is still 
the wish to be able to conduct changes at relatively low cost, but with-
out having a clue of what they could be. Then, the only possibility for 
design is to follow best practices and design principles like “low cou-
pling”, “high cohesion”, “encapsulation”, etc. (see also Section 4.3.1), 
which we call here “Good Design”. When designing for flexibility, an ar-
chitect will probably apply the same or similar design principles, but tar-
get them explicitly at optimizing the anticipated flexibility requirements, 
whereas in the case of no anticipated changes the architect has to rely 
on his experience and to some extend luck. This can be discussed with 
Figure 25: In case of anticipated flexibility requirements, the architect can 
concentrate on those, neglecting the change effort for other changes. In 
case of high uncertainty, the architect has to balance and try to minimize 
effort at a more general level. 

Depending on the level of uncertainty, different types of measurements 
can be applied. In the case of configurability, it is quite easy to check 
whether all configurations are built in. For flexibility, the measurement is 
possible indirectly only, by checking whether the anticipated scenarios 
have limited impact. In the case of “Good Design”, it can only be 
checked whether the design principles are adhered to. 

When it comes to a change, in case of configurability the appropriate 
configuration can simply be chosen. In case of flexibility, the change is 
conducted with relatively low effort, provided it was an anticipated 
change. In the case of “Good Design”, it is to a greater or lesser extent 
by chance how much effort has to be spent on changes: It can be very 
low effort if the change fits the design decisions made, but it can also be 
high effort impacting large parts of the system. 

In [NM10], we discussed the differences between configurability and 
flexibility in more detail. The classification and distinction as introduced 
here is intended to understand typical situations and to know how to 
deal with them. Information systems in practice do not belong to just 
one of the three categories. Rather, they have aspects of configurability, 
flexibility, and “good design”, depending on the possibility to clarify un-
certainties.  

4.2 Flexibility Requirements 

The term Flexibility Requirement is defined in Definition 3 as “a require-
ment that expresses the potential need for changing the set of require-
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ments of a software system in the future”. A flexibility requirement is 
very similar to a Change Requirement (see also Definition 9). The key dif-
ference is that a flexibility requirement expresses only the potential need 
whereas a change requirement can be seen as an actual requirement 
that has to be realized. A term also often found is Change Request, 
which denotes a request to conduct a particular change requirement. In 
the perspective of the software system lifecycle (see Section 4.1.2), flexi-
bility requirements occur in the activity of constructing for flexibility and 
change requirements occur in the activity of exploiting flexibility.  

In the following sections, we describe how flexibility requirements can be 
captured with scenarios (4.2.1) and how scenarios can be characterized 
and classified (4.2.2). Finally, we give an overview on requirements typi-
cally competing with flexibility and requiring adequate tradeoffs (4.2.3). 

4.2.1 Capturing Flexibility Requirements with Scenarios 

For the evaluation and definition of software architectures, architecture 
scenarios [BCK03, CKK01, RW05] are a proven and established means to 
precisely express the architecturally-relevant requirements. Also for quali-
ty attributes related to change (maintainability, modifiability, etc.), archi-
tecture scenarios are strongly applied (see Chapter 3). Different names 
can be found in literature, e.g. Change Scenario, Modifiability Scenario, 
Evolution Scenario, which all have a similar meaning. In line with our 
terminology of flexibility, we use the term Flexibility Scenario. 

Definition 11 Flexibility Scenario 

A flexibility scenario is an architecture scenario expressing flexibility re-
quirements from an architect’s perspective. 

By expressing standardized information like source, stimulus, environ-
ment, artifact, response, and response measure, architecture scenarios 
provide a frame for a detailed description of requirements. In particular 
the context information as the triggering stimulus or the environment in 
which the scenario takes place give an architect additional information 
to reason about. In that sense, flexibility scenarios mainly have the task 
to foster the precise and complete elicitation and description of flexibility 
requirements. Further, they fully integrate in the typical approaches of 
architecture definition and evaluation approaches.  

Our definition says “… from an architect’s perspective”. This is an im-
portant aspect of flexibility scenarios, as they do not only focus on the 
problem space, but can incorporate knowledge about the solution space 
of a system can be incorporated as well (see Figure 28). Concretely, this 
means that in the formulation of flexibility scenarios intended or existing 
design decisions, components, or technologies can be mentioned to be 
as accurate as possible.  
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Architecture scenarios in general are not expected to always express the 
same level of abstraction or accuracy (see Figure 28). Rather, they are 
used to express the information as it is necessary and possible in the 
concrete context. This particularly holds for flexibility scenarios. Inherent-
ly, there is a certain level of fuzziness for future changes, which results in 
the accuracy of the scenarios and the assumptions about probabilities of 
scenarios. Depending on the level of accuracy of flexibility scenarios, the 
construction and evaluation activities can be more or less focused. 

In the following section, we describe how flexibility scenarios can be fur-
ther characterized and classified in order to elicit and document the most 
relevant information for flexibility construction and evaluation. 

4.2.2 Characterizing and Classifying Flexibility Scenarios 

Characterizing a quality attribute in detail has the main intention to 
make previous experiences about challenges in designing software sys-
tems explicit (see also Section 2.1.3). For the quality attribute Modifiabil-
ity, which, according to our classification, is very similar to flexibility (see 
Figure 22), a characterization is given in [BCK03]. There, modifiability is 
characterized along the standard scenario template (source, stimulus, ar-
tifact, environment, response, response measure). Further characteriza-
tions of scenarios can be found in [BLB+00, LRV99b], which mainly char-
acterize along the requirements for change and the types of change im-
pact from an architectural perspective. 

We base our characterization on the standard scenario template 
[BCK03]. Our contribution extends the characterization of modifiability 
with typical questions and sub-characteristics to be asked to elicit the re-
spective information (see Table 2), and typical values for the characteris-
tics (see elaborations of the questions). 

  

 

Figure 28:  Characterization of architecture scenarios 
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Scenario Template  
[BCK03] 

Questions 

Source Who or which event triggers the change? 

Stimulus How likely is the change? 

How often does the change occur? 

Artifact What has to change? 

Which concrete business logic aspects are related to the change? 

Environment Who makes the change? 

When is the change made? 

Response What is impacted by the change from an architecture perspective? 

Response Measure How much effort is needed to change existing parts? 

How much effort is needed to conduct the change? 

Table 2:  Scenario characteristics and questions 

As typically done for architecture scenarios, there is no need for a tabular 
representation. Rather a pure textual representation focusing on the key 
information parts is more appropriate for an architect’s work. 

In the following, we provide for all questions typical values as experi-
enced in projects or derived from literature [BCK03]. This overview of 
typical values is not intended to be complete but covers experiences that 
are useful when eliciting and documenting flexibility scenarios. 

Who or which event triggers the change?  

A change to a software system is typically triggered by a stakeholder of 
the system or initially by an event which makes stakeholders triggering 
the change. 

Typical stakeholders: manager, customer, user, architect, developer 

Typical events: merging of organizations’ IT, migration or exchange of IT 
systems, business process improvement activities, integration of systems 
with external systems, change of legal or other regulations, availability of 
new technologies 

How likely is the change? 

Flexibility requirements are defined as potential changes, thus there is 
always some uncertainty whether the change will be conducted in the 
future. As the probability of different potential changes can strongly 
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vary, it is an important information for an architect to know the proba-
bility of a flexibility scenario in order to balance architectural solutions. 

How often does the change occur? 

The expected frequency of changes is also an information that should be 
provided for an architect in order to allow adequate support for frequent 
changes. 

What has to change? 

The key aspect of a flexibility scenario is to describe which aspect of a 
software system has to be potentially changed. As there are different 
types of requirements, these types can also be affected by changes. 

Business Logic or functionality: Changes of functions, data, processes, 
UI, etc. 

Quality: New quality attributes, qualities in new context, change of quali-
ty level, new capacity levels, etc. 

Technology: Integration or replacement of technologies, usage of new 
features of used technologies, etc. 

External systems: Integration with new or other external systems, chang-
es due to changes in external system, etc. 

Which concrete business logic aspects are related to the change? 

Changes are often described at a level relating to realization concepts 
but not related to concrete business logic (functionality). An example 
change would be to say: “The order of steps in a business process has to 
be changed”. As analyzed in Section 1.3, this change could have very 
different consequences depending on the concrete steps impacted.  

Thus, we make this distinction explicit in our model by introducing two 
levels to denote whether concrete business logic is referenced (Business 
Logic Specific (BLS)) or no concrete business logic is referenced (Business 
Logic Agnostic (BLA)). Typically, this distinction becomes meaningful 
when changes aim at quality aspects, technology aspects, or the integra-
tion with external systems. When changes aim at functionality, they are 
often BLS by nature. 

It can be valid to specify flexibility scenarios at both, BLS or BLA, levels. 
However, when specifying at the BLA level, typically the accuracy of the 
change impact estimation is much lower and constructive activities might 
aim at further refining of the scenario. 
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Who makes the change? 

Each change has to be conducted by a particular stakeholder to some 
implementation artifacts of a software system (according to our defini-
tion of flexibility).  

Thus, the typical stakeholder to conduct a change is a software develop-
er. Nevertheless, the characterization can be more detailed: Developers 
can be in different organizations (e.g. in the case of sub-contracting or 
partnering), or different skills might be needed to conduct a certain 
change. Furthermore, easy changes to implementation artifacts like de-
scriptive files could also be done by administrators or even skilled users. 

When is the change made? 

The time a change is made and applied to a system is also called Binding 
Time. According to our characterization of flexibility, this is typically at 
development time. Depending on the types of implementation artifacts 
changed (e.g. descriptive configuration files), some changes can also be 
conducted at installation time, but typically not at runtime. 

What is impacted by the change from an architecture perspective? 

The impact of changes from an architecture perspective (see Section 4.3) 
are the most solution-oriented aspects in the description of flexibility 
scenarios. The scenario description can range from describing no impact 
at all up to describing exactly the architectural elements that might be 
impacted, depending on the intention of the architecture scenario.  

Typical architectural elements potentially impacted: Modules (or compo-
nents) [functionality, process, data, UI, business rules], connectors, infra-
structure and technology elements 

Further architectural aspects potentially impacted: Architecture decisions 
in general, integration with external systems, deployment 

The change impact description is closely related to Section 4.2.3, which 
in depth describes the role of architecture for flexibility. 

How much effort is needed to change existing parts? 

A change to a system can mean either to change existing parts of the 
system or to create new ones. It might be acceptable to invest quite an 
amount of effort to create new parts, but it might be expected to have 
as little impact as possible on the existing parts. Thus, we distinguish two 
aspects of effort needed for a change: The effort spent to change exist-
ing parts (this question) and the effort spent to create new parts (the 
next question).  
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How much effort is needed to conduct the change? 

The overall effort to conduct a change might be also relevant since time 
and budget under certain circumstances might be strongly limited. Thus, 
it might be necessary to invest more upfront to allow a cheaper conduc-
tion of change later, during exploitation of the flexibility. 

According to the characterization of elicited scenarios in the outlined 
categories, flexibility scenarios can be classified to give an architect bet-
ter overview and easier access to the scenarios. 

Section 5.2 briefly describes how to elicit flexibility scenarios and in par-
ticular how to make use of the characterization given here.  

4.2.3 Flexibility and Competing Requirements 

Flexibility as a quality attribute has to be balanced with competing re-
quirements by finding adequate tradeoffs [BCK03, CKK01]. In this sec-
tion, we sketch typical requirements competing with flexibility. 

First, flexibility requirements are in competition with other flexibility 
requirements. Achieving flexibility always follows the strategy to local-
ize change impacts: this results in certain architecture decisions about 
the modularization of the system. Different flexibility requirements might 
need different modularizations which cannot be realized at the same 
time. Second, there are other development time quality attributes 
like analyzability or testability which might be adversely impacted by flex-
ibility. As flexibility often introduces architecture mechanisms with indi-
rections, the system becomes harder to understand and to test. Third, 
flexibility can be competing with runtime quality attributes like per-
formance or security. Depending on the architecture mechanisms intro-
duced, additional indirections can lead to adversely impacted timing be-
havior or they might introduce security risks caused by additional tech-
nologies. This list is not intended to be complete, it rather sketches the 
different areas of potentially competing requirements. A well-founded 
analysis of tradeoffs can only be made at the level of concrete scenarios, 
describing flexibility and other quality attributes. 

Although this thesis strongly focuses on flexibility from an architectural 
and methodical perspective, this does not judge the relative importance 
of flexibility compared to other requirements. This has to be balanced in 
the context of a concrete system (landscape) and thus architecture ap-
proaches have to provide similar support for all quality attributes. 

The following section looks at flexibility from the architecture perspective 
and elaborates how an appropriate architecture makes a system flexible. 
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4.3 The Role of Architecture for Flexibility 

In Section 4.1, we contrasted architecture and implementation as soft-
ware engineering artifacts with respect to their role for flexibility. In this 
section, we further elaborate the analysis of the role of architecture for 
flexibility. This also covers the clear distinction of three different facets of 
architecture. 

We defined the flexibility of a system by the effort needed to change the 
implementation of the system to accompany the respective change (see 
Definition 10). How much effort is needed for the change mainly de-
pends on how locally the changes can be conducted. This locality of 
changes is mainly determined by the design decisions made about the 
system, implicitly or explicitly. The entirety of principal design decisions 
exactly makes up the architecture of a system [TMD09]. In that sense, 
the architecture of a real system, comprising all principal design deci-
sions, strongly determines the flexibility of the system, although the main 
effort for changes is at the implementation level (see Section 4.1). In Sec-
tion 4.3.1, we present a closer look at different types of design decisions 
and at how they contribute to making a system flexible with respect to 
particular flexibility requirements. 

The entirety of principal design decisions about a system is an abstrac-
tion that can be documented as architecture models (e.g. represented as 
architectural views) and architecture documents for a software system. 
Then, architecture becomes a set of software engineering artifacts which 
are necessary to use the architecture for reasoning, analysis, or commu-
nication. Architecture models and documents are a means to achieve 
flexibility, as they allow architects to make explicit decisions for flexibility 
and to analyze these decisions early in the development lifecycle before 
the system has to be implemented. As described in Section 4.1.3, the ef-
fort for changing architectural models compared to the effort for chang-
ing the implementation is assumed negligible.  

A third facet of architecture is the one as an engineering activity, also 
called Architecting. In that sense, architecture comprises all activities that 
deal with definition, evaluation, or communication of architectural arti-
facts. A key task of architecting is architecture decision making; in the 
context of flexibility that means to make decisions that make the system 
flexible with respect to the flexibility requirements. In Chapter 5, we de-
scribe our architecting approach for flexibility. Systematic construction of 
flexibility is only possible at architectural level because global design de-
cisions might be necessary to localize changes, which is not possible af-
ter distributing development to different development teams. Thus, this 
thesis focuses on architecture to constructively achieve flexibility. Section 
4.3.2 explicitly describes how architects work to achieve flexibility, Sec-
tion 5.4 introduces our analysis approach of flexibility to guide architects 
with short evaluation and feedback cycles towards a flexible architecture. 

Architecture 
as design 
decisions 
and abstrac-
tion 

Architecture 
as engineer-
ing artifacts 

Architecture 
as engineer-
ing activities 



 Flexibility as a Quality Attribute of Software 

  83 

In this section, we first discuss which architecture decisions make a sys-
tem flexible (4.3.1) and how an architect has to act to make a system 
flexible (4.3.2). Then, we describe an architecture meta-model covering 
the appropriate information for constructing and analyzing flexibility at 
architecture level (4.3.3), together with metrics for flexibility. Finally, we 
sketch cost considerations about flexibility (4.3.4). 

4.3.1 Which Architecture Makes a System Flexible? 

An architecture makes a system flexible when it prescribes design deci-
sions that allow the flexibility requirements to be conducted with ac-
ceptable effort. Independent from a concrete flexibility requirement, sim-
ilar strategies and architecture principles are available for realizing the 
needed flexibility potential. According to our definition of flexibility (see 
Definition 10), the effort to conduct the change described by a flexibility 
requirement has to be acceptable. How much effort is acceptable might 
vary considerably in the concrete context and cannot be defined in gen-
eral. As the principles to achieve flexibility remain the same, we make 
the following simplification: We assume ideal flexibility to be given if a 
change proposed by a flexibility requirement can be realized with nearly 
no effort, meaning to change only a few lines of code. 

The key strategy to achieve flexibility is to minimize and localize the 
change impact of anticipated flexibility requirements [BCK03]. Localiza-
tion of change impact is achieved with architectural decisions that or-
ganize the overall implementation in a way that exactly the anticipated 
changes have only local impact. In particular, that means that a change 
does not require to revise key decisions, as they typically manifest over a 
larger extent of the system. Design decisions for minimizing change im-
pact do not require to be invented from scratch for each new system. 
Rather, there are many architecture principles and mechanisms that give 
high-level guidance for making architecture decisions. 

In this section, we start with an overview of general architecture princi-
ples and their support of flexibility (4.3.1.1). Then, we outline concrete 
architecture mechanisms supporting flexibility (4.3.1.2). Finally, we elab-
orate the interplay of architecture mechanisms and business logic map-
ping for flexibility (4.3.1.3) which we identified as a critical factor for 
flexibility in Section 1.3. 

4.3.1.1 Architecture Principles Supporting Flexibility 

Architecture principles are very fundamental ideas that are applied in the 
design of software systems. The term architecture principle is not com-
monly agreed on, but the principles we list are widely-known and men-
tioned in literature (see also Section 3.2). The following list of architec-
tural principles is not necessarily complete and the principles are not al-
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ways orthogonal or disjoint. Rather we list these principles to clarify the 
relationship of widely known principles and flexibility.  

Architecture Principle Relationship to Flexibility 

Abstraction /  
Generalization 

Abstraction allows handling common aspects with localized 
solutions 

Indirection Indirections allow to concentrate the impact of changes to a 
dedicated software module, which is addressed and included 
via the indirection 

Information Hiding Information hiding allows to encapsulate a certain aspect or 
internals of a solution in a software module, which allows 
localized changes of internal aspects 

Loose Coupling Loose coupling allows to reduce assumptions about other 
system parts and thus localizes change impacts 

Low Coupling  
& High Cohesion 

Low coupling and high cohesion of software modules allows 
localization of changes similar to loose coupling and infor-
mation hiding 

Modularization Modularization allows separating different functionalities and 
system aspects into different modules so that module-internal 
changes can be handled locally 

Separation of Concerns Separation of concerns allows in the broadest sense the sepa-
ration of different aspects of software in different realization 
units. By appropriate separation criteria, changes can be local-
ized. 

Table 3:  Architecture principles supporting flexibility 

The following architecture mechanisms supporting flexibility build on 
these architecture principles, too. 

4.3.1.2 Architecture Mechanisms Supporting Flexibility 

Architecture mechanisms (see Definition 4) are introduced into architec-
tural designs in order to address certain requirements. For flexibility, 
there are many supporting architecture mechanisms available. Often, ar-
chitecture mechanisms come in form of architecture styles, tactics, or 
patterns, which are proven best practice solutions for recurring design 
challenges. Whereas we introduced architecture mechanisms at a very 
high level of abstraction in Section 3.2.3, we give now classes and ex-
amples of architecture mechanisms and explanations. As for the archi-
tecture principles, this is not intended to be a complete list, but rather to 
give an introduction into flexibility mechanisms. 
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Architecture  
Mechanisms 

Example and Explanation 

Virtual Machines Virtual machines are a very powerful and diverse mechanism 
to achieve flexibility. The basic idea is that an infrastructure 
component interprets some content in order to realize a be-
havior. Well-known examples are business process engines or 
business rule engines. Both types realize an externalized de-
scription of business process or business rules, which aims at 
easy and localized changes. The executing infrastructure com-
ponents and the using components can remain unchanged. 

Programming 
Language  
Mechanisms 

Programming languages offer mechanisms like polymorphism 
or generics which can be used to build abstractions from cer-
tain system aspects and define a common behavior. This al-
lows on the one hand easily changing the common behavior 
and on the other hand easily adding new classes for which to 
change the behavior. 

Generation  
Approaches 

With generation approaches, a meta-level of implementation 
is introduced, for example in model-driven development. With 
such approaches it becomes possible to localize change as-
pects that are not local according to the chosen decomposi-
tion of a system. For example, a data definition language can 
be introduced, from which data access components, all 
transport objects as well as the UI fields are generated. Then, 
it is very easy to introduce new data fields, although it poten-
tially impacts all layers of a system. 

Layering The layered architecture style explicitly focuses on the separa-
tion of certain system aspects and on the limitation of rela-
tionships among the resulting layers. Depending on the flexi-
bility requirements, changes can be localized to single layers. 

PlugIns PlugIns are a concept to achieve extensions of a system in an 
expected manner with nearly no change effort to the system 
(e.g. realized in Eclipse or Firefox). Thus, PlugIns are an exam-
ple that brings very high flexibility and on the other hand re-
quire clear specification in terms of the potential changes 
being applied. 

Service-Orientation Service-orientation comes with a couple of mechanisms which 
are covered in detail in Section 6. 

Table 4:  Architecture mechanisms supporting flexibility 

The architecture mechanisms as described can cover flexibility require-
ments concerning different system aspects like functionality, data, pro-
cesses, or UI. Thus, the architecture mechanisms are typically specialized.  
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Applying the described architecture mechanisms often comes with the 
need for additional infrastructure components like business process en-
gines or plugin frameworks. Depending on the needed degree of spe-
cialization, these infrastructure components can be individually devel-
oped or reused from available technologies. For example, many open-
source or commercial business process engines are available that can be 
used in the development of a system for improving the flexibility. 

4.3.1.3 Architecture Mechanisms and Business Logic 

Flexibility cannot be achieved by only selecting appropriate architecture 
mechanisms supporting flexibility. As analyzed and described in Section 
1.3, there is another type of architectural decisions which are crucial for 
flexibility: The decisions about the decomposition of business logic (or 
functionality) and the mapping to architectural elements and architec-
tural mechanisms are decisive, too (see Figure 4). The actual flexibility 
potential (see Definition 5) of a system is always determined by the deci-
sions made about architectural mechanisms and business logic mapping 
(see Definition 6). Consequently, the goal of designing for flexibility is to 
find appropriate combinations of flexibility mechanisms and business 
logic mappings to address the concrete flexibility requirements and to 
achieve what we call True Flexibility.  

Business Logic is a broad term in this context. It subsumes the aspects 
Functions, Processes, Data, and UI of a software system. In particular, it 
aims at the concrete functional requirements of a system and the deci-
sions how to decompose and realize these functional requirements. 

Both, in the context of flexibility requirements and in the context of ar-
chitectural solutions, descriptions with and without concrete business 
logic are possible and can be found in practice. Thus, we introduce a 
new terminology to distinguish whether flexibility is addressed at a level 
of detail only covering architecture mechanisms (Business-Logic-
Agnostic, see Definition 12) or covering business logic mapping (Busi-
ness-Logic-Specific, see Definition 13). An example of a BLA flexibility 
scenario is: “Change the order of process steps in a business process.” 
An example of a BLS flexibility scenario is: “Change the order of Seating 
and Baggage in the CheckIn process.” (see Section 1.3) 

Definition 12 Business-Logic-Agnostic (BLA)  

Flexibility scenarios as well as architectural solutions are called business-
logic-agnostic if no description of concrete business logic is used to de-
scribe the flexibility scenario or the architectural solution. 

Definition 13 Business-Logic-Specific (BLS) 

Flexibility scenarios as well as architectural solutions are called business-
logic-specific if concrete descriptions of business logic are included to 
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make the flexibility scenario or the architectural solution more precise. 
The amount and level of detail of business logic description may vary. 

Further, we introduce a terminology to denote elements that are used at 
BLA or BLS level: Infrastructure Element (see Definition 14), Template El-
ement (see Definition 15), and Business Element (see Definition 16). This 
distinction is aligned with other approaches like [Sie04], which also dis-
tinguish between business and infrastructure elements. The main exten-
sion we make is that we add a Template element, which is utilized dur-
ing the design process as a placeholder for business elements and which 
explicitly allows making the distinction between BLA and BLS in architec-
tural representations. 

Definition 14 Infrastructure Element 

An Infrastructure Element is an element which is introduced in the archi-
tecture of a software system in order to realize requirements that are 
typically non-functional. 

Definition 15 Template Element 

A Template Element is an element which serves as a placeholder for a 
business element during the development process, either in the require-
ments or in the solution. It represents typical properties of business ele-
ments but abstracts from the concrete business logic. 

Definition 16 Business Element 

A Business Element is an element which represents a business logic as-
pect of a software system, either in the requirements or in the solution. 

An example of an infrastructure element is a business process engine, an 
example of a template element is a general service, and an example of a 
business element is a concrete service for seating in airline CheckIn. 

Figure 29 summarizes the relationships of different element types and 
BLA, BLS, and BLM. The more business logic is described in flexibility 

 

Figure 29:  Distinguishing the levels business-logic-agnostic and business-logic specific 
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scenarios and architecture solutions the higher the accuracy and confi-
dence of architecture-level evaluations and predictions of flexibility can 
be. That is, specifying flexibility scenarios and architectural solutions 
comes on the one hand with higher investments for creating the details, 
on the other hand it might return more accurate results. However, often 
it is not possible at an early point in time of system development to spec-
ify all business logic details for flexibility scenarios. 

4.3.2 How Does an Architect Make a System Flexible?  

An architect makes a system flexible by making appropriate architecture 
decisions which are sketched in the previous section. However, besides 
these decisions there are also the engineering activities and the artifacts 
produced and used by the activities. Architecting has different facets: 
Making decisions, modeling and documenting decisions, analyzing deci-
sions for appropriateness. These facets can also be also supported for 
flexibility with more detailed guidance. Chapter 5 describes our method-
ical contribution to engineering flexible systems. 

A key benefit of making architectural decisions for flexibility is that the 
decisions are made at an early point in time in the sequence of develop-
ment activities. At architectural level, decisions can be comparably easily 
evaluated and revised if they are not appropriate. By working at an ab-
stract level, a lot of later rework effort can be saved. Thus, one of the 
key purposes (AEP, see Section 2.1.3) why to invest into architecture 
work is to predict the resulting flexibility properties of a system and avoid 
expensive rework. Another key purpose is to prescribe consistent and 
adequate decisions supporting flexibility, as potentially many developers 
have to derive an implementation fulfilling the flexibility requirements. In 
order to allow predictions of flexibility and consistent realizations, the ar-
chitecture has to be made explicit in architectural models containing the 
adequate information to analyze flexibility and communicate the solu-
tions. Hence, we describe an architecture meta-model covering this flex-
ibility-relevant information in the next section. 

4.3.3 Architecture Meta-Model and Metrics for Flexibility 

After describing which design decisions are necessary to achieve flexibil-
ity and how to make these decisions, we describe in this section how ar-
chitecture has to be modeled and represented in order to serve as a use-
ful artifact in the process of defining a flexible architecture. Thus, we de-
scribe which architectural views capture the flexibility-relevant infor-
mation (4.3.3.1). Then, we describe which metrics we introduce to ana-
lyze flexibility at the architecture level (4.3.3.2). Finally, we introduce a 
new architectural view, the change impact view (4.3.3.3) 
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4.3.3.1 Flexibility-Relevant Architectural Views 

A system is flexible with respect to a certain change if the change can be 
conducted with only minimal impact on the implementation (see Defini-
tion 10). Thus, the focus of relevant architectural views is on the ones 
representing development time artifacts and properties of a system. In 
ACES-ADF, the Development Time dimension summarizes these relevant 
architectural views. However, our approach is not limited to a particular 
architecture meta-model; rather it is universal and can be used with 
nearly every architecture meta-model. 

The key architectural element type with respect to flexibility is Module. A 
module is an abstraction of any development time or implementation ar-
tifacts. In literature, there is no common understanding of the term 
Module. Our definition is aligned with [CBB10]. Figure 30 sketches a me-
ta-model with the key ideas about modules.  A module can be a hierar-
chical grouping of other modules. Modules can have uses-relationships 
to other modules or to interfaces realized by modules. The uses-
relationship is aligned with the definition in [Par79, CBB10].  

Modules as described can represent and encapsulate different aspects of 
a software system, either in rather separated or in mixed form. The main 
aspects represented by modules in software are functions, data, user 
interface, processes, or infrastructure.  

Modules are architecture-level abstractions of implementation-level arti-
facts (see Section 4.1.3): Such artifacts can be diverse, depending on the 
decisions for implementation technologies. Examples of implementation-
level artifacts are source code files in any programming language (e.g. 
Java, C, C#, Fortran files, etc.), scripts and descriptors as parts of tech-
nologies (like SQL queries, Java EE deployment descriptors, XML-based 
files for configuring Spring or Eclipse, etc.), or database definition sche-
mas. Additionally, in the context of model-driven development, models 
used to automatically generate other implementation-level artifacts are 
considered implementation-level artifacts, too (see Section 4.1.3).  

Our meta-model does not assume any particular realization technology. 
Rather, implementation-level artifacts in any technology can be repre-

 

Figure 30:  Architecture meta-model for modules 
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sented as modules. For convenience of architects and easier communica-
tion with developers, the modules as architectural elements can be 
tagged with information about the technologies used for realization. 
Technologies often realize architectural mechanisms that support quality 
requirements, as flexibility requirements. Section 4.3.3.2 gives examples 
of architectural mechanisms, as they are partially also realized in tech-
nologies. More details on flexibility mechanisms introduced by SOA are 
described in Chapter 6. With respect to modules and change impact, 
technologies are typically seen as black boxes, as they are externally de-
veloped and cannot be changed (of course there are exceptions like in-
house development of technologies, open source technologies, or indi-
vidually contracted technologies). Thus, technologies rather realize infra-
structure elements or merge into other modules.  

Typical architectural views providing relevant information for flexibility 
analyses are development time views with a focus on functions, data, 
user interface, and processes. Depending on the view-framework used, 
different names for the views are found: Implementation View [Kru03], 
Module View [CBB10], Development View [Kru95]. 

As described above, runtime architectural elements and architectural 
views play only a minor role in terms of constructing and evaluating a 
software system for flexibility. However, in practice there are some nota-
ble relationships. First, runtime architectural elements are often better 
related to functional requirements and thus they can be used as entry 
point for identifying potential change impacts (assuming traceability 
from runtime architectural elements to development time architectural 
elements). Second, in practice there is often no clear separation between 
runtime and development architectural views and architectural elements. 
Rather, they are mixed or even unified, which denotes a simplification of 
the architectural model. This can be fully accurate if runtime elements 
are realized one-to-one by corresponding development time elements. 
Then, flexibility analysis can work on runtime elements as an approxima-
tion of development time elements. 

4.3.3.2 Measurement and Metrics of Flexibility 

The ability to measure the degree of achievement of a quality attribute is 
the prerequisite for constructively approaching it. Several approaches 
towards measuring flexibility, maintainability, or modifiability exist (see 
Section 3.3). One key contribution of this thesis is to overcome today’s 
situation that evaluating flexibility is an effort-intensive manual task. Ra-
ther, we aim at automating the evaluation of the current flexibility level 
and provide feedback to the architect in nearly real-time. By this, an ar-
chitect can be supported during architecture design by indicating insuffi-
cient degrees of flexibility at an early stage. Then, the architect can revise 
design decisions for improvement with relatively low effort. This contri-
bution is described by R.D3, R.C3, and R.I3 in Section 1.4. 
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views 

Role of 
runtime 
elements 
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The major goal of our measurement approach and metrics for flexibility 
is (formulated according to the GQM (Goal Question Metrics) approach 
[BD88]):  

Analyze the degree of flexibility of a software system with respect to a 
flexibility requirement with a focus on automatic analysis and real-time 
feedback about the degree of flexibility from the perspective of a soft-
ware architect in the context of software architecture design. 

Table 5 lists categorized requirements for our flexibility metric, derived 
from the measurement goal. 

Category Requirements 

Measurement subject Alignment with flexibility definition (see Definition 10) 

Measurement of “true flexibility” (anticipated flexibility re-
quirements matched by flexibility potential) 

Metric covers “intuitive idea of flexibility” 

Measurement results Allow comparing architectural solutions with respect to their 
flexibility (with respect to a set of flexibility scenarios) 

Applicability on single flexibility requirements and system parts 

Hierarchical aggregation of flexibility results up to the overall 
system and all flexibility requirements 

Ease of use Automated calculation of metric results 

No complicated data as manual input needed  

No impact on existing architecture models and views  

Accuracy Allow working with flexibility scenarios of different levels of 
accuracy 

Extensibility of metric for further influence factors 

Allow computing approximated results with simplified input  

Table 5:  Requirements for flexibility metric 

One main obstacle towards the automated measurement of flexibility in 
existing approaches is the gap between informally specified require-
ments and the informal description of architectural decisions. This gap 
between the problem space and the solution space does not allow the 
automated analysis of change impacts, as the respective models are lack-
ing information and formality. The key idea (R.I3) for this contribution is 
that the architect modeling the architecture of a system indicates change 
impacts of concrete changes (expressed as flexibility scenarios) as part of 
the architecture model. In order to easily model and represent the infor-
mation about change impacts in the architecture model, the Change Im-
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Measure-
ment idea 
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pact View is introduced (see Section 4.3.3.3). The architecture design 
method incorporating this measurement approach is described in Chap-
ter 5. The resulting measurement model for analyzing the flexibility with 
respect to one flexibility requirement is depicted in Figure 31.  

In the following, we introduce our metrics for flexibility. As flexibility is 
primarily defined by the effort to change the implementation, we start 
with the metric definition at implementation level. Architecture is an ab-
straction of a system’s implementation and it allows earlier (no imple-
mentation available) and easier (lower complexity and details) analysis of 
flexibility. Thus, we approximate the measurement of flexibility at the ar-
chitecture level. Finally, we describe the aggregation of flexibility results 
for single flexibility scenarios to an overall flexibility value. 

At the implementation level, flexibility means minimal impact of changes 
that are described in flexibility requirements. Thus, we count the 
changed lines of code (LOCChanged) in the overall code-base. Changed 
means a deleted LOC, a changed LOC, or an added LOC. As the code-
base, we see the entirety of development artifacts, as described in Sec-
tion 4.3.3.1.  

Flexibility is a function (FLEX) that calculates for a given implementation 
(IMPL ) of a system and a flexibility requirement (FR ) the ratio of 
change impact to the overall implementation size. To address the re-
quirements of comparability and results aggregation (Table 5), we define 
flexibility on a [0, 1] interval. 0 denotes low flexibility and high change 
effort, 1 denotes high flexibility and minimal change effort. In order to 
normalize the change impact, we define the change ratio (CHR). 

 

Figure 31:  Principle of measuring flexibility 

Implementa-
tion level 
metrics 

Flexibility  of 
A wrt. FR

Measure

Architecture A

Flexibility  Requirement FR

BP

BP Engine CheckIn

Services

Identify Seating Baggage

UI

UI Engine

FR1: Change in the CheckIn process the order of Seating and Baggage

Change Impact of FR

Architect documents
change impact



 Flexibility as a Quality Attribute of Software 

  93 

 

 

Please note that for the change ratio at implementation level the case 
could occur that more LOC are changed than LOC are initially there (in 
case many new ones are added). We cover this in the definition of the 
function. At architecture level, the definition is slightly changed and this 
case does not occur.  

We define the function FLEX with the curve depicted in Figure 32. It is 
based on the change ratio, but it defines a tailored function which ex-
presses mainly two aspects.  

� We define flexibility to be “1” not only when there is no change at 
all, but we allow change impact up to a threshold, which is 10 LOC 
as our default. 

� We define flexibility to be “0” not only when the overall implementa-
tion is impacted, but already when there is a significant change im-
pact that makes the system hard to change, which is 10% of the 
overall LOC as our default. 

� Between these thresholds, our flexibility function is linear. 

In our metrics, we only calculate the change impact in terms of changed 
LOC in the implementation. This metric is not intended to be used in our 
method. Rather, it is needed as a preparation for our metric at architec-
ture level, which is defined below and used in our method. We do not 
cover the calculation of change efforts in terms of time or cost. We as-
sume for simplicity an equal distribution of change difficulty for each 
type of implementation artifacts (that means, that for example changing 
1 LOC of a Java class is equivalent to changing 1 LOC in an XML-based 

 

Figure 32:  Flexibility metric function definition 
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process definition language). 

Measurement of flexibility at architectural level is essential as it allows 
flexibility prediction when no implementation is available yet and it can 
be done at a level of abstraction that allows controlling the complexity of 
large systems. Thus, we follow the key ideas introduced for measure-
ment of flexibility at implementation level and approximate the flexibility 
results by measuring at the architecture level.  

The key architectural elements to approximate the system size and the 
change impact are Modules. As a system (SYS) is decomposed into mod-
ules (MOD) at architectural level, they can be used to estimate their size 
on a more local level and conclude the overall size of a system. We call 
modules atomic if they do not group further modules. 

 

In order to estimate change impacts we introduce two concepts: Impact 
Type (IMP_T) and Impact Size (IMP_S).  

� The key reason to introduce the Impact Type concept is that we want 
to distinguish between changes affecting existing modules or chang-
es requiring the creation of new ones, or changes requiring the dele-
tion of existing ones. Modules that are newly created are not count-
ed as impacting the existing implementation. Only the changes of ex-
isting modules to appropriately include the new modules are count-
ed. Thus, we introduce the basic operations Add Module, Modify 
Module, Delete Module for modules (also used in [SR09, VEG08]). 
Adding a module means at implementation level to create new 
source code artifacts. Modifying a module means at implementation 
level to make changes inside existing source code artifacts. Deleting a 
module means at implementation level to remove an existing source 
code artifact.  

� The key reason to introduce the Impact Size concept is that we want 
to ease the estimation of change impacts for architects. Thus, an ar-
chitect does not have to exactly estimate the number of lines of code 
affected, but rather ranks a change on a scale [low, medium, high]. 
The impact size is only relevant for the impact type Modify Module. 
The impact size values are then translated into a change ratio for the 
module, the defaults are low=0.1, medium=0.3, high=0.5. 

In the following, we define the approximation of impacted lines of code 
in a module for a flexibility requirement. Then, the impacted lines of 
code for the overall system can be calculated. 

Architecture 
level metrics 
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Then, we can calculate the change ratio of a flexibility requirement on a 
system: 

 

Finally, the flexibility FLEX(SYS, FR) is determined according to Figure 32, 
analogous to the implementation level. Further refinements of the flexi-
bility metric are possible. For example, it is meaningful to decrease the 
flexibility value in case of strong scattering of changes: Many different 
locations to change typically cause more effort than one local but larger 
change.  

Using modules as a hierarchical decomposition of a system at architec-
tural level has several benefits for the calculation of our flexibility metric. 
First, it allows easier estimation of implementation sizes by limiting the 
scope. Second, it allows having modules with different levels of granular-
ity for different parts of the system. Third, it allows local and incremental 
refinement of size measures. Forth, it allows connecting the module size 
to the implementation size of actual source-code in case an implementa-
tion exists. 

As described in Sections 4.1.3 and 4.3.3.1, the estimation of change im-
pacts always has to be done at the modules that are manually changed 
or created. 

So far, flexibility metrics are defined for single flexibility requirements 
only. Now, we aggregate the flexibility values to a flexibility result of a 
system with respect to the entirety of flexibility requirements.  

 

As described in Section 4.2.2, flexibility requirements can differ in their 
probability, priority, or frequency. Thus, we introduce a weighting for 
the calculation of the overall flexibility which can include these factors. 
wi is the weighting factor for FRi. 
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Our flexibility metric is intentionally constructed with a focus on imple-
mentation effort and change impact. This makes the metric more com-
prehensible, in particular compared to complex mathematical metrics, 
like the maintainability index [CAL+94]. The flexibility metric as defined 
at architecture level is used in our tool extension (see Section 5.4) in or-
der to give quick feedback of achieved flexibility to architects during ar-
chitecture construction or rework. All the influence factors introduced 
for the metric are incorporated in the tool. Thresholds like in the flexibil-
ity definition (see Figure 32) or the Impact Size factors can be configured 
in the tool. In the following section, the Change Impact View is de-
scribed in order to allow architects easy modeling and entering of infor-
mation necessary for calculating flexibility. 

4.3.3.3 Change Impact View for Automated Flexibility Analysis 

In Section 4.3.3.2, we introduced the idea of how to measure flexibility 
with a high degree of automation. The key aspect of this measurement 
is that the architect makes his reasoning about the change impact of 
flexibility scenarios explicit while designing the architecture. Additionally, 
we described the different factors we include in our flexibility metric. 
One requirement from a method perspective is that the information an 
architect has to provide can be easily entered (see Table 5), without dis-
turbing the architecture design process but rather supporting it.  

In order to be able to run automated analyses on the architecture, all in-
formation about the change impact of flexibility requirements have to 
become part of the architecture model, too. Thus, we extend the archi-
tecture model by the Change Impact View. In this view, all the infor-
mation necessary for calculating the flexibility metric can be easily mod-
eled by an architect or entered as attributes. The meta-model of the 
change impact view is depicted in Figure 33. Flexibility Scenario becomes 
a first-class element of the architecture model. In many architecture 
modeling approaches (as in ACES-ADF), architectural requirements are 
already part of the architecture model. An Architectural Element can be 
any element of the architecture that is considered an implementation ar-
tifact which is impacted by the change described in the flexibility scenar-
io. Foremost, architectural elements in the change impact view are Mod-

Discussion 

 

Figure 33:  Meta-model for change impact 
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ules, but depending on the way of modeling (see Section 4.3.3.1) they 
can also be interfaces, components, connectors, data elements, etc. The 
impact of flexibility scenarios on architectural elements is explicitly mod-
eled with an Impacts-relationship. Beyond the model elements, our flexi-
bility metric requires some more detailed information (Probability of oc-
currence of flexibility scenario, ImpactSize and ImpactType of the im-
pacts-relationship, ElementSize in terms of lines of code for architectural 
elements). The architect can simply enter or select the appropriate in-
formation as tagged values of the model elements. Covering this model 
information, an architectural modeling tool can calculate the flexibility 
metrics as defined above and provide the results to the architect (see 
Section 5.4). 

4.3.4 Cost Considerations of Flexibility 

So far, we have mainly discussed the benefits of a software system offer-
ing flexibility. However, flexibility always comes at a price. First, flexibility 
requirements might be competing with other requirements (see Section 
4.2.3). Second, building in flexibility can mean to increase the complexity 
of a software system, which might increase the effort for particular 
maintenance tasks. Third, flexibility is often achieved by additional archi-
tectural mechanisms and indirections which cause additional complexity 
and effort in the implementation of the system.  

In particular in the light of cost considerations, knowing probabilities and 
priorities is important when designing for flexibility. Architects can dis-
cuss with the relevant stakeholders about the level of flexibility to realize  
which is an investment and leads to potential benefits during later 
changes. In [Bah05], a detailed discussion of cost aspects is described. 
The key idea is to apply concepts of Real Options Theory to flexibility 
considerations (see Section 3.3.4). In practice, a quantification of all in-
volved cost factors related to flexibility is often impossible. Thus, an ar-
chitect has to take the key cost factors into account and make justifiable 
decisions. 

4.4 Conceptual Model of Flexibility 

In the previous sections, we characterized flexibility in detail, covering all 
aspects from flexibility requirements over architecture as a means of con-
struction and evaluation of flexibility down to the implementation which 
is in the end impacted by changes to a system. In this section, we sum-
marize all these aspects in a conceptual model. Thus, we do not explain 
each concept and each relationship in detail again, but we focus on giv-
ing a brief overview and appropriate references to the detailed explana-
tions above.  
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The conceptual model, together with its details described before, pro-
vides a formalization of flexibility as a quality attribute of software. It 
serves as the foundation for the methodical contributions presented in 
Chapter 5. The conceptual model provides a level of formalization which 
is aligned with the needs of the methodical ideas. Thus, the measure-
ment of flexibility is fully formalized as it is intended to be conducted 
with tool-based automation support. The methodical guidance for the 
construction of flexible systems is less formalized: There, the target is 
mainly to put all concepts involved in flexibility in relation to each other 
as support for architects. 

For all technical roles involved in software development, the conceptual 
model is intended to be a guidance for understanding what flexibility is 
and what it means to deal with flexibility in software development, both 
constructively and analytically. The conceptual model is intentionally sep-
arated in different views. This allows concentrating on particular aspects 
of the model. Additionally, model views with a limited number of model 
elements and limited complexity can better serve as mental models tech-
nical stakeholders can remember and use. 

The overall conceptual model is represented in four model views. Figure 
34 depicts these views and the conceptual areas they mainly cover. The 
conceptual areas are organized along the artifacts and activities in soft-
ware development: First, there are flexibility Requirements. Second, there 
is Architecture as the set of architectural decisions facilitating flexibility 
and as the means to analyze flexibility at an appropriate level. Third, 
there is the Implementation which typically causes the main effort for 
changes. This effort has to be minimized by flexibility. Finally, Measure-
ment is also a conceptual area of our model since measurement of flexi-
bility with a high degree of formalization is important for our methodical 
support with architecture-tool-based flexibility measurement. The con-
ceptual model comprises the following model views: 

� Flexibility Core View: Flexibility requirements and how to address 
them at architectural level. 

� Architecture Construction View: Architectural aspects in detail, in par-
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Figure 34:  Views of the conceptual model for flexibility 
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ticular the concepts introduced for constructively approaching flexibil-
ity. 

� Architecture Implementation View: Relationships between architec-
ture and an implementation of a system with respect to flexibility. 

� Flexibility Measurement View: The relevant aspects across flexibility 
requirements, architecture, and implementation with respect to 
measuring flexibility. 

We explain the model views in a rather brief style, as all the details are 
described in earlier sections. Thus, we summarize the key ideas and link 
to the sections that cover the relevant aspects. 

Flexibility Core View 

The flexibility core view (see Figure 35) relates the most important con-
cepts around flexibility. The distinction between Flexibility Requirements 
and Flexibility Potential is introduced and the match of both is called 
True Flexibility (Section 1.3). Flexibility Requirements express the poten-
tial need for Changes in the future (Section 4.2). Flexibility Potential is 
achieved by making adequate Architectural Decisions (Sections 4.1.3, 
4.3.1). Important Architectural Decisions are about Architecture Mecha-
nisms (Section 4.3.1.2) and Business Logic Mapping (Section 4.3.1.3); 
that is how a system’s functionality is mapped to architectural elements. 

 

Figure 35:  Conceptual model: flexibility core view 
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Architecture Construction View 

The architecture construction view (see Figure 36) aims at explaining and 
relating the most important concepts needed for constructively address-
ing flexibility at architecture level. This view is compatible and aligned 
with typical architecture meta-models, as for example ACES-ADF 
[KKN11] or the IEEE Recommended Practice for Architectural Description 
[IEEE00]. However, it focuses on and extends typical architectural models 
with respect to flexibility.  

Architecture consists of Architectural Decisions and Architectural Ele-
ments. Important Architectural Decisions are about Architecture Mecha-
nisms (Section 4.3.1.2) and Business Logic Mapping (Section 4.3.1.3); 
that is how a system’s functionality is mapped to architectural elements. 
Architectural Decisions aiming at flexibility are guided by general Archi-
tecture Principles (Section 4.3.1.1). Architectural Elements are grouped 
into RunTime Elements representing entities in a running system, and 
DevTime Elements representing entities in a software development pro-
cess (Section 4.3.1, 4.3.3.1). Modules are the most important DevTime 
Elements from a flexibility perspective (Section 4.3.3.1). Architectural El-
ements are organized in RunTime Views and DevTime Views respectively 
(Section 4.3.3.1). For the construction and documentation process of 
flexible architectures, we introduce the distinction in Infrastructure Ele-

 

Figure 36:  Conceptual model: architecture construction view 
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ments, Template Elements, and Business Elements, which are Architec-
tural Elements (Section 4.3.1.3). We distinguish two levels of flexibility-
relevant architecture: Business Logic Agnostic (BLA), and Business Logic 
Specific (BLS). Whereas BLA focuses on the Architecture Mechanisms on-
ly, BLS also covers the Business Logic Mapping. Technologies are im-
portant for architecture as well. They realize Architecture Mechanisms 
and provide ready-to-use implementations of Infrastructure Elements 
(Section 4.2.2, 4.3.3). 

Architecture Implementation View 

The architecture implementation view (see Figure 37) aims at describing 
the relationship between architecture and implementation of a system 
with a focus on flexibility.  

A Software System has an Implementation as its main constituting part. 
The Implementation consists of a number of Implementation Artifacts 
which can be source code files, descriptors, models that are used in 
model-driven technologies, etc. The Implementation Artifacts are im-
portant for flexibility, as the main effort for conducting changes typically 
has to be spent on changing these artifacts (Sections 4.1.3, 4.3.1). Archi-
tecture is the level of abstraction on which to reason about the impact of 
changes in complex systems. Architecture provides an abstraction of the 
Implementation and on a more detailed level, DevTime Elements provide 
an abstraction from Implementation Artifacts. With the help of this ab-
straction, early predictions about change impact as well as appropriate 
Architectural Decisions can be made (Section 4.3.1). 

 

Figure 37:  Conceptual model: architecture implementation view 
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Flexibility Measurement View 

The flexibility measurement view (see Figure 38) covers all aspects of the 
model that are relevant for measuring flexibility according to our Flexibil-
ity Metric (Section 4.3.3.2). A key element for measuring flexibility is 
Change. Change of a software system is what is described in Flexibility 
Requirements (Section 4.1.1). If a system is flexible with respect to a par-
ticular Change, it allows this Change to be conducted with little effort, 
which means that it has only a small Change Impact on Implementation 
(Section 4.1.1). With our Flexibility Metric, we measure the Change Im-
pact that a Change has on the Implementation (Section 4.3.3.2). Alt-
hough the measurement of Change Impact is defined at the Implemen-
tation level in theory, this is in practice often impossible, due to the 
complexity of the Implementation or due to the fact that the Implemen-
tation is not available yet (Section 4.3.3.2). Thus, Architecture is used as 
the foundation for an approximation of the Flexibility Metric (Section 
4.3.3.2). Architectural Elements that abstract from Implementation Arti-
facts are used to analyze the Change Impact of Changes. In order to 
make modeling the Change Impact easier for an architect, Change Op-
erations (add, modify, delete) can be used to characterize the Change 
Impact (Section 4.3.3.2, 4.3.3.3). For a more detailed calculation of the 

 

Figure 38:  Conceptual model: flexibility measurement view 
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Flexibility Metric, the Probability of Flexibility Requirements, the Impact 
Size of Change Impacts, and the Size of Implementation Artifacts can be 
included (Section 4.3.3.2). The Change Impact View is an Architectural 
View, a DevTime View, which is used for graphical modeling and repre-
sentation of Change Impacts (Section 4.3.3.3).  

In the introduction of Chapter 4, we referenced the following questions 
about flexibility which were raised in [SHN01]. Chapter 4 addresses most 
of these questions; the question about design for flexibility will be ad-
dressed in Chapter 5. 

� “What is flexibility? How does a formal definition look like?” 

� “Why or when is flexibility needed in system design?” 

� “How can one design for flexibility? What are the design principles?” 

� “What are tradeoffs associated with flexibility?” 
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5 Engineering Flexible Software Systems 

“Information technology and business  
are becoming inextricably interwoven.  

I don't think anybody can talk meaningfully  
about one without the talking about the other.” 

Bill Gates 

In Chapter 4, we elaborated a conceptual foundation for the quality at-
tribute flexibility. A focus of this foundation is the role of architecture for 
flexibility and what that means in terms of architectural artifacts. In this 
chapter, the focus is on how architects can work to design flexible sys-
tems. Therefore, we describe engineering activities at architectural level 
which aim at achieving adequate flexibility.  

Explicitly designing for flexibility means to make architectural decisions 
that allow conducting anticipated changes with minimal effort. Besides 
this decision making, also the evaluation of architectural decisions is crit-
ical in order to confirm that the architecture design is on the right track, 
with respect to flexibility and other requirements. These two activities, 
constructive guidance for decision making and continuous evaluation of 
design decisions, are the key activities supported by methodical contribu-
tions of this chapter. 

We start with a methodical overview on all activities involved and on 
their interplay in Section 5.1. Then, the key activities are explained in de-
tail. We begin with a brief explanation of the elicitation of flexibility sce-
narios in Section 5.2. After that, the explicit guidance of architects dur-
ing architecture design is introduced in Section 5.3. Continuous measur-
ing of flexibility in the context of architecture tools is described in Section 
5.4. Finally, we close the chapter with a discussion of the engineering 
support for flexibility in Section 5.5.   

5.1 Methodical Overview 

In the context of software development, architecting plays an important 
role. At the architectural level, the key design decisions for the fulfillment 
of functional requirements and quality requirements like flexibility have 
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to be adequately made. It is important to get these key decisions right at 
the architectural level as they are implemented afterwards in a distribut-
ed manner by different teams, which makes rework very time-
consuming and expensive. 

Getting the key architectural design decisions right basically means two 
things: First, decisions have to be made, which is a constructive process 
of deriving solutions from the given requirements. Second, based on the 
decisions made (manifested in the architecture), a prediction has to be 
made whether this architecture is adequate for fulfilling the require-
ments at hand (see Sections 2.1.3 and 4.3.2). Such a prediction is typi-
cally done in an evaluation of the architecture, using different methods 
depending on the quality attribute at hand and the level of accuracy 
needed. This is true for any type of quality attributes, and thus also for 
flexibility. If the prediction finds that the flexibility needed is not 
achieved, rework of the architecture is needed. The resulting architecture 
is the input for subsequent development activities.  

Figure 39 shows architecting as an activity embedded between require-
ments engineering and development. The elicitation of flexibility re-
quirements and their documentation as flexibility scenarios is an im-
portant task for requirements engineering. It is briefly sketched in Sec-
tion 5.2, but the main focus of our methodical contribution is on archi-
tecting. 

As described above, Designing (in the sense of making decisions) and 
Analyzing (in the sense of checking adequacy of decisions) are key activi-
ties of Architecting. This is also depicted in Figure 39. Additionally, Mod-
eling is a key activity which denotes documenting the decisions made in 
a form that is well usable for further needs during architecting and other 
development activities. These three activities are conducted in an itera-
tive and incremental way. These highest-level activities are more or less 
part of all architecture design methods. In [HKN+07], five such methods 
are surveyed and compared and similar sequence of activities is de-
scribed there. There, Design and Modeling are put together. Additional-
ly, there is an initial analyzing step which in our case is part of require-
ments engineering and Design. The key point here is that our methodical 

 

Figure 39:  Architecting as activity between requirements engineering and development 
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contributions for flexibility are not tailored to a specific architecting 
method, rather they are universally applicable to other methods. 

In Figure 40, our methodical contributions for achieving high flexibility 
are annotated to the architecting activities. First, we give guidance for 
the design of architectures with a focus on flexibility (Section 5.3). The 
design process is supported by intertwining the aspects of functional de-
composition and quality-driven design. Guidelines and heuristics for 
making appropriate decisions for flexibility are sketched. Second, we 
provide support for the evaluation of achieved flexibility (Section 5.4). It 
is the goal to automate the evaluation of flexibility as much as possible in 
order to give continuous feedback about the level of flexibility to the ar-
chitect. To achieve this, we add in the modeling step the explicit model-
ing of change impact, which is done in the change impact view (see Sec-
tion 4.3.3.3). Then, we can offer automated measurement of flexibility 
as part of architecture modeling tools in the evaluation step, which al-
lows shortening the evaluation cycles and thus allows a faster conver-
gence to an adequate architectural solution. The methodical contribu-
tions described are mainly targeted at architects.  

Our methodical support for architects can be applied with typical archi-
tecture design methods. It is not intended to replace any existing archi-
tecture method; rather it is complementary and builds on existing meth-
ods. Visually speaking, our contributions can be seen as a conceptual 
PlugIn for architecture methods which handles the specific concern Flex-
ibility. We also emphasize this interpretation by the visualization in Figure 
40, where we show the single contributions in a typical architecture de-
sign method. In the case of the methodical guidance, the PlugIn idea is 
to be understood rather conceptually; in the case of the flexibility meas-
urement, it is really realized as a PlugIn for the architecting tool Enter-
prise Architect (called AddIn) (Section 5.4.3).  

 

Figure 40:  Contributions to the architecting activities 
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In order to achieve this goal of supporting flexibility through all architect-
ing activities, we thoroughly analyzed flexibility as a quality attribute of 
software in Chapter 4. With the help of this knowledge, the guidance in 
the single activities of architecting can be made more concrete than they 
are when targeting at design for all types of quality attributes.  

Eventually, it is the goal of architecting support that all relevant quality 
attributes are covered in a similar manner. For selected quality attributes 
like performance, such approaches already exist (e.g. [BKR09]). To be 
most effective, these different quality attribute “PlugIns” should work on 
a common architecture meta-model and in an integrated tool platform. 
Then, analyses about the mutual influence of design decisions for the 
one or the other quality attribute can be conducted. 

Architects can apply the method for achieving flexibility in different con-
texts. The context of designing a new software system is the most obvi-
ous one. However, it can also be applied in the context of software mi-
grations or other evolution activities. As the requirements for a software 
system in general change over time, this can also be true with respect to 
flexibility requirements. That is, architects discover new flexibility re-
quirements, for example when similar changes occur in a recurring way 
which are not supported by adequate flexibility mechanisms and which 
are thus overly costly. Then, such a change project can also be used to 
redesign the architecture for better flexibility. Additionally, larger evolu-
tion projects conducting massive changes to a software system can be 
used to introduce new flexibility potential if needed. The change impact 
view as an instrument for automated measurement of flexibility can also 
be applied in other contexts than architecture design. Flexibility evalua-
tions might be necessary for different reasons like for checking how fu-
ture-proof a software system is. Such evaluations can also be supported, 
which requires to model the change impacts manually in the change im-
pact view. This then allows automated analyses of flexibility considering 
particular changes.    

5.2 Eliciting Flexibility Scenarios 

When change requests to a system arise, they should be covered by the 
flexibility potential of the system; otherwise conducting the change is 
effort- and cost-intensive. Achieving this coverage means not only to 
make the right architectural decisions but also to anticipate the needed 
flexibility requirements during system design. 

This thesis strongly focuses on the architecture design for flexibility. 
However, we give a brief introduction to requirements engineering for 
flexibility in this section.  
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method 
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Anticipation 
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Flexibility requirements are particularly difficult to elicit as they always 
deal with anticipated changes in the future which are differently likely to 
happen. Further, there might be context factors changing around a 
software system which were not even considered. Thus, a hundred per-
cent coverage of flexibility requirements can hardly be achieved. Howev-
er, experience of other software systems and a strong domain 
knowledge help to come up with the right flexibility requirements for a 
software system. The goal to be followed for flexibility requirements is to 
make a sound trend analysis and to approximate future changes as well 
as possible. 

We do not contribute a new methodology for eliciting flexibility re-
quirements in this thesis. Rather, we rely on existing methods for re-
quirements elicitation and add information from our characterization of 
flexibility to make these methods more effective. In [Doe11], the NFR 
Method is described, which explicitly aims at eliciting non-functional 
requirements. It deals with quality models describing quality attributes 
which are used to support requirements engineers in the systematic elici-
tation of non-functional requirements. Our characterization and classifi-
cation of flexibility scenarios (see Section 4.2.2) could be used in the con-
text of this method.  

Another method which can be adopted for eliciting flexibility require-
ments is PuLSE-Evo (Product Line Software Engineering – Evolution) 
[VEG08]. It was originally developed to support the evolution of software 
product lines. In this context, the elicitation of future needs and potential 
changes is also relevant. Although in the first place the method was de-
veloped for embedded systems, it is mainly transferrable to other system 
types like information systems. PuLSE-Evo has an own conceptual model 
of software evolution which partially overlaps with our conceptual model 
of flexibility. These models have a different focus and partially slightly 
different terminology, but in general they are compatible (e.g. Impact in 
the PuLSE-Evo model means the impact of a change on the context in 
terms of business aspects, whereas Change Impact in the flexibility mod-
el means the impact of a certain change on architectural or implementa-
tion elements). A concrete mapping is possible, but not in the scope of 
this thesis. For this mapping, again our characterization and classification 
of flexibility scenarios (see Section 4.2.2) would be helpful. 

After eliciting and characterizing the flexibility requirements for a system, 
they should be represented as flexibility scenarios (see Section 4.2.1). It is 
not always possible to anticipate flexibility requirements for a system. 
This might be due to inexperienced stakeholders or to a largely new do-
main addressed. Then, it might be beneficial to define, based on experi-
ence of the architect, some “standard flexibility scenarios” which cover 
more technically motivated changes that often occur.  
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In the next section, we describe the enhancement of architecture design 
methods with better guidance for flexibility, making appropriate deci-
sions to address the flexibility scenarios. 

5.3 Architecture Design for Flexibility 

In this section, we describe what we contribute to architecture design 
methods in order to better support achieving flexibility. Architects get 
concrete guidance for making architectural decisions related to flexibility. 
This guidance is mainly given by splitting otherwise complex design as-
pects and by giving heuristics and guidelines. 

We start with a definition of design goals for our methodical support 
(Section 5.3.1). Then, we give an overview of the design process as sup-
ported (Section 5.3.2). Finally, we describe in detail the individual activi-
ties of the design process with heuristics (Section 5.3.3). 

In Figure 40, we conceptually distinguished Design and Modeling. With 
respect to flexibility measurement, the explicit Modeling activity is im-
portant. However, for all design activities in this section, design and 
modeling is closely interwoven and modeling is not explicitly described. 
Rather it is assumed that the resulting architectural decisions and struc-
tures are modeled as they are designed. 

5.3.1 Design Goals 

The foremost design goal with respect to flexibility is to achieve True 
Flexibility. According to Definition 7 (see also Figure 6), this means that 
flexibility requirements are appropriately covered by the built-in flexibility 
potential. This bases on the assumption that the anticipated flexibility re-
quirements approximate the eventually occurring change requests ade-
quately. Additionally, not too much flexibility potential should be built in, 
as flexibility potential always comes at a cost (see Section 4.3.4). Con-
structively achieving True Flexibility means to make the adequate archi-
tectural decisions.  

In Section 4.3.1, we analyzed what makes an architecture flexible and 
how flexibility potential can be achieved. The key means to achieve flexi-
bility is (according to the definition of flexibility) to minimize and localize 
the change impact. This minimizes the effort for changes in the sense 
that only a small number of implementation elements have to be 
touched and the key architectural decisions stay stable.  

Designing for flexibility is challenging as it involves considering many 
different aspects like functional decomposition and flexibility mecha-
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nisms, business logic and technologies, the interplay between runtime 
and development time aspects, etc. Making this inherent complexity bet-
ter manageable by explicit addressing and partial separation in the archi-
tecture design process is our leverage towards higher flexibility. 

Our methodical support should address the relevant contexts, as de-
scribed in Section 5.1. That means in particular that it should be applica-
ble to architecting of new systems as well as to the evolution of existing 
systems. 

5.3.2 Design Process Overview 

In this section, the overview on the design process is described. Accord-
ing to Figure 40, the design process covers mainly the Design activity and 
implicitly the Modeling activity for the architecture. The design progress 
addresses the flexibility related aspects as indicated in Figure 40. In the 
overview, we describe the key ideas of the design process and of how 
the single activities belong together as well as what the overall sequenc-
es of activities look like. In the next section, we describe the details of 
the single activities.  

The key contribution of the design process is to reduce the inherent 
complexity of designing for flexibility by making activities, artifacts, and 
the relationships more explicit where possible. Additionally, we support 
the activities with flexibility-specific heuristics and guidelines helping the 
architect to master the complexity. Where typical architecture methods 
stay rather abstract in order to be able to address all kinds of require-
ments, our approach focuses on flexibility and gives the accordant guid-
ance. The key principles to realize this are the following:  

� Consider functional decomposition (incl. business logic mapping) and 
quality-driven design (incl. application of flexibility mechanisms): 
Both, the selection of appropriate flexibility mechanisms and the ap-
propriate mapping of business logic are relevant for achieving flexibil-
ity (see Section 1.3). 

� Consider business logic and technology aspects: Flexibility is often 
supported by using technologies which realize certain flexibility 
mechanisms. These technologies have to be appropriately combined 
with the business logic of the system (see Section 4.4) 

� Consider runtime aspects and devtime aspects of a system: Flexibility 
is a devtime quality attribute. However, during system design there is 
a close relationship to runtime quality attributes. This results from the 
mutual influence of design decisions made for devtime and runtime. 

� Consider top-down decomposition for new requirements and bot-
tom-up analysis of existing realizations: In case of an existing system, 
the implementation cannot be changed easily in order to comply with 
design decisions made for achieving flexibility. Thus, the existing de-
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sign decisions have to be taken into account when designing for new 
flexibility requirements. 

Despite the more detailed guidance of the design process and its activi-
ties, architecture design is still a task requiring a good portion of experi-
ence and creativity. 

The architecture design process works like typical architecture methods 
on requirements as input. This covers all types of requirements like busi-
ness goals, functional requirements, quality requirements, or any type of 
constraints. The key aspect for designing a flexible architecture is that 
adequate flexibility requirements in form of scenarios are available. Op-
tionally, the design process can also take existing architectures into ac-
count. An architecture might be already existent when an existing sys-
tem is evolved or when a new architecture has been designed, but the 
flexibility of it should be improved in another design iteration. An exist-
ing architecture might be available in a well-documented form, but it 
might be also available in the source code of the existing system, requir-
ing a systematic abstraction and analysis (reverse engineering). 

The architecture design process produces as output an architecture. The 
architecture consists of architectural decisions and architectural ele-
ments, relationships among them, and further characterizing attributes 
(see Definition 2 or [BCK03, RH06, TMD09]). An architecture is typically 
represented using architectural views. The specific aspects of modeling 
Change Impact Views (see Section 4.3.3.3) are covered in Section 5.4. 

Figure 41 depicts the overview on the design process, with the key in-
puts and outputs, and with the key activities of the process and their 
flow. These key activities are widely not new but can be partially found 
in today’s architecture design processes, as for example described in 
[HKN+07]. Our key contributions are as described above. 

As can be seen from Figure 41, there is no strict order of activities which 
would lead to the desired architecture. Rather, the sketched activities 
might have to be revisited iteratively until the architecture converges to 
the desired state of fulfilling the requirements. Nevertheless, there are 
some typical patterns of stepping through the activities: 

� Design typically starts with a coarse-grained functional decomposition 

� Runtime aspects are typically addressed first, devtime aspects are typ-
ically addressed later 

� The activities of functional decomposition and realizing quality attrib-
utes are intertwined in the sense that decisions are continuously re-
fined 

� The realization of runtime quality attributes and devtime quality at-
tributes is dependent on each other and needs iterative refinement 

Input 
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� Technologies are incorporated to realize architectural mechanisms at 
runtime and devtime 

As sketched, the design process is highly iterative and incremental. An 
appropriate unit to control the iterations are architecture scenarios in 
general and flexibility scenarios in particular. Intentionally, there are no 
clear artifact flows sketched between the activities. Rather, the activities 
work together on the architecture model. Particular activities have a fo-
cus on specific architectural artifacts, which is described in detail in Sec-
tion 5.3.3.  

Further guidance to the architecture design process can be derived from 
the conceptual model for flexibility (see Section 4.4) and the Architecture 
Decomposition Framework (ACES-ADF) (see Section 2.1.3). The concep-
tual model guides with more detailed information about flexibility and in 
particular with the role of architecture in achieving flexibility. ACES-ADF 
guides with the separation of runtime and devtime dimension, and it 
guides with the separation of aspects like functions, data, processes, UI, 
and technologies. Concretely, this is described for the single activities in 
Section 5.3.3.  

 

Figure 41:  Architecting design process overview 
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5.3.3 Design Process Activities 

In this section, all activities of the architecture design process, as intro-
duced in the previous section, are described in detail. Each activity is 
described according to the following uniform structure, always focusing 
on flexibility (other aspects that are generally done or related to other 
quality attributes are left out).  

� Introduction 

� Goals for flexibility 

� Artifacts consumed and produced 

� Guidelines and heuristics for flexibility 

An architect applies these activities according to the overall process as 
described in Figure 41. He incrementally steps through the activities ad-
dressing flexibility requirements and making architectural decisions until 
an adequate level of flexibility is achieved. Please note that these activi-
ties typically do not aim at flexibility only. Rather, they are conducted to 
fulfill all kinds of requirements of a system. Our activity description of the 
activities contributes to the flexibility-related guidance and does not de-
scribe other steps typically conducted in these activities. 

Activity:  Requirements Analysis 

Introduction 

Requirements analysis is an architectural activity aiming at understanding 
and processing architecturally-relevant requirements as input for the ar-
chitecture design activities.  

Goals for flexibility 

� Identify adequate set of flexibility scenarios to be addressed in overall 
design and in single design iterations 

Artifacts consumed and produced 

� Consumed: Flexibility scenarios, other requirements 

� Produced: Selection and grouping of flexibility scenarios 

Guidelines and heuristics for flexibility 

� Select a number of flexibility scenarios for addressing in the overall 
design and for the next design iteration according to the prioritiza-
tion and probability of flexibility scenarios 

Description 
of activities 
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� Group flexibility scenarios according to what is changing or according 
to the impacted architectural elements (see Section 4.2.2) as units of 
architectural work in the design process 

� Identify functional requirements that are closely related to the busi-
ness logic covered in flexibility scenarios, in order to better under-
stand the context of potential changes 

Activity:  Functional System Decomposition 

Introduction 

The functional decomposition of software systems aims at decomposing 
functional requirements in a way that they can be assigned to software 
elements in the broadest sense. That means, it has to be defined which 
runtime elements exist and how they interact to deliver the required 
functionality. Further, it has to be defined which devtime elements exist 
and how they are organized for development activities. 

Goals for flexibility 

� Decompose the functionalities in a way that allows later-on mapping 
of functionality to element types defined by flexibility mechanisms 

Artifacts consumed and produced 

� Consumed: Functional requirements, flexibility scenarios 

� Produced: Proposed architectural elements (devtime or runtime) cov-
ering the functional requirements, proposed architectural template 
elements with assigned functionality sets 

Guidelines and heuristics for flexibility 

� Make a top-down decomposition of the system (hierarchically) 

� Identify architectural elements, their interfaces, and relationships 

� Cover in the decomposition the aspects: functions, data, processes, 
and UI  

� For flexibility scenarios covering the change of a certain functionality, 
decompose the system in a way that the change is as local as possi-
ble. 

� Build abstractions for recurring architectural elements, in particular 
when the level of granularity is not predetermined. Such abstractions 
are marked in the architecture model as Template Elements (see Sec-
tion 4.3.1.3). Attach to a template element the functionality it ab-
stracts from. The key idea is to defer the decision about the concrete 
decomposition until the point in time when the mechanisms to 
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achieve flexibility are clear. [Example: If many architectural elements 
for data access are found, a template element “data access” is de-
fined and later-on, the concrete decomposition is made] 

Activity:  Existing Artifacts Analysis 

Introduction 

Architecture design activities often take place in the context of system 
evolution. Thus, the architect has to consider the existing architectural 
decisions and implementation artifacts of the system, as they cannot be 
freely influenced. Changing a decision in architecture design might lead 
to high cost for the change of the implementation. Often, the architec-
ture of existing artifacts is not explicitly known. Then, reverse engineer-
ing techniques are needed to recover architectural elements and deci-
sions from the implementation. 

Goals for flexibility 

� Identify realized architectural decisions in existing artifacts, which 
hamper the achievement of flexibility 

� Identify potential for creating flexibility without high effort and cost 
for changing existing implementation artifacts  

Artifacts consumed and produced 

� Consumed: Architecture models of existing system artifacts, flexibility 
scenarios, ideas for architectural realization of flexibility scenarios 

� Produced: Judgment about feasibility of architectural ideas, alterna-
tive solutions 

Guidelines and heuristics for flexibility 

� Conduct a bottom-up analysis of the existing system artifacts and 
their architectural decisions: Make a mapping to requirements of the 
system under design 

� Analyze flexibility mechanisms and business logic mapping in the ex-
isting system artifacts 

� Analyze the impact of realizing drafted flexibility solutions based on 
the existing system artifacts (considering functions, data, processes, 
UI); identify architectural decisions that lead to high change impact 

� Consider deviations from the planned concepts for flexibility, which 
are closer to the flexibility mechanisms realized in the existing system 
artifacts and thus allow easier realization 
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Activity:  Realization of RunTime Quality Attributes 

This activity cares about the achievement of quality attributes like per-
formance or availability. It is quite similar to the realization of devtime 
quality attributes, but it deals with runtime architectural elements in-
stead of devtime architectural elements. This activity is not in the direct 
scope of designing for flexibility; however it has a connection as design 
decisions made for runtime quality attributes might adversely impact 
flexibility. Thus, an iterative refinement between the realization of 
runtime and devtime quality attributes is necessary to guarantee that all 
relevant scenarios can be addressed. 

Activity:  Realization of DevTime Quality Attributes 

This activity is the counterpart of the realization of runtime quality at-
tributes. Flexibility is a devtime quality attribute and thus has to be ad-
dressed mainly in this activity. Due to this importance of the activity for 
our design process, we split this activity into three sub-activities which 
are described in the following. 

Activity:  RunTime - DevTime Mapping and Consolidation 

Introduction 

Architecting means to define how a system can deliver the required 
functionality at runtime and how it can be developed at devtime. The re-
spective architectural elements at both levels are not necessarily identi-
cal. As architecture design often starts at the runtime level (delivering the 
functionality is the foremost goal why software is developed) it has to be 
mapped at some point in time to the devtime level. This activity assumes 
that a runtime decomposition and potentially also the realization of 
runtime quality attributes has already been done. The key relationship 
between runtime and devtime architectural elements is that runtime el-
ements are realized by devtime elements (not necessarily 1:1). 

Goals for flexibility 

� Map runtime architectural elements to devtime so that design for 
flexibility can be applied 

Artifacts consumed and produced 

� Consumed: Runtime architectural views 

� Produced: Initial devtime architectural views 
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Guidelines and heuristics for flexibility 

� Initially, map runtime components 1:1 to devtime modules 

� Initially, map runtime data elements 1:1 to devtime modules 

� Initially, map runtime process elements 1:1 to devtime modules 

� Initially, map runtime UI elements 1:1 to devtime modules 

� Identify multiple instantiations of elements at runtime and reduce at 
devtime to 1 single realizing element 

� Identify common parts in resulting modules and factor out to sepa-
rate modules (avoid redundancy at devtime level) 

Activity:  Application of Flexibility Mechanisms 

Introduction 

Flexibility is achieved when change requirements can be realized with 
minimal and local impact only. Flexibility mechanisms (see Section 
4.3.1.2) are architectural mechanisms that support the localization of 
changes. Flexibility mechanisms typically introduce some kind of indirec-
tion, which allows the local change of particular system aspects. For rea-
sons of complexity handling, we explicitly separate the Application of 
Flexibility Mechanisms step from the follow Business Logic Mapping step. 

Goals for flexibility 

� Identify and apply flexibility mechanisms in order to achieve the flexi-
bility requirements 

Artifacts consumed and produced 

� Consumed: Initial functional decomposition at devtime level (pro-
duced by RT-DT Mapping or by Functional System Decomposition), 
flexibility scenarios 

� Produced: Architectural decisions and views covering the selection 
and application of flexibility mechanisms, mainly at a business-logic-
agnostic level (BLA) 

Guidelines and heuristics for flexibility 

� Explicitly address architectural elements that were tagged as Tem-
plate Elements: Identify whether the application of flexibility mecha-
nisms is necessary 

� Analyze flexibility scenarios to see which aspects have to be separat-
ed from each other by means of flexibility mechanisms 
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� Cover aspects of functions, data, processes, and UI in flexibility con-
siderations 

� Select appropriate flexibility mechanisms (e.g. patterns) to be applied 

� Identify the role of architectural elements in the flexibility mechanism 
(e.g. a workflow engine can represent a role and declaratively de-
scribed workflows can represent another role) 

� Identify whether the selected architectural mechanisms come with 
new infrastructure elements. Explicitly mark them as Infrastructure El-
ement in the architecture 

� Identify whether further abstractions of functional modules are 
meaningful: If yes, introduce further Template Elements abstracting 
from these elements 

� Finish with an architecture model that is mainly business-logic-
agnostic with respect to flexibility 

Activity:  Business Logic Mapping 

Introduction 

Business Logic Mapping is the step that integrates the functional de-
composition of a system and the selection of flexibility mechanisms. Only 
when appropriate flexibility mechanisms are in place and when the busi-
ness logic is appropriately distributed to architectural elements, a system 
is flexible. We introduced in previous activities Template Elements, which 
will now be concretely instantiated in order to have an appropriate map-
ping. 

Goals for flexibility 

� Identify a mapping of business logic to architectural elements defined 
by flexibility mechanisms so that the flexibility requirements can be 
adequately fulfilled 

Artifacts consumed and produced 

� Consumed: Flexibility scenarios, functional decomposition of the sys-
tem, architectural decisions about flexibility mechanisms 

� Produced: Concrete mapping of business logic to architectural ele-
ment types 

Guidelines and heuristics for flexibility 

� Revisit all flexibility mechanisms built in and the related Template El-
ements. 
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� All template elements are instantiated with concrete instances of ar-
chitectural elements covering a certain amount of business logic (so-
called Business Elements are created) (e.g. for an abstract service 
concrete instances representing the business logic are created). This is 
only necessary where flexibility requirements demand the mapping 
otherwise the business logic mapping can be left open to later devel-
opment activities. 

� Distribute business logic over the template elements in a way that the 
resulting flexibility potential matches the flexibility requirements 

� Identify appropriate granularity of architectural elements and of inter-
faces 

� Business logic mapping can result in splitting or merging modules, 
creation of new modules, reallocation of responsibilities across mod-
ules 

� Consider functions, data, processes, and UI as concrete forms of 
business logic, which have to be appropriately addressed, also in their 
interplay 

� Finish with an architecture model that is mainly business-logic-specific 
with respect to flexibility 

Activity:  Selection and Application of Technologies 

Introduction 

Technologies play an important role for the achievement of flexibility as 
they often realize architectural mechanisms. Realizing an architectural 
mechanism often means that the Infrastructure Elements introduced by 
flexibility mechanisms are implemented by a technology, and potentially 
a technical frame for the realization of Business Elements is given. 

Goals for flexibility 

� Identify appropriate technologies supporting flexibility 

� Apply technology in a way that optimally supports flexibility 

Artifacts consumed and produced 

� Consumed: Flexibility scenarios, architectural decisions about flexibil-
ity mechanisms  

� Produced: Architectural decisions about technologies, (alternative) 
proposals about flexibility mechanisms 
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Guidelines and heuristics for flexibility 

� For Infrastructure Elements identified during Application of Flexibility 
Mechanisms, typically a realization is needed. Often, existing tech-
nologies offer such realizations (e.g. commercial workflow engines 
realize architectural mechanism) 

� Select technology with respect to their appropriateness to realize In-
frastructure Elements. Alternatively, these elements have to be indi-
vidually realized 

� Make decisions about exact usage of technologies in the context of 
realizing flexibility 

� Consider aspects of functions, data, processes, and UI 

� Due to the availability of technological options, alternative flexibility 
mechanisms can be proposed, which can adequately replace selected 
ones 

The design process activities as described are integrated via the process 
described in Figure 41 and the principles described in Section 5.3.2. This 
integration leads to several very intensive alignments of activities, which 
require iterative and incremental working towards architectural solu-
tions. These particularly intensive alignments are highlighted in Figure 
42. The architect should put specific focus on aligning the activities. 

 

Figure 42:  Architecting design process overview – key integrations 
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5.4 Measuring Flexibility with Tool Support 

Figure 40 presents the overview on the methodical contributions to flex-
ibility at architectural level. In the previous section, the constructive con-
tributions for the Design activity are represented in form of activities, 
principles, guidelines, and heuristics. This section focuses on the analyti-
cal contributions, which are applied in the Evaluate activity. 

While the evaluation of flexibility during architecture design is typically a 
manual and time-consuming task, we aim at automated analysis of flexi-
bility. This facilitates the analysis of flexibility in much shorter cycles, it 
makes direct feedback to the architect possible, and it allows the archi-
tect concentrating on the design tasks with intermediate revisions on in-
adequate design decisions. 

First, we explain the key ideas behind automated measurement and how 
it integrates into the engineering process in Section 5.4.1. Then, we out-
line the features of our tool developed for automated flexibility meas-
urement and show an exemplary application in Section 5.4.2. Finally, we 
briefly describe the technical realization of the tool in Section 5.4.3. 

5.4.1 Continuously Measuring Flexibility in Architecting 

The key reason why to introduce automated measuring of flexibility is to 
drastically increase the frequency of measurement without distracting 
the architect from the design activities. While architecting as a whole 
aims at avoiding rework-intensive corrections at the implementation lev-
el, continuous measurement of quality attributes can help to avoid re-
work-intensive corrections of architectural design decisions at architec-
ture level. The effectiveness of such near-real-time feedback has been 
shown also in other areas, for example for the avoidance of architecture 
compliance violations [Kno11].  

In Section 4.3.3.2, we formalized the ideas for measuring flexibility and 
introduced concepts for tool-supported measurement. The flexibility 
metric results are defined on a [0, 1] scale, measuring the flexibility of an 
architecture with respect to a particular flexibility scenario. 1 means 
highest flexibility. In order to allow automated calculation of the flexibil-
ity metric results, we extended the architecture meta-model with addi-
tional information, captured in the Change Impact View (see Sections 
4.3.3.3 and 4.4). As fully automated reasoning of change impacts for in-
formal flexibility scenarios is not possible, we let architects model their 
considerations about the fulfillment of flexibility scenarios under design 
as part of the architecture model. This is expressed as change impacts on 
the architecture model and allows afterwards automated calculation of 
flexibility results.  
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Figure 43 depicts the Evaluate activity in the context of the overall design 
process. This step is fully automated and based on the architecture mod-
el created before, including the change impact view. The only task left to 
the architect in terms of the evaluation is the interpretation of the results 
and how to react to them in further design activities. Enhancing the ar-
chitecture model with the change impact view becomes completely in-
terwoven with the Design and Model activities.  

Modeling the change impact views is relatively little additional effort. 
First, it captures only the information an architect has to reason about 
anyway when designing for flexibility since it covers the relevant aspects 
according to the definition of flexibility (and this is assumed to guide 
architects even more explicitly towards adequate flexibility solutions, as 
described in Chapter 7). Second, it can be done at the same point in 
time when the architect designs the flexibility solution. Third, being fully 
integrated in the architecture model in a tool, it can reuse existing model 
elements. Later on in the design and evaluation, the persisted change 
impacts can be revisited and reevaluated at any time.  

In order to achieve near-real-time feedback, a close integration of the 
Evaluate activity with the Design and Model activities is necessary, as de-
scribed above. Figure 41 shows the detailed activities of designing an ar-
chitecture with focus on flexibility. Giving near-real-time feedback means 
that even working inside such an activity, the architect can get automat-
ed feedback on the current flexibility, as in the background the tool au-
tomatically calculates it for the current architecture model. The architect 
only has to make sure that the relevant change impact views are up-to-
date. To achieve this, modeling architectural decisions and structures for 
flexibility should always be directly followed by modeling the change im-
pact views.   

In the following sections, we describe features, application, and realiza-
tion of the tool for automated flexibility measurement. 
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Figure 43:  Key contributions to flexibility measurement 
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5.4.2 Features and Exemplary Application of the Tool 

In order to demonstrate the feasibility of automated and continuous flex-
ibility measuring and feedback, we developed a tool extension for the 
modeling tool Enterprise Architect (EA) [EA11a]. In Section 5.4.3, we de-
scribe the technical realization of the tool extension. 

In this section, we focus on the functionality of our tool and demon-
strate its application in the context of the example introduced in Section 
1.3. Therefore, we first give a brief overview on the features of the tool. 
Then, we will revisit the example and give some further background in-
formation and assumptions. Finally, we illustrate with screenshots the 
application of the flexibility tool in the context of the example.  

F1: Modeling of change impact views: Change impact views are intro-
duced as a new type of architectural views in EA. In order to allow archi-
tects to easily model change impact views, the respective elements are 
provided as a toolbox, like for built-in notations and view types. In par-
ticular, flexibility scenarios and the impacts-relationship are introduced 
and allow graphical modeling of change impact. 

F2: Representing flexibility-relevant data in the model: Change impact 
views and the respective architectural elements and relationships can be 
enhanced with more detailed information about the elements and the 
relationships, which are introduced in our flexibility metric. This is the 
prerequisite for more accurate flexibility prediction values. In particular, 
the type of the impacts-relationship (add / modify / delete) and the size 
of the impact (low / medium / high) can be modeled. The architectural 
elements impacted by potential changes can be described with their es-
timated or measured size (in LOC). This additional data is represented as 
tagged values in EA.  

F3: Calculating flexibility automatically according to metrics: Having 
modeled the change impact view with the flexibility-relevant data, the 
flexibility tool can automatically calculate the flexibility metric for all flex-
ibility scenarios in the architecture model. Therefore, the model is 
searched for all scenarios and the flexibility metrics are applied according 
to all metric configurations. The resulting flexibility values are between 1 
(= best flexibility) and 0 (no flexibility). 

F4: Representing flexibility metrics visually for user: The flexibility metrics 
results are visually represented to the user in two different ways. One is a 
small window which is always visible and represents the flexibility value 
for the flexibility scenario just selected in the modeling diagram. As soon 
as another scenario is clicked, the flexibility metric for this scenario is au-
tomatically calculated. Additionally, there is always the overall flexibility 
for all scenarios in the architecture model displayed. The other window is 
a main window in EA like a diagram. It presents an overview on all flexi-
bility scenarios in the architecture model and also outlines the textual de-
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scription. For each scenario, the flexibility metric value is displayed as 
well as the overall flexibility of the architecture with respect to all viewed 
flexibility scenarios. All flexibility values are colored in a traffic light style: 
Green depicting high flexibility, red depicting low flexibility. 

F5: Configuring the flexibility metric: The calculation of the flexibility 
metric can be configured with a configuration window. Thereby, the 
change impact size for the predefined values can be adjusted (default: 
low = 10% change / medium = 30% change / high = 50% change). Fur-
ther on, the flexibility metric can be adjusted in a way that the architect 
can define until which change impact size the flexibility is still considered 
to be 1 (default: less than 10 LOC impacted) and from which change 
impact size the flexibility is considered to be 0 (more than 10% of sys-
tem size impacted). For details about the flexibility metric and the calcu-
lation see Chapter 4. 

F6: Calibrating the flexibility model with scenario probabilities: As scenar-
ios are not equally likely and the architect might like to try out different 
profiles of probabilities, flexibility scenarios can be tagged with expected 
probabilities. Then, the overall flexibility of the architecture is calculated 
by weighting the single flexibility scenarios’ flexibility according to the 
scenario’s probabilities. 

In Section 1.3, we introduced a simplified architecture of a CheckIn sys-
tem, as it could be found in the airline domain. We revisit this example 
to demonstrate the flexibility tool. The following extensions to the ex-
ample have been made: 

A fourth flexibility scenario was introduced:  

FR4: Change the language in which the business process modeling is 
done to a more popular and powerful one  
This flexibility scenario is quite difficult to handle as it requires 
changing the BP Engine and all business processes that are already 
realized (which is only 1 in our example). 

The change impact view was modeled: We introduced the change 
impact diagram for the four scenarios and modeled the impacts. Addi-
tionally, the extra information about change impact was added (type and 
size of changes are annotated at the graphical impacts-relationship). 

Element size was added for all architectural elements (estimated as 
LOC): We exemplarily estimated the figures as shown in Table 6. 
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Element Size [LOC] 

UI Engine 20.000 

BP Engine 15.000 

CheckIn (Descriptive Process) 20 

Identify (Service) 3.000 

Seating (Service) 3.000 

Baggage (Service) 3.000 

Table 6:  Architecture example flexibility metrics - element sizes 

In the following, we illustrate how the data is modeled with the flexibility 
tool and how the features can be accessed in the user interface. 

For this exemplary application, the flexibility tool is used in its default 
configuration (as can be also seen from Figure 46a). For easier under-
standing of the screenshots, we fade out the areas of EA, which in the 
respective screenshot are not of high relevance. For easier mapping to 
the features, we always provide a link to the feature ID, as introduced 
just above. 

Figure 44a shows the structural architecture diagram of our example, as 
already introduced in Figure 5b. It can be seen that on selection of an ar-
chitectural element, the element size can be entered as a tagged value 
[Feature F2]. 

Figure 44b shows how the change impact view is modeled. Using the 
change impact view toolbox, the relevant elements can be added: The 
flexibility scenarios can be added as elements and they can also be de-
scribed in the notes field. Then, existing architectural elements can be 
dragged onto the diagram from the project browser. Finally, impacts-
relationships can be drawn from flexibility scenarios to impacted archi-
tectural elements and the change impact type and change impact size 
can be set (see Tagged Values window) [Features F1 and F2].  

Note that the diagram shown in Figure 44b only contains FR1, FR2, and 
FR3. FR4 is modeled in a different diagram. This allows easy scaling of 
change impact modeling and focusing on coherent sets of flexibility sce-
narios. As already described in Section 1.3, FR1 has very little impact on 
the business process description only. On the other hand, FR2 and FR3 
have higher impact on several, also larger architectural elements. In par-
ticular, FR3 impacts the large infrastructure elements UI Engine and BP 
Engine. 
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Figure 44:  a) Modeling structural views in EA b) Modeling change impact in EA 
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Figure 45 depicts the results of the flexibility metrics calculation, as pro-
vided for the architect. The smaller docking window (visible also during 
modeling) on the right side presents the flexibility value for the currently 
selected flexibility scenario and the overall flexibility. The larger main 
window gives an overview on all flexibility scenarios and their respective 
flexibility values and depicts the assumed probabilities of flexibility sce-
narios [Features F3, F4, and F6]. 

In our example, also the flexibility result values show that our architec-
ture is flexible with respect to FR1, and there is medium support for FR2, 
whereas our architecture is not flexible with respect to FR3 and FR4. This 
is expressed by both the calculated numbers and the traffic light colors. 
The probability values for the flexibility scenarios express that major 
changes like switching to a new programming language for business 
processes are rather unlikely compared to changing steps in a concrete 
business process. This is reflected in the overall flexibility of the architec-
ture which can still be quite high although some unlikely scenarios are 
difficult to address. Due to the small probability values of FR3 and FR4, 
an architect might decide that the flexibility as achieved is good enough. 

Figure 46a presents the configuration window for the flexibility tool and 
in particular the calculation of the flexibility metric values [Feature F5]. 

 

Figure 45:  Flexibility evaluation results 
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The values as shown are the default values. Figure 46b shows a matrix 
representation of the relationships between flexibility scenarios and the 
architectural elements impacted. It complements the change impact view 
with a more compact overview representation exposing less details. 

5.4.3 Realization of the Flexibility-Tool 

The flexibility tool is a prototypical implementation that was developed in 
the context of this thesis in order to show the automation potential of 
measuring flexibility in architecture design and to show the applicability 
of change impact modeling in an industry-accepted architecture model-
ing tool. In the previous section, the features and screenshots of the flex-
ibility tool have been presented. In this section, the focus is on the tech-
nical realization of the tool. 

Enterprise Architect (EA) [EA11a] is an UML modeling tool which is wide-
ly used in practice by architects and which is also the preferred tool at 
Fraunhofer IESE. It can be extended via an AddIn mechanism [EA11b] 
which was used to integrate the flexibility tool. On the one hand this al-
lows contributing our tool to a well-established modeling platform, on 
the other hand it saves a lot of development effort due to the basic 
modeling facilities already provided. Further, the flexibility tool is well-
integrated with other architecture tools of Fraunhofer IESE based on EA. 

EA provides an extension API, which can be accessed via COM (Compo-
nent Object Model). The AddIn is developed in C#, which allows easy 
publishing as another COM object. The AddIn is registered in the win-
dows registry as a COM object, which allows EA to integrate it as an 
AddIn and provide access to it in the EA user interface. 

Figure 47 depicts an overview of the architecture of the flexibility AddIn 
and how it relates to the core EA. In the following, the key architectural 

 

Figure 46:  a) Flexibility tool configuration b) Matrix showing impacts-relationships 
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decisions and components are outlined.  

The architecture is organized along a three-layer architecture with UI, 
Logic, and Data. This layering holds true for both EA and the flexibility 
AddIn. EA is depicted as a black-box spanning all layers from UI to data. 
For the flexibility AddIn we provide the details on how it interacts with 
the interfaces of EA. 

The key foundation for automated measurement of flexibility in our tool 
is modeling an architecture, and in particular the change impact, accord-
ing to our meta-model. We use the UML profile mechanism of EA and 
extend the available modeling language by our change impact view. We 
add in particular the flexibility scenario and the “impacts” relationship. 
The elements that are impacted are typically already there and we do not 

 

Figure 47:  Architecture diagram for flexibility AddIn 

Modeling 

UI

Logic

Data

Enterprise Architect

EA API

UML Profi les

FlexibilityAddIn

FlexibilityMainTab

FlexibilityDockWindow

FlexibilityCalculator

DataAccessModel-DB EA API

SQL Query

FlexibilityModel

ConfigurationModel

UML Flexibility Profile

Component
Interface

Layer

DataElement

extend

use

use

use

use

extend

use

extend



Engineering Flexible Software Systems 

130 

have any restrictions on which development artifacts can be included as 
targets of change. This allows also modeling of inputs for model trans-
formations as well as of descriptive artifacts like XML-based artifacts for 
inclusion in change impact analysis. Our extended profile appears as a 
new toolbox and allows easy modeling. Additionally, our meta-model 
and the flexibility metric require some more descriptions like the change 
probability, the type and impact size of change impacts, and the esti-
mated size of the impacted elements (see Chapter 4). Such data is repre-
sented as tagged values in the model. 

The UI of the flexibility tool consists of mainly two UI elements: the main 
tab (FlexibilityMainTab) showing an overview of flexibility results for all 
scenarios and a docking window (FlexibilityDockWindows) that stays vis-
ible during modeling and exposes the flexibility of the currently selected 
scenario and the resulting overall flexibility. These UI elements are real-
ized with Windows Forms technology. Further UI elements are already 
built-in into EA and only instantiated for our flexibility model (toolbox, 
tagged values, etc.). 

The component FlexibilityCalculator contains all the calculations of the 
flexibility metrics at all levels of aggregation. For the calculation, in par-
ticular the current configuration values which influence the metrics, are 
taken into account. 

EA comes with a relational data model that can be accessed via two 
ways. First, there is an object-oriented interface, where data elements 
can be searched and the object tree can be navigated. Second, there is a 
SQL-based interface, which can directly query the underlying relational 
data model. For our AddIn, both ways of access are used. In case of 
large searches across multiple tables, SQL is used, which is typically a first 
step. Then, to get the data details of single data elements, the object in-
terface is used. We define two own data types for the flexibility AddIn, 
which are used in all layers. One is collecting all the relevant data about 
flexibility calculations (FlexibilityModel), the other is collecting all the con-
figuration data for the metrics calculation (ConfigurationModel). 

5.5 Discussion 

In this section, we contributed methodical support for the definition of 
flexible architectures. Our contributions enhance typical architecture 
definition methods with both, constructive guidance and analytical sup-
port for flexibility. These two methodical aspects are highly integrated as 
the analytical support aims at giving very quick feedback on the currently 
achieved level of flexibility, which an architect can directly use to revise 
his design decisions. The analytical support is realized as an AddIn for an 
architecture modeling tool, Enterprise Architect. By this, the contribu-
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tions are integrated also from a tooling perspective, since the flexibility 
analysis works on the constructively created architecture model.  

Our contributions do not replace existing architecture definition meth-
ods, but enhance existing ones with particularly detailed support for flex-
ibility. Thus, our methodical contributions can be seen as a conceptual 
PlugIn for architecture definition methods, focusing on flexibility. The key 
source for this methodical support is the conceptual foundation of flexi-
bility defined in Chapter 4. There, the characteristics of flexibility are 
clearly defined, including a measurement model. These characteristics 
are used to define constructive guidance and analytical measurement 
support for architects.  

Designing for flexibility we aim at constructing flexibility potential that 
matches the flexibility requirements. This requires defining an architec-
ture that has adequate flexibility mechanisms in place and defines an 
adequate mapping of business logic to architectural elements. Only then, 
arriving changes can be conducted with minimal change impact. In order 
to allow defining such an architecture, we explicitly describe architectural 
design activities that care about design decisions supporting flexibility. 
Splitting these activities reduces the complexity the architect has to cope 
with and gives guidance about necessary steps and decisions. For more 
concrete guidance, we describe for each design activity the concrete arti-
facts on which the activity works and give heuristics on how to process. 

Although these enhancements make the design process way more con-
crete for flexibility than in typical architecture design processes, it is still 
no straightforward process which could simply be automated. This is also 
visible by the fact that even no generally valid order of processing the 
design activities can be given. Architecture design stays a creative and 
challenging task for software architects, the methodical guidance can to 
some extent replace missing experience (as it makes best practices explic-
it). Additionally, adherence to this methodical support can lead to more 
uniformity of architecture design in a software development organiza-
tion. 

Measuring flexibility is important during architecture design in order to 
check whether the flexibility potential achieved is adequate for the flexi-
bility requirements. Automated measurement of flexibility is helpful for 
architects and creates minimal distraction from the design work. Howev-
er, typical descriptions of flexibility requirements and architecture models 
do not allow the fully automated measurement of flexibility. Thus, we in-
troduced the change impact views as an enhancement of the architec-
ture meta-model. It is described by the architect and offers the data that 
is necessary to automatically calculate flexibility. A very important effect 
of the change impact view is that architects have to reason about flexi-
bility in the necessary depth, which is expected to improve the flexibility 
potential. 
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The automated measurement is realized as an AddIn into Enterprise Ar-
chitect, which allows fully integrated modeling of the architectural solu-
tion for flexibility and the change impact view. This emphasizes again 
our idea of extending architecture by a conceptual plugin for flexibility: 
Here it is even technically realized in that way. Tool-based support is in 
particular necessary and helpful for large-scale architecture models. 
Then, the model can hardly be captured mentally in all details and the 
tool-support allows working on separated areas. When architecture 
models are used to predict other quality attributes, too, this can be done 
on the same architecture model and then the architect can even detect 
tradeoffs in his analyses. 

The implementation of the flexibility measurement tool is a prototype 
showing the feasibility of the technical realization and the practical ap-
plicability in the design process. Although the metric calculation itself is 
fully automated, there is a lot of further improvement and automation 
potential around the tool.  

� The construction of the change impact views could be extended with 
automated proposals of change impacts, e.g. based on textual anal-
yses of the flexibility scenarios.  

� When the architecture evolves, it is currently necessary to manually 
adapt the change impact views. Automation support could identify 
potential impacts on change impact views and guide architects to-
wards these changes.  

� In the measurement tool, there could be a connection to the code 
base of current implementations in order to retrieve facts like the size 
of elements. 

� An extension could take the cost for building in flexibility into ac-
count. That is, a metric would be defined which approximates cost of 
certain flexibility mechanisms and provides an integrated view with 
the achieved flexibility. 

All these extension ideas provide further support for the architect and 
require further approximations and heuristics. They further reduce the 
manual workload for architects, but they do not lead to full automation 
of flexibility measurement. 

The measurement approach mainly aims at improving the architecture 
design process. However, it can also be used as support in architecture 
evaluations in other contexts. Then, the modeling of the architecture and 
the change impact views might be additional effort, but it might pay off 
as it allows detailed analyses on the architecture model and can be used 
further in potential evolution activities. 
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Design for flexibility and measuring of flexibility are very closely integrat-
ed, both from a methodical and a tooling perspective. This offers archi-
tects full support for dealing with flexibility at architectural level. The 
approach as described is directly applicable in the industrial context (the 
tool is only a prototype and needs more robustness). The main prerequi-
sites to introduce the approach into a software development organiza-
tion is that this organization has a mature level of architecting capabili-
ties. That is, architectural requirements have to be systematically cap-
tured and architectural decisions and views have to be documented and 
used. Then, the guidelines and the tool-support can be introduced and 
applied. One big advantage of this introduction is that all contributions 
do not require major changes of the previous processes. The tool-
support does not impact the original architecture model but only adds 
the change impact views. The key advantage an organization can get is a 
better awareness of flexibility and a systematic approach to deal with 
flexibility which can be communicated to all stakeholders like customers, 
requirements engineers, architects, and developers. The cost to adopt 
the approach is relatively low as it does not require many changes. Addi-
tionally, it allows an incremental adoption, which can mean to first in-
troduce the constructive part or even the analytical part. Chapter 7 
summarizes the hypotheses about benefits of the approach and first evi-
dences. 

Integrated 
approach in 
industrial 
context 



Flexibility in SOA-Based Information Systems 

134 

6 Flexibility in SOA-Based Information Systems 

"Being nonphysical, software parts can be  
far more flexible than physical parts.  

Therein lies the power of the medium  
beyond all others." 

Paul Basset 

SOA-based information systems are one type of systems which are often 
not as flexible as needed and expected (see Chapter 1). We formulated 
as industry level goals I.G1 and I.G2 (see Section 1.3) of this thesis the 
goals to support architects in building flexible SOA-based systems, using 
in particular the flexibility potential of architecture mechanisms and 
technologies in SOA. 

In Chapters 4 and 5, we introduced SOA-independent foundations and 
engineering support for achieving flexibility. In this chapter, we add 
SOA-specific aspects to the previous contributions. By narrowing down 
the scope of systems to the ones built according to SOA, more com-
monalities among challenges, solutions, and technologies can be found 
(see Figure 15). This allows providing guidance that is more specific to 
architects by describing typical challenges, solutions, and technologies 
that are used as material in an engineering process.  

Thus, the contribution about flexibility-specifics in SOA as described in 
this chapter is a conceptual plugin for our flexibility engineering ap-
proach. The plugin comes with explicit knowledge of flexibility in SOA-
based systems. Figure 48 depicts the aspects of flexibility related to SOA 
and shows how they extend our earlier contributions (in addition, the 
sections where to find the contributions are annotated). Figure 48 com-
bines the representations of Figure 11 and Figure 15 in order to illustrate 
the relationships of contributions in detail. 

The SOA-specific flexibility contributions depicted in Figure 48 also form 
the structure of this chapter. First, we detail the challenges around flexi-
bility in Section 6.1. Then, we discuss architectural solutions for flexibility 
in Section 6.2 and technologies that realize these solutions in Section 
6.3.  

In this chapter, we consider mainly two perspectives on SOA: first, from 
the perspective of organizations acting as suppliers of software systems, 
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which follow the SOA paradigm and are integrated in an application 
landscape; second, from the perspective of organizations integrating IT 
landscapes for customer organizations following the SOA paradigm. We 
explicitly do not consider market-place perspectives on SOA, which in-
clude more or less dynamic selection of services. 

6.1 Challenges around Flexibility in SOA 

Building SOA-based systems often has the goal to build highly flexible 
systems. However, also for SOA-based systems it holds true that univer-
sal flexibility is not possible. Thus, detailed knowledge of what needs to 
be flexible is necessary. In Section 6.1.1, we collect typical flexibility re-
quirements as a guidance for eliciting flexibility scenarios. This collection 
makes the guidelines of Section 4.2 more concrete by incorporating the 
knowledge about SOA-based systems in practice. Of course, these are 
only typical flexibility requirements that are not intended to be complete. 

Additionally, the typical settings where SOA is used come with character-
istics that make it even more challenging to achieve flexibility. Such 
characteristics are described in Section 6.1.2. 

 

Figure 48: SOA-specific contributions around flexibility 
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6.1.1 Typical Flexibility Requirements 

In Section 4.2.2, we describe questions to be applied for the elicitation 
of flexibility scenarios. With the knowledge of typical changes in the 
domain of SOA systems we can give support for answering the question 
“What has to change?”. It is important to note that the examples we 
contribute in the following (collected as experience from projects with 
industrial partners) are all at the business-logic-agnostic level (see Section 
4.3.1.3), that is they do not refer to concrete business logic of a concrete 
system. For the elicitation of concrete flexibility scenarios, it is very valua-
ble to cover business-logic-specific aspects for achieving flexibility. 

We organize our typical flexibility requirements along the categories pre-
sented in Section 4.2.2 for the question “What has to change?”: Func-
tionality, Technology, External Systems. Quality we leave out as no typi-
cal flexibility requirements have been experienced. 

Functionality: Functions, data, processes, UI 

� Changing the computational logic of a single service 

� Changing business processes (order of activities, adding or deleting 
activities, consuming or producing data in different activities, …) 

� Introducing new business processes to be supported  

� Extension or change of data structures for delivering new or changed 
data 

� Changing the responsibility of services for certain data entities 

� Changing the granularity of user interaction with the system (smaller 
or larger activities, more or less data provided or consumed in activi-
ty) 

� Usage of services in processes with different interaction schemas or 
different needs in data 

Technology: Integration or replacement of technologies 

� Integration of service providers or service consumers using different 
implementation languages  

� Integration of service providers or service consumers using different 
communication protocols 

� Integration of service providers using different data management 
technologies 

� Construction of applications using new portal and UI technologies 
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External systems: Integration with new or other external systems, chang-
es due to changes in external system 

� Extend the range of service consumers for new service consumers 
and delivery channels 

� Integrate with a new service provider that uses a different data model  

� Replace the service provider and use a similar service of a different 
provider 

� Exchange a complete backend with one that has similar functionality 
(but maybe different interaction schemas, different data models, etc.) 

� Follow the changes in the data model of service providers 

� Provide functionality of an existing system as services to be used in a 
larger landscape or by other business processes 

6.1.2 Characteristics Challenging Flexibility 

SOA is a paradigm that aims at the realization and integration of large 
application landscapes in enterprise organizations, in particular aligning 
business and IT. From this particular context, characteristics arise that 
make achieving flexibility more difficult and that are helpful to know for 
architects during system design. We distinguish technical and organiza-
tional characteristics, experienced in projects with industrial customers. 

Technical characteristics 

� SOA is typically used in application landscapes with high inherent 
complexity 

� The applications and building blocks being integrated in SOA systems 
are often heterogeneous with respect to implementation technolo-
gies, data management, architectural assumptions, etc. 

� The applications and building blocks being integrated in SOA systems 
are often legacy systems which are hard to change  

� The applications and building blocks being integrated in SOA systems 
often have a high complexity of data, in particular the underlying da-
ta models, assumptions about the usage of data, etc. 

� The applications and building blocks being integrated in SOA systems 
are often not under the development control of the integrating com-
pany and thus have to be treated as black boxes 

� The applications using services are often highly interactive systems 
which need strong tailoring to users’ needs 
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Organizational characteristics 

� In large application landscapes, the overall system is typically not un-
der the control of a single development organization. Rather, differ-
ent organizations are involved, which leads to limited impact on flex-
ibility at the overall level 

� Software services often have multiple users which might be even dis-
tributed over multiple organizational units or even organizations. This 
situation hampers the change of software systems which might be 
flexible from a technical perspective. In particular service interfaces 
need stability and cannot be changed easily  

For these characteristics, no generally applicable solutions exist. Howev-
er, the architect has to be aware of and recognize these characteristics in 
concrete projects in order to come up with applicable and adequate flex-
ibility solutions. 

6.2 Architectural Solutions for Flexibility in SOA 

Although there is no universally agreed definition of SOA, a number of 
architectural principles and mechanisms (see Section 4.3.1) has emerged 
which are widely accepted. In this section, we describe the most im-
portant principles and mechanisms in SOA from the perspective of how 
they as architectural solutions contribute to flexibility (see Figure 15). We 
aim at answering the questions: “What does a SOA-based architecture 
look like?” and “Which flexibility potential comes with SOA?”. 

While the general definition of SOA (see Definition 8) considers business 
and IT, we now focus on software architecture only. The summary of ar-
chitectural principles and mechanisms defines an architectural style 
which we call the SOA style (see [GS94, BCK03, Lub07], see Section 
2.2.4). Our key contribution here is to make the so-far implicit relation-
ship of the SOA style and flexibility explicit by concretely describing 
which architectural principles are realized and which flexibility potential 
SOA bears. In that sense, it is a guideline for architects to make better 
use of the flexibility potential of SOA (see goals in Chapter 1). 

Definition 17 SOA Style 

The SOA style is an architectural style which describes architectural ele-
ments, their relationships and composition in SOA-based software sys-
tems. This description is formulated as a set of architectural principles 
and mechanisms. 

In the following sections, we first outline the architectural principles be-
hind SOA (6.2.1). Then, we describe in detail the architectural mecha-
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nisms (6.2.2). Finally, we summarize key architectural considerations an 
architect has to make to use the flexibility potential in SOA (6.2.3). 

6.2.1 Architectural Principles in SOA Supporting Flexibility 

The following architectural principles of SOA contribute to the flexibility 
potential of SOA. They guide the architectural mechanisms described in 
the next section. Thus, they are only briefly introduced here; the flexibil-
ity potential is explained in the next section. These principles sketch an 
ideal solution, which in practice can often only be approximated. 

� Service Properties: Services are self-contained, context-free, idempo-
tent, technology-agnostic, coarse grained [HHV06, Jos07, KBS04] 
building blocks of software systems. 

� Orchestration and Composition: Services can be composed to higher-
level services [KBS04, Jos07, Erl06]. 

� Loose Coupling: Services and their consumers are only loosely cou-
pled in terms of data aspects, technology aspects, timing aspects, etc. 
[Jos07].  

� Standardization: Interoperability among services and their consumers 
at a technical level is supported by a standardization of description 
and communication protocols, which are often based on XML. 

� Descriptors: For deployment, configuration, composition of services 
and service consumers, XML-based descriptors are used. 

6.2.2 Architectural Mechanisms in SOA Supporting Flexibility 

SOA can be described from an architectural perspective with several ar-
chitectural mechanisms, which follow the architectural principles identi-
fied before. These mechanisms describe types of architectural elements 
and how they are related to each other (see Section 4.3.1). Additionally, 
architectural elements are stereotyped according to the schema of Sec-
tion 4.3.1.3. 

In this section, we contribute a characterization of architectural mecha-
nisms of SOA with a focus on flexibility. We use a uniform description 
template which explains the key principles and decisions behind a mech-
anism, the architectural elements involved (see also Figure 17) and their 
relationships (illustrated with architectural views), and the contribution to 
the flexibility potential of a software system.  

The Template elements are instantiated with concrete business logic 
mappings; the Infrastructure elements are either realized by means of 
available technologies (see Section 6.3) or else individually developed. 



Flexibility in SOA-Based Information Systems 

140 

Mechanism Service Concept 

Key Principles 
& Decisions 

Services are designed to follow standard service properties (self-contained, con-
text-free, technology-agnostic, coarse grained 

Services make an interface public and hide their implementation 

Services can have multiple implementations, which provide different quality of 
service 

Interfaces can be differently defined: Interface vs. payload semantics; Interface 
semantics means that a service offers dedicated methods while payload seman-
tics means that the service takes a document as input in which all actions and 
parameters are encoded 

Architectural 
Elements 

 

Contribution 
to Flexibility 
Potential 

Internal realizations of services can be locally changed (algorithms, etc.) 

Internal data models are not exposed and can be changed locally 

New implementations of a service can be added without affecting consumers 

Internal technologies of services can be locally changed 

With payload semantics, the interface can be extended without affecting all 
service consumers 

Self-contained services encapsulate a certain amount of business-logic which 
can be changed locally in the service 

Table 7:  SOA architectural mechanism: Service concept 

  

«Template»
Serv ice

«Template»
Interface

«Template»
Implementation

has

has
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Mechanism Basic Service Communication 

Key Principles 
& Decisions 

Loose coupling: Service consumers and services are loosely coupled in the sense 
that a service consumer might not need to know concrete service providers 
implementing a service interface. Rather, concrete services can be identified via 
lookup in a service repository 

Loose coupling: Services can offer synchronous or asynchronous communica-
tion. With asynchronous service requests, the service consumer does not have to 
wait for the results. This only works when business logic is designed in a way 
that does not require immediate service results 

Standardization: For the communication among services, XML-based protocols 
exist in the Web Service technology environment. For example, WSDL is used to 
uniformly describe service interfaces and SOAP is used as a communication 
protocol for Web Services 

Services are available for service consumers in a distributed computing fashion 

Architectural 
Elements 

 

Contribution 
to Flexibility 
Potential 

New implementations and even service providers of a service can be added 
without affecting consumers 

Internal technologies of services can be locally changed 

External systems can be integrated via exposing their functionality as services 

Integration of services using different implementation languages 

Table 8:  SOA architectural mechanism: Basic service communication 

  

«Template»
Serv ice

«Template»
Serv ice Consumer

«Infrastructure»
Serv ice Repository

bind

find publish

<UDDI>
<WSDL>

<SOAP>
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Mechanism Service Typing 

Key Principles 
& Decisions 

Orchestration and composition: Services can be orchestrated or composed, 
which means that a service realizes its functionality by consuming other services. 
This composition can be done hierarchically. Services that orchestrate other 
services are called molecular services, in contrast to atomic services [ANT+11]. 

Introduction of different types of services: For separation of concerns, services 
can be typed in order to have clearer responsibilities for certain system aspects 
(data, functions) [HHV06]. Further aspects that might be encapsulated and sepa-
rated are processes and UIs which we discuss in the next mechanism. Data as-
pects can be further separated, in data access and data transformation services.  

Service types can be organized in layers, which can be used to impose rules on 
access among different service types (e.g. function layer and data layer) 

Architectural 
Elements 

 

Contribution 
to Flexibility 
Potential 

Orchestration of services allows hierarchically defining services at granularity 
levels that localize changes 

Separating function and data services allows changing of data persistency with-
out impact on the processing functionality 

Data transformation services can help to localize changes of data structures in 
external systems 

Data transformation services can help to integrate new external systems with 
different data representations that have an impact on function services 

Table 9: SOA architectural mechanism: Service typing 

  

Data
Layer

Function
Layer

«Template»
Data Access Serv ice

«Template»
Data Transformation 

Serv ice

«Template»
Function Serv ice
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Mechanism Separation of Services, Process Logic, UIs 

Key Principles 
& Decisions 

Loose coupling: The functionality encapsulated in function services and data 
services is clearly decoupled from process logic using these services [HHV06]. 
Process logic, functionality and data are expected to have different change 
cycles. 

Loose coupling: UI interaction components are another layer of separation. 
Application frontends can be used to control business processes, but they can 
also directly access functionality or data via services. 

Architectural 
Elements 

 

Contribution 
to Flexibility 
Potential 

New business processes can be introduced with local change effort 

Business processes can be changed independently of function and data services 
(e.g. order of activities, adding or deleting activities) 

Changing the granularity of user interaction with the system (smaller or larger 
activities, more or less data provided or consumed in activity) 

Usage of services in processes with different interaction schemas  

Table 10: SOA architectural mechanism: Separation of services, process logic, UIs 

  

UI
Layer

Process
Layer

«Template»
Business Process

«Template»
UI Interaction

«Template»
Function Serv ice

«Template»
Data Serv ice

Data
Layer

Function
Layer
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Mechanism Descriptive Process Logic 

Key Principles 
& Decisions 

Descriptors: Business processes are often not hard coded, but descriptively pro-
grammed in a business process or workflow language, e.g. in a language like 
BPEL or BPMN. A business process engine interprets the process description and 
executes it at runtime. 

Standardization: Business process languages are increasingly standardized, most-
ly with XML-based languages like BPEL. 

Architectural 
Elements 

 

Contribution 
to Flexibility 
Potential 

New business processes can be introduced with local change effort 

Business processes can be changed independently of function and data services 
(e.g. order of activities, adding or deleting activities) 

Table 11: SOA architectural mechanism: Descriptive process logic 

  

«Template»
Business Process

«Infrastructure»
Business Process 

Engine

execute



 Flexibility in SOA-Based Information Systems 

  145 

Mechanism Enterprise Service Bus 

Key Principles 
& Decisions 

Loose coupling: ESBs decouple service consumers from services in different 
aspects. First, ESBs can take over the responsibility of a service repository (see 
Table 8). Second, ESBs can realize full location transparency. Third, ESBs can 
execute complex data transformations and protocol transformations, so that 
service consumers do not have to care about harmonization. 

Orchestration and composition: ESBs can realize the communication about all 
types of service consumers and services. Service consumers can be other ser-
vices, application frontends, or business process engines, etc. 

Descriptors: ESBs often work with descriptors for the representation of data 
transformations and protocol transformations. 

Architectural 
Elements 

 

Contribution 
to Flexibility 
Potential 

New implementations and even service providers of a service can be added 
without affecting consumers 

Internal technologies of services can be locally changed 

External systems can be integrated via exposing their functionality as services 

Integration of services and service consumers using different implementation 
languages 

Integration of service providers or service consumers using different communica-
tion protocols 

Integration of service providers using different data management technologies 

Provide functionality of an existing system as services to be used in a larger 
landscape or by other business processes 

Integration with a new service provider that uses a different data model  

Extend the range of service consumers by new service consumers and delivery 
channels 

Table 12: SOA architectural mechanism: Enterprise Service Bus 

The described architectural mechanisms in SOA are widely orthogonal to 
each other and can thus be combined for the design of a system archi-
tecture. We sketched for the mechanisms what they can contribute to 
the flexibility potential of a software system (landscape). This flexibility 
potential widely corresponds to the flexibility requirements sketched in 
Section 6.1.1. An architect can use this description of the flexibility po-
tential in order to better align his architectural decisions with the flexibil-
ity requirements identified. However, as described in Sections 1.3 and 
4.3.1.3, flexibility is only achieved if an appropriate business logic map-
ping is made. We discuss related aspects of importance in the next sec-
tion.  

«Template»
Serv ice

«Template»
Serv ice Consumer

«Infrastructure»
ESB

«Template»
Data 

Transformation

«Template»
Protocol 

Transformation
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6.2.3 Key Architectural Considerations for Flexibility in SOA 

Despite the strong focus on Services in SOA, there are far more architec-
tural decisions that have to be made in order to construct adequate sys-
tems with flexibility. As elaborated for architecture in general (see Sec-
tion 4.3.1.3), the appropriate combination of architectural mechanisms 
and business logic mapping is the key to flexibility. Thus, an architect has 
to consider all the mechanisms described in the previous section and also 
how he can map the concrete business logic of the system under design. 

In line with the architectural mechanisms, we sketched important as-
pects for business logic mapping and on which types of elements they 
are typically mapped. Functions, data, processes, and UI together form 
the business logic of a software system and have to be adequately de-
composed to architectural elements. Data is an aspect of particular im-
portance as it has to be considered when dealing with all the other as-
pects. UIs represent data and interact with users on data. Processes 
manage how data is retrieved, used, or stored. Functions work on data 
and process it. Another important aspect of data related to BLM is data 
consistency which is realized with technical concepts like transactions. 

Flexibility requirements typically found (Section 6.1.1) are related to all 
these aspects of business logic. Thus, design for flexibility has to consider 
all of them, and in particular their interrelationships. Service design and 
in particular service granularity have to be brought in line with the other 
aspects.  

The contributions of this thesis support an architect in making these 
architectural decisions with respect to flexibility. First, guidance is given 
for the elicitation of precise flexibility requirements (Sections 5.2, 6.1) 
with a specialization on SOA. Then, architects can apply the enhanced 
architecture design process (Section 5.3) with guidelines and heuristics 
aiming at flexibility. In particular the steps Application of Flexibility 
Mechanisms, Business Logic Mapping, and Selection and Application of 
Technologies (see Figure 41) are enhanced with the SOA-specific know-
how, which is described in Sections 6.2 and 6.3. For the step Business 
Logic Mapping, available guidelines for service design [HHV06, Erl06, 
AGA+08] can be used for more detailed heuristics on service design. 

6.3 Technologies Supporting Flexibility in SOA 

SOA is a paradigm for the construction of software systems which offers 
many technologies to architects. These technologies typically realize ar-
chitectural mechanisms and can be used as infrastructure components 
(see Figure 15). In this section, we sketch an overview of SOA technolo-
gies and map them to the architectural mechanisms explained in the 

Business 
logic map-
ping in SOA 

Applying the 
contributions 
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previous section. By that, our overview also supports architects in analyz-
ing the flexibility potential of SOA technologies. 

Figure 49 depicts the mapping of SOA architecture mechanisms to avail-
able SOA technologies and protocols. Typically, different technology al-
ternatives are available to realize an architecture mechanism; often tech-
nologies realize only partial aspects of an architecture mechanism. Fur-
ther, technologies often contribute to several architecture mechanisms. 
We do not consider individual products or brands in our overview; rather 
we depict classes of technologies or de-facto standards. 

A noteworthy observation is that the architecture mechanisms Service 
Typing and Separation of Services, Processes, UIs are rarely covered by 
technologies. It is the responsibility of architects to come up with suita-
ble architectural solutions in these areas, as they are mainly concerned 
with business logic mapping aspects. 

 

Figure 49: SOA architecture mechanisms mapped to SOA technologies 
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7 Validation 

“Change alone is eternal, perpetual, immortal” 
Arthur Schopenhauer 

This section describes the validation activities and results of this thesis. 
Therefore, we start with a description of validation objectives and the 
derived hypotheses in Section 7.1. Then, we describe in Section 7.2 a 
controlled experiment we conducted in order to show which effects the 
explicit modeling of change impact views during architecture design has 
on the resulting flexibility of the architecture. Besides this core contribu-
tion of our validation, we describe in Section 7.3 observations of apply-
ing parts of our method in industrial contexts. 

7.1 Objectives and Hypotheses 

We formulate the main goal of validation for our contributions in the 
GQM-goal representation [BD88].  

Analyze the flexibility method enhancements for the purpose of evalua-
tion with a focus on effectiveness, efficiency, and applicability from the 
perspective of a software architect in the context of software architec-
ture design. 

Our methodical contributions cover several aspects, derived from the re-
search directions (R.D1-4) and research ideas (R.I1-4). Thus, also the vali-
dation has to cover the contributions in the respective areas. First, there 
is the conceptual model as the foundation for all methodical aspects, in-
cluding the characterization and measurement of flexibility. Second, 
there is the constructive guidance towards flexibility in the architecture 
definition process. Third, there is the analytical part measuring flexibility 
and giving instant feedback to the architect, facilitated by tool support. 
Forth, there is the contribution with respect to SOA, making it easier to 
exploit the flexibility potential of SOA architectural mechanisms. For 
these areas of contributions, we derive hypotheses which are summa-
rized in Table 13. These hypotheses are always in line with the goals and 
intentions of the contributions of this thesis. Our hypotheses cover the 
aspects Validity, Effectiveness, Efficiency, and Applicability.  
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Table 13:  Hypotheses for the areas of contributions 

The hypotheses with respect to effectiveness and efficiency are compara-
tively formulated. We compare our contributions to typical architecture 
design methods, which do not include the contributions of this thesis. 
For reasons of clarity, we do not repeat in each hypothesis “… com-
pared to …”. 

In Table 13, a full spectrum of hypotheses is listed, from purely internal 
character (H1, H2) to purely external character (H14, H15). For the valida-
tion of these hypotheses, we conducted a controlled experiment and 
applied parts of the contributions in projects with industrial customers. 
We came up with both quantitative and qualitative results. For an in-
depth validation contribution, we focus on one of the most fundamental 
hypotheses of our methodical contribution: the effectiveness of explicitly 
modeling change impacts during architecture design (H8, highlighted in 
Table 13). We conducted a controlled experiment to evaluate this hy-
pothesis and came up with quantitative data supporting H8 with statisti-
cal significance (see Section 7.2). Additionally, we collected qualitative 
results indicating support for our hypotheses in projects with industrial 
customers (H3, H4, H5, and H6, see Section 7.3) and the experiment (H11, 
see Section 7.2.4).  

R.I1: Conceptual Model R.I2: Design R.I3: Evaluate R.I4: SOA

H1: VValidity : The conceptual
model is valid in describing the 
relationships between 
requirements, architecture, and 
implementation with respect to 
flexibility

H4: EEffectiveness : Supported 
by the enhanced architecture 
method, architects define more 
flexible architectures

H8: EEffectiveness : By explicitly 
describing how a flexibility 
solution for a particular 
scenario works, architects 
produce more flexible 
architectures

H13: EEffectiveness: For the
paradigm SOA, a description of 
architectural mechanisms and 
their flexibility potential lead 
to better exploitation of the 
flexibility potential (more 
flexible architectures)

H2: VValidity : The provided 
measure for flexibility 
corresponds with intuition 
about flexibility

H5: EEffectiveness : Supported 
by the guidelines for flexibility 
requirements, a better 
coverage of flexibility 
requirements can be achieved

H9: EEffectiveness : By getting 
continuous feedback on their 
architecture solutions, 
architects produce more 
flexible architectures

H3: EEffectiveness : The 
conceptual model helps 
stakeholders in software 
development to better 
understand flexibility as a 
quality attribute

H6: EEfficiency : The additional
cost for designing architectures 
according to the method is 
minimal compared to the cost 
of changes, which might be 
avoided

H10: EEfficiency : The cost for 
explicitly describing 
architectural solutions for 
flexibility is minimal compared 
to the cost of changes, which 
might be avoided

H7: AApplicability : Practitioners
can design architectural 
solutions for flexibility in the 
way proposed

H11: AApplicability : 
Practitioners can describe
architectural solutions for 
flexibility in the way proposed

H12: EEffectiveness: Architects 
can judge flexibility of 
architectural solutions better 
when they explicitly model 
change impact

H14: EEffectiveness : The introduced approach for flexibility extends existing architecture definition 
methods in a way that systems built with this method are more flexible and change requests can be, 
on average, conducted with less effort

H15: EEffectiveness : The introduced approach for flexibility, together with the explicit descriptions of flexibility mechanisms in SOA, 
leads to SOA-based systems that are more flexible and change requests can be, on average, conducted with less effort

Qualitative ResultsQuantitative Results Source of Results

Project 
Experiences

Controlled
Experiment
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The scope of our hypotheses ends with H14 and H15, where the effort of 
change requests, as expressed in the definition of flexibility, is consid-
ered. H14 and H15 contain basically two aspects: From an architect’s per-
spective, the effectiveness in the sense that a flexible architecture is 
achieved. From a developer’s perspective, the efficiency in the sense that 
incoming changes can be conducted with little effort. In our motivation 
and problem description (see Chapter 1), the scope was even broader: 
We discussed business opportunities resulting from the possibility to 
conduct software changes quickly, meaning to have adequate flexibility. 
To achieve this, many other prerequisites are necessary so that we do 
not include such effects in our hypotheses for the method. 

7.2 Controlled Experiment  

For the validation of Hypothesis H8 “By explicitly describing how a flexi-
bility solution for a particular scenario works, architects produce more 
flexible architectures”, we conducted a controlled experiment.  

In the following, we describe context (Section 7.2.1), setup (Section 
7.2.2), and analysis results (Section 7.2.3) of the experiment. Then, we 
discuss the results (Section 7.2.4) and threats to validity (Section 7.2.5).  

7.2.1 Context of the Experiment 

The experiment took place in a practical course for master students at 
the Technical University of Kaiserslautern (TU KL). The practical course 
was supervised in cooperation with Fraunhofer IESE in winter semester 
2011/2012.  

The practical course was a so-called Capstone Project with a real cus-
tomer from industry, John Deere. That is, John Deere cooperates in the 
course and provides requirements for a smaller product and the students 
apply software engineering activities (requirements engineering, user-
interface design, architecting, implementation, quality assurance, and 
project management) in order to realize the requested product. The stu-
dents are assigned to specific roles like project manager, architect, or de-
veloper. In total, 17 master students participated in the course. Fraunho-
fer IESE researchers supported the students with tutorials on the meth-
ods to be applied and continuous feedback on the results produced. 

The system under development is a tool supporting the agile develop-
ment approach at John Deere. It is a dashboard aggregating develop-
ment information like the current status of agile development projects 
(user stories, burn-down charts, etc.) on a screen for distributed devel-
opment teams. 

Practical 
course: 
TU KL, IESE 

Capstone: 
John Deere 

Development 
support 
system 
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This system was developed with an iterative development approach split-
ting the overall development into three iterations. Each iteration was 
supposed to produce a running system demonstrating a certain amount 
of functionality.  

All the participants of the practical course were included in the experi-
ment and it bases on the system under development. The main reason 
for this is that the students are already familiar with the system domain 
and have a precise idea about the architecture of the system. Due to the 
incremental approach, an architecture document of sufficient quality 
was available from iteration 1. Thus, our experiment could start without 
detailed explanation about the system and so it could focus on the ex-
perimental tasks.  

In the following, we explain in detail how the experiment was set up. 

7.2.2 Setup of the Experiment  

In order to explain the setup of the experiment, we will first start with 
the formulation of scientific hypotheses and with how they are opera-
tionalized. Then, more information on the participants, the experimental 
design, procedures, tasks, and materials is provided. 

7.2.2.1 Scientific Hypotheses  

The hypothesis to be tested in the experiment is: “By explicitly describing 
how a flexibility solution for a particular scenario works, architects pro-
duce more flexible architectures”. The comparison is against architecture 
design following typical design approaches without modeling change 
impact views. 

The major idea behind the experiment is to compare two groups, A and 
B, designing architectures for flexibility, one with the technique explicitly 
describing flexibility solutions (group B, the treatment group) (see Sec-
tion 5.4.1) and one without (group A, the control group). The detailed 
description of the experimental design can be found in Section 7.2.2.2.  
In the experiment, all participants acted in the role of an architect, inde-
pendent of the role in the overall course. 

As a basis for the comparison of solutions, we need a clear metric for 
flexibility which can be calculated for the experiment results produced by 
the participants. We use the flexibility metric defined in Chapter 4 which 
defines flexibility on a [0, 1] range with an interval scale.  

Derived from our hypothesis stated above, we define the scientific null 
hypothesis and the corresponding alternative hypothesis. We formulate 

Iterative 
development 

Experiment: 
Build on 
project  
architecture 
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our hypotheses in a directed way. μA and μB denote the arithmetic mean 
of the flexibility achieved in group A and group B. 

H8, 0: μA ≥ μB 

H8, 1: μA < μB 

Our hypotheses are tested at a confidence level of α = 0.05. 

Besides expecting a statistically significant difference, we expect a differ-
ence of more than 0.1 on the flexibility scale [0, 1], which should be cal-
culated by means of the effect size d (Cohen’s d). 

We set up our experiment with a concrete architecture definition task, in 
which the participants are asked to change the input architecture in a 
way that it offers best flexibility for three provided flexibility scenarios. 
The details on the tasks are described in Section 7.2.2.5.  

In the following section, the experimental design will be described in de-
tail. 

7.2.2.2 Experimental Design 

According to the idea described in the previous section, we designed an 
experiment with two groups. Group A conducts architectural design 
without explicitly modeling the change impact of flexibility solutions, 
group B parallelizes the activities of designing architectural solutions and 
the explicit modeling of their change impact. The idea of explicitly mod-
eling change impact in the architecture model was not known to the 
participants before. Working with change impact views is expected to 
lead to strong learn effects. Thus, we decided not to follow a cross-
design for the experiment. 

Figure 50 graphically depicts the experiment design. Input for both 
groups was an architecture (in version vi) and a flexibility scenario. Then 
the task was to change the architecture in a way that it was flexible with 
respect to the flexibility scenario. As an additional input, the architectural 
modeling notation was explained. Group B also got the task to model 
change impact and got guidance by a description of the notation.  

In order to be able to compare the results of both groups A and B, group 
A was asked, after finishing architectural design, to estimate the change 
impact and to also document it. For this, group A got as input the de-
scription of the change impact notation after finishing the architecture 
design. Thus, we had the same result artifacts from both groups, but 
they were created according to different procedures: an updated version 
of the architecture (vi+1) and a diagram depicting the change impact (see 

Groups  
A & B 

Differences 
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Figure 50). The results were created independently for three flexibility 
scenarios. 

The participants were randomly assigned to groups A (8 participants) 
and B (9 participants) and none of the participants was known to the 
experiment supervisor before. The participants did not know about the 
differences among the groups. 

7.2.2.3 Participants 

The participants of the experiment were 17 master students of computer 
science (10), software engineering (6), and telecommunications (1). The 
students were largely in their third semester of the master studies and 
aged between 23 to 30 (�=25.3; σ=1.9). They participated in a practical 
course of the Technical University of Kaiserslautern (TU KL) which was 
mainly supervised by Fraunhofer IESE. All participated on a voluntary ba-
sis and received no compensation. 

14 out of 17 students had participated in architecture lectures at univer-
sity before. In the practical course, they acted as requirements engineers 
(4), UI designers (3), architects (4), developers (2), testers (2), and project 
managers (2). 

In a prebriefing questionnaire (see Appendix B), we asked the students 

Group  
assignment 

 

Figure 50:  Experimental design 
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about their background and previous experience in relevant areas: Expe-
rience in development projects, reading and using UML, and architect-
ing. The answers of participants in group A and B were quite similar. 
Thus, a similar influence of the background on the experiment results 
can be expected. 

7.2.2.4 Experimental Procedures 

Nearly all participants conducted the experiment in one afternoon, in a 
allocated time slot of 90 minutes. Three participants conducted the ex-
periment on the next morning. Thus, the overall experiment was con-
ducted with all participants in two subsequent days. All participants of 
one experiment run started at the same time. In the beginning, the set-
ting was described by the supervisor; the detailed procedure was printed 
in the distributed material.  

The experiment started with a preparation phase which mainly consisted 
of reading and understanding the material. In particular, definitions on 
the background of flexibility and what it means to design for flexibility 
were given. Additionally, the role of the experiment in the practical 
course and the role of the participant in the experiment were clarified. 
Then, a briefing questionnaire was filled in by the participants, asking for 
information like their age or background knowledge. 

In the execution phase, the participants worked on the tasks given (see 
Section 7.2.2.5) and produced an updated architecture and a diagram 
showing the change impact for three flexibility scenarios. The execution 
phase is also depicted in Figure 50. For group A, the task to model 
change impact and the respective notation guidelines were distributed 
after the architecture model had already been finished. 

In the finalization phase, the participants filled in a debriefing question-
naire, asking for example for the perceived difficulty of tasks and the 
perception of change impact views (see Appendix B).  

The maximum execution time for the overall experiment was limited to 
90 minutes. Participants of group A on average needed 71 minutes, 
participants of group B needed 65 minutes. 

7.2.2.5 Experimental Task 

In the experiment, the participants acted in the role of a software archi-
tect and had to conduct architecture design tasks. The main task they 
were asked to perform was to extend the existing architecture of the 
system (as resulting from the first iteration of the course) in a way so 
that it is flexible with respect to three given flexibility requirements. 
These flexibility requirements were specified as flexibility scenarios (as 
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described in Chapter 4). For reasons of simplicity, the participants had to 
design three independent solutions for the three flexibility scenarios.  

The architecture design process was not prescribed to the participants. 
They got an introduction to architecture design in a tutorial at the be-
ginning of the course; additionally most of them had attended lectures 
on software architecture before.  

For the architectural results to be produced, a simple notation with ex-
amples was given. The participants had to produce two artifact types 
(according to the experiment design shown in Figure 50). The first was a 
description of the resulting system following a structural component no-
tation. The second was a description of change impact according to the 
notation introduced in this thesis. Although the flexibility metric and the 
change impact notation are originally defined for development time arti-
facts, we used the component notation that the students also used in 
their documents. This is a simplification of architecture modeling, which 
means a unification of runtime and development time elements. This 
was mainly done to allow the students to stick to their notations previ-
ously used. Even in industrial practice, this is a simplification that is often 
fully valid when runtime components are one-to-one implemented as 
development time elements.  

The original task description is included in Appendix B. The material be-
ing processed in the task is described in the next section.  

7.2.2.6 Materials 

All necessary information was given in the form of experiment prepara-
tion and execution material. The architecture to be worked on was de-
veloped by the students in the course before and thus familiar to all the 
students. Besides this, they were also allowed to look into the architec-
ture documentation of the system under development during the exper-
iment if needed. 

The following material was given to the participants in the experiment 
for conducting the tasks (see also Appendix B for the original material).  

� Architecture Documentation Input (Material 1): The input architecture 
which had to be changed for making it more flexible. The input archi-
tecture was completely based on the architecture defined by the stu-
dents in the course. It was reduced to one view, following the nota-
tion also described in Material 3. 

� Architecture Flexibility Requirements (Material 2): Three flexibility sce-
narios describing the flexibility requirements, for which the architec-
ture had to be made flexible. The flexibility requirements are not giv-
en by the customer, but they are invented by the experiment design-
er based on his knowledge of similar systems. 

Architecture 
process 

Architecture 
results  
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� Architecture Modeling Notation & Example (Material 3): The explana-
tion of the simple modeling notation needed for the experiment. Ma-
terial 3 focused on the component diagrams. The notation was inten-
tionally kept simple and close to the notation the students had used. 

� Architecture Change Impact Notation & Example (Material 4): The 
explanation of the simple modeling notation for change impact, as 
introduced in this thesis.  

� Original architecture document: The participants were allowed to 
have a look into the architecture document of the system under de-
velopment. This allowed us to keep the input documents brief and 
clear as the students were able to check all questions in the original 
document. 

Besides this key task materials, there was the explanation of the experi-
ment procedures (as described in Section 7.2.2.4), the questionnaires, 
and the task description.  

After describing the setup of the experiment, the next section presents 
the analysis and results of the experiment. 

7.2.3 Analysis and Results 

We analyzed the experiment results in detail and describe in this section 
the procedure for data analysis, the basic data achieved, and statistical 
testing for our scientific hypotheses (see Section 7.2.2.1). Finally, we 
provide information on the results of the debriefing questionnaire. 

7.2.3.1 Data Analysis Procedure 

The main independent variable in the experiment is the assignment to 
group A or group B, which means to design architecture either accord-
ing to a standard design method or else with the additional usage of 

Variables 

 

Figure 51:  Measuring flexibility in the experimental results 
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change impact views. The key dependent variable in the experiment is 
the resulting flexibility of the participants’ architectural solutions for the 
three scenarios given as input for design. 

Thus, the most important step in the data analysis is to evaluate the 
participants’ results and to derive for each addressed scenario a flexibility 
result in the [0, 1] scale as defined in Section 4. Initially, there was the 
plan to fully calculate the flexibility metric according to the participants 
output. Thus, the notation was given in a detailed way, covering also the 
relative size of touched elements and the impact on them. However, it 
turned out that the participants quite often did not fill in all data accord-
ing to the notation. Thus, we had to slightly adapt the evaluation of the 
architecture results to a more expert-based procedure. In order to keep 
the expert estimation manageable, we introduced a five-point Likert 
scale [1, 5], and mapped it to the [0, 1] flexibility scale in the way depict-
ed in Figure 51: 

The Likert scale was introduced as it provides a manageable number of 
discrete choices among which an expert can decide. The [1, 5] scale was 
selected in order to ensure consistency with all the other scales in the 
evaluation.  

As we expected that not all participants would provide adequate archi-
tectural results, we also introduced a filter mechanism. Each architectural 
result (per participant per scenario) was first rated for meaningfulness of 
the architectural solution. This is intentionally completely independent of 
the adequacy for flexibility scenarios. Rather it judges whether the archi-
tecture as such is understandable and shows that the participant under-
stood the task to be solved. We rated the architectural solution in the 
component diagram and the change impact view independently of each 
other on a five-point Likert scale (1=completely inappropriate / 
5=completely appropriate). Only if for both checks a value of at least 3 
was achieved, this solution was taken into account for estimating the 
flexibility. 

The method owner carried out the evaluation of flexibility by determin-
ing metric values. In order to minimize the risk of a single evaluation, we 
conducted two checks: First, we conducted the evaluation again after 
four weeks; second, we conducted an evaluation where we did not 
check the resulting flexibility, but the relative improvement of flexibility 
with respect to the input architecture. Both checks did not reveal signifi-
cant divergences. 

In the following sections we will first describe the basic results and then 
describe the statistical test for our scientific hypotheses. 

Measuring 

Filtering 
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7.2.3.2 Basic Results 

For both the groups A and B, the ratio of valid (not filtered) solutions 
was quite similar, but in both cases below 50%. For each group we got 
11 valid solutions. The number of valid solutions for each scenario is de-
picted in Table 14. We can observe a nearly equal distribution of valid re-
sults, which indicates that there was not a single overly complicated sce-
nario. 

 Scenario 1 Scenario 2 Scenario 3 

Group A (n=11) 2 5 4 

Group B (n=11) 4 4 3 

Table 14:  Number of valid results per scenario and group 

The main reasons for invalid solutions were architecture descriptions 
(component views) which were not appropriate in any way for the flexi-
bility scenario, or which were seriously incomplete. Although the partici-
pants did not always exactly follow the notation for the change impact 
view (missing data), the change impact views in general were much 
more appropriate. Nearly no result was filtered out due to inappropriate 
change impact views. This indicates that the participants got used to it 
quickly. 

There is a correlation that participants who produced valid results did 
this consistently for all scenarios. This is not true for all cases but there is 
a strong tendency. 

As the number of valid results per scenario group is rather small, we 
merged all results for group A and group B respectively. The individual 
results for flexibility values are listed for group A and group B in Table 
15. 

 Flexibility Values 

Group A (n=11) 0.50| 0.75| 0.50| 0.50| 0.50| 0.50| 0.50| 0.75| 0.50| 0.25| 0.50 

Group B (n=11) 0.75| 1.00| 1.00| 1.00| 0.75| 0.75| 0.50| 0.50| 0.75| 1.00| 0.75 

Table 15:  Flexibility values achieved (valid ones only) per group 

7.2.3.3 Testing Hypothesis H8 

The statistical testing of hypothesis H8 was done using the Mann-
Whitney-U test (one-tailed). It is appropriate for small data sets like in 
our experiment and it does not require a normal distribution of the data 

Mann-
Whitney- 
U-Test 
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(we do not have a normal distribution). As introduced in Section 7.2.2.1, 
we formulated a directed null hypothesis. Our confidence level for reject-
ing the null hypothesis is 95% (α = 0.05). 

H8:  “By explicitly describing how a flexibility solution for a par-
ticular scenario works, architects produce more flexible ar-
chitectures”  

Test input: Individual flexibility result values for architecture design 
tasks, organized in group A and group B (see Table 15) 

H8, 1:  μA < μB 

H8, 0:  μA ≥ μB 

Test type:  Mann-Whitney U test (one-tailed) 

Test result:  p = 0.0021| U = 104 | z = 2.86 

Thus, the null hypothesis is rejected at a confidence level of 95% and 
our experiment provides evidence suggesting that H8 is valid. Additional-
ly, we calculate the effect size according to Cohen’s d [Coh92].  

Effect size: d = 1.67 

According to the definition of Cohen’s d, values of d > 0.8 indicate a 
strong effect size. That is, we can observe a strong effect among the 
groups of our experiment. 

7.2.3.4 Debriefing Questionnaire 

In the debriefing questionnaire, we asked questions in two categories. 
First, there were questions about the tasks: 

� How well did you understand the tasks? 

� How difficult did you perceive the tasks? 

� How do you estimate the quality of your results (high flexibility)? 

Second, there were questions about modeling for flexibility. They target-
ed at observing cases in which participants recognized missing flexibility 
or changed their design for better flexibility.  

� During architecture design, I changed my solutions when I recognized 
that the flexibility is insufficient (group A and group B) 

� After modeling the change impact, I would have liked to change my 
architecture solutions as I recognized better possibilities (group A) / 

Accept H8,1 

Strong effect 
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After reasoning about / modeling the change impact, I changed my 
architecture solutions as I recognized better possibilities (group B) 

� Modeling the change impact during architecture design would have 
helped me to come up with a better solution (group A) / Modeling 
the change impact during architecture design helped me to come up 
with a better solution (group B) 

All questions were to be answered on a five-point Likert scale (1=Not 
Good / Easy / Low Quality / Fully Disagree .. 5=Good / Difficult / High 
Quality / Fully Agree). The original questionnaires can be found in Ap-
pendix B. 

 How well did you 
understand the 

tasks? 
 

(5 = good) 

How difficult did 
you perceive the 

tasks? 
 

(5 = difficult) 

How do you esti-
mate the quality of 
your results (high 

flexibility)? 
(5 = high) 

Group A (n=8) �=3.50; σ=1.20 �=2.75; σ=1.04 �=3.00; σ=0,76 

Group B (n=9) �=3.56; σ=0.73 �=2.89; σ=0.93 �=3.33; σ=0.50 

Table 16:  Debriefing questionnaire: Results on task-related questions 

Table 16 depicts the average results of the task-related questions per 
group. We can observe the following aspects: 

� There is nearly no difference in answers between groups A and B; 
that is they did not have a different perception of difficulty of tasks 
resulting from the experiment design. Additionally, participants of 
groups A and B come to a similar estimation of their quality of re-
sults, with a slightly higher value for group B. 

� Participants indicate that they understood the tasks quite well 
(�=3.53; σ=0.94). 

� Participants indicate that they did not perceive the tasks to be too dif-
ficult (�=2.82; σ=0.95). 

� Participants estimate that they produced quite good results (�=3.18; 
σ =0.64). 
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 During architecture 
design, I changed 

my solutions when I 
recognized that the 
flexibility is insuffi-

cient 
 
 
 

(5 = Fully Agree) 

After reasoning 
about / modeling 

the change impact, 
I (would have liked 

to) changed my 
architecture solu-
tions as I recog-

nized better possi-
bilities 

(5 = Fully Agree) 

Modeling the 
change impact 

during architecture 
design (would have) 
helped me to come 

up with a better 
solution 

 
 

(5 = Fully Agree) 

Group A (n=8) �=3.38; σ=1.30 �=2.75; σ=1.16 �=4.00; σ=0.76 

Group B (n=9) �=2.56; σ=1.24 �=2.11; σ=1.27 �=3.11; σ=1.27 

Table 17:  Debriefing questionnaire: Results on flexibility-related questions 

Table 17 depicts the average results of the flexibility-related questions 
per group. We can observe the following aspects: 

� For all questions there is a visible difference between group A and 
group B. 

� In particular the last two questions are interesting. Group A indicated 
that they would have liked to change the architecture after modeling 
change impact more strongly than group B indicated that they did 
change after modeling change impact. Additionally, group A strongly 
indicated that modeling the change impact during architecture de-
sign would have helped them whereas there was weaker indication 
that group B perceived it as helpful. 

7.2.4 Observations and Discussion 

In this section, we describe observations on the experiment’s conduction 
and results and on feedback from the participants. Further we discuss 
the potential practical benefits of the results shown. 

Flexibility as a quality attribute is not easy to understand. It always comes 
with indirections and in particular in the experiment the participants had 
to change the architecture in order to be well prepared for further 
changes. This led to the situation that some participants did not separate 
these levels and already described the final system, which was not help-
ful for the evaluation. One more observation about the participants is 
that they sometimes do not have enough knowledge about architecting 
and software development in general. They produced architectural dia-
grams, which made clear that they did not know what they abstracted 
from.  

Observations 
about  
participants 
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Nearly all participants were able to use the change impact notation alt-
hough it was new to them and they produced quite good results. Addi-
tionally, they mentioned in the debriefing questionnaire that the tasks 
were not too difficult, including the drawing of the change impact 
views. This supports our hypothesis H11 (claiming the applicability that 
practitioners can describe flexibility solutions with change impact views). 
Even students with limited experience in architecting were able to use 
the change impact view notation. This makes us confident that it is also 
easy to use for experienced practitioners in architecting. 

In general, there was not much feedback on the experiment in the 
comment section or also verbally. Interesting feedback was that some 
participants were influenced by knowing the architecture under design 
very well. As they knew all the rationales for design decisions, they tried 
to preserve the qualities of the system as demanded before. This, how-
ever, was not explicitly required in the task and might have led them to 
come up with less flexibility than would have been possible. Another 
feedback was that some students saw particular architectural aspects not 
as architectural but rather on the design level. However, as it was neces-
sary to achieve a credible solution, such aspects had to be considered as 
architecturally important. 

The experiment covered only one contribution of this thesis which is 
expected to improve flexibility, namely the explicit modeling of change 
impact. The other main contributions are explicit support in designing for 
flexibility and tool-supported feedback on the currently achieved flexibil-
ity. It can be expected that even better results can be achieved if the dif-
ferent contributions of the thesis are combined. 

Finally, we describe a simple model based on our experiment results 
which, with the help of some assumptions, calculates potential benefits 
of improved flexibility in practice. We assume a similar difference of flex-
ibility between when using explicit change impact modeling (μB) and 
when not using it (μA) as observed in the experiment. 

 

In Section 7.2.2.1, we stated that, beyond the statistical significance, a 
difference of more than 0.1 on the flexibility scale [0, 1] is expected. 
With the observed difference of 0.27, our expectation is even exceeded. 

Assumptions: 

� System with 1.000.000 LOC 

� Flexibility of 0 defined for changing more than 10% of LOC 

Conservatively, we assume that in such a large system with other com-
peting quality requirements we achieve an improvement of 0.1 on the 
flexibility scale, which means we have to touch 1% less lines of code for 

Feedback 
from  
participants 

Potential of 
the method 

Model for 
calculating 
benefits 
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a specific change, which might mean to change 10.000 lines of code less 
in case of change when using the explicit change impact modeling. 

7.2.5 Threats to Validity 

In this section, we describe threats to validity of the experimental results 
and derived conclusions as well as which actions we applied to keep the 
threats small. We organize the threats in the following categories: Con-
struct Validity, Internal Validity, External Validity, Conclusion Validity (see 
[WRH+00]). 

7.2.5.1 Construct Validity 

Construct validity is the degree to which the settings of the experiment 
in terms of the dependent and independent variables reflect the goal of 
the experiment. The following potential threats were identified: 

Construction of the experiment: 

� The input architecture to be changed in the experiment tasks was not 
deliberately designed to be best suited to test architecture design 
methods. Rather, it was taken as the students had designed it in their 
practical course. The current status after iteration 1 was taken in or-
der to minimize description input and the time for understanding the 
architecture. 

� The participants had to change an existing architecture. This might 
have reduced the perceived degree of freedom for architecture de-
sign as participants had to explicitly change existing design decisions 
instead of making them on the green field. In particular, the partici-
pants knew the design decisions and the rationales behind quite well 
and might not have changed certain aspects due to the knowledge 
of resulting tradeoffs or violations of other important aspects. 

� The input architecture might also have some impact in the sense that 
it is not so far from being flexible for one or two of the scenarios. 
That is, the participants might have recognized this and seen this lev-
el of flexibility as sufficient, not improving the flexibility any more as it 
would have been possible. 

� The experiment focused the tasks fully on the improvement of one 
quality attribute (namely flexibility), without considering the effect on 
other quality attributes. This might lead to different interpretations of 
the importance of tradeoffs for the participants. 

� The selection of the flexibility scenarios was explicitly constructed to 
be well achievable with the input architecture. The flexibility scenarios 
are not designed for coverage of certain types of scenarios as intro-
duced in this thesis. However, all the scenarios are representative of 
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practice and adapted from scenarios found in other projects with in-
dustry. 

Construction of the measurement: 

� The mathematical derivation of flexibility results from the partici-
pants’ results requires complete adherence to the notation and esti-
mation of size numbers by the participants. As nearly all participants 
did not deliver the complete data, the evaluation was approximated 
with an expert estimation. 

� The expert estimation was done via one indirection: Judging the flex-
ibility on a 5-point Likert scale, which was aligned with our flexibility 
metric. However, this Likert scale is a discrete scale which is rather 
coarse-grained. For a single estimation, it might lead to a deviation, 
but an expert cannot make a more precise estimation based on the 
degree of precision of architecture results provided by the students. 

� The measurement of flexibility requires interpretation of the ideas of 
the participants of how to achieve flexibility. However, the evaluating 
person is an experienced architect with knowledge about all typical 
flexibility concepts as used by the students and also knowledge about 
the consequences on the implementation. 

� The measurement of flexibility required filtering out inappropriate ar-
chitectural solutions, which could not be used as a basis for flexibility 
measuring (independent of the achieved flexibility, the solutions were 
generally not appropriate). This required an additional step of esti-
mating appropriateness, which is another potential source of wrong 
expert estimations. 

� The flexibility results for the three scenarios were mixed for evalua-
tion, in a pool for group A and group B respectively. This leads to a 
comparison that does not exactly compare the same scenarios for 
group A and group B directly. The individual result sets were too 
small for statistical testing.  

� The flexibility measurement and the estimations were done by the 
method owner who had also designed the experiment. To mitigate 
the risk of wrong estimations, the actions as described in Section 
7.2.3.1 were taken. 

7.2.5.2 Internal Validity 

Internal validity is the degree to which independent variables have an 
impact on dependent variables. The following threats to internal validity 
have been identified:  

� Assignment of participants to the experiment groups can lead to se-
lection effects. As the number of participants is quite low, such an ef-
fect can have larger effects than in big studies. The assignment of our 
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participants to groups A and B was done randomly. With the help of 
the briefing questionnaire we checked with their experience and did 
not find a significant difference. 

� We did not conduct a cross-design experiment in order to mitigate 
influence of skills: The learning effect after having conducted the 
tasks with explicit change impact modeling is expected so strong that 
such an experiment design does not appear feasible. 

� A further selection effect could be based on the different degree of 
knowledge of the architecture to be changed. The students acting as 
architects in the course could be expected to know it better. Howev-
er, we checked this and found that on the one hand three architects 
were assigned to group B and only one to group A. Nevertheless, al-
so two of the architects in group B did not produce appropriate ar-
chitectural solutions and so their solutions could not be evaluated 
completely. 

� The participants did not all spend the same time on conducting the 
tasks. No participant exceeded the allotted time, but some did it in 
roughly half the time. 

7.2.5.3 External Validity 

External validity is the degree to which the results of the experiment can 
be transferred to other people and to changed environmental settings. 
The generalizability of the results is limited due to the following facts: 

� The system, in the context of which the experiment was conducted, 
is still quite small and does not reach the size of typical information 
systems in industry. 

� The participants in the experiment are all students at the end of their 
studies of computer science / software engineering. That is, they are 
no experienced developers and in particular no software architects 
with a history of practical experience. 

� The tasks to optimize the architecture of a software system only with 
respect to a single quality attribute, in our case flexibility, is not repre-
sentative. In practice, there are always competing requirements and 
the architect has to find appropriate solutions and tradeoffs. Howev-
er, the task to optimize flexibility and the input scenarios are highly 
realistic and the scenarios are slightly adapted ones from other indus-
trial projects. 

7.2.5.4 Conclusion Validity 

Conclusion validity is the degree to which the concluded results of the 
experiment reflect the measured effects and are not corrupted by inap-
propriate or insufficient statistical methods.  
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� The resulting flexibility values for groups A and B are not normally 
distributed. Thus, we selected the Mann-Whitney-U test instead of a 
t-test, which is a bit less conservative. 

� The sample size of the flexibility values in both groups A and B is 
quite small. However, the sample sizes are similar and our statistical 
test shows a significant difference. 

7.3 Project Experiences 

In Section 7.2, we described the isolated evaluation of the effect of 
change impact views during architecture design in an experiment. Addi-
tionally, we applied parts of our method in several projects with industri-
al customers of Fraunhofer IESE. Selected aspects of the contributions of 
this thesis were applied in order to address the respective project goals 
of the customer. While in our experiment the validation focus is on the 
measurement of flexibility (R.I3), we mainly applied the conceptual mod-
el (R.I1) and the constructive guidance (R.I2) in the projects with industri-
al customers. 

As described in Figure 2, we used earlier projects for the identification 
and confirmation of the problems addressed in this thesis. Later on, we 
applied first versions of the contributions in projects and refined the con-
tributions based on the experiences we made. In this section, we report 
on three recent projects in which our contributions were partially ap-
plied. Due to the confidentiality and non-disclosure agreements with the 
customers, we report anonymously on these projects and call them pro-
ject A, project B, and project C. The projects are described following a 
uniform structure: First, we describe the context and the goals of the re-
spective project. Then, we list the contributions of this thesis which were 
applied in the project. Finally, we report on the results and lessons 
learned in the project with respect to the contributions of this thesis. 

Although we applied only parts of the approach in the projects, we per-
ceive that the approach strongly supports more systematic working with 
the quality attribute flexibility. In addition, the stakeholders on customer 
side, both management stakeholders and architects, confirmed the use-
fulness of conceptual and method parts of our approach. This in particu-
lar supports our hypothesis H3 which claims that the conceptual model 
supports stakeholders in understanding the quality attribute flexibility. 

Additionally, we experienced the separation of business-logic-agnostic 
and business-logic-specific architecture in a positive way. It turned out to 
be a strong enabler for understanding flexibility and for designing for it. 
This supports our hypothesis H4 which claims the effectiveness of our de-
sign support resulting in better flexibility.  

Summary of 
experiences, 
support for 
hypotheses 
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Further, we experienced collecting flexibility requirements, supported by 
our characterization of flexibility, in a positive way. In particular the ex-
plicit guidance towards typical changes and the questions to characterize 
potential changes in detail helped. This supports our hypothesis H5 which 
claims that our guidelines improve the elicitation of flexibility require-
ments. 

Finally, we also learned about the effort to be spent on flexibility-specific 
design activities. There we found that typically architects could make 
well-founded decisions without spending much additional effort. In par-
ticular compared to expensive later changes, the investments into a flex-
ible architecture should pay off, which supports our hypothesis H6 claim-
ing efficiency in the sense that the additional investments into design for 
flexibility are low compared to the avoided costs for changing an inflexi-
ble system. 
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7.3.1 Project A 

Project context and goals 

� SOA-based information system, existing system 

� Goal: need for integration with completely different backend system 

� Many new flexibility scenarios to be addressed, but also other quality 
attributes 

� Flexibility scenarios mainly with focus on integration with external 
systems and the change of business processes in a data-intensive ap-
plication 

� Goal: architecture redesign to match new requirements and subse-
quent implementation 

� Setting: Coaching of customer organization architects with respect to 
architecture design methods; customer organization architects ap-
plied the methods 

Contributions of this thesis applied 

� Guidelines for the elicitation of flexibility requirements 

� Separation of BLA and BLS aspects 

� Guidelines and heuristics for architecture design addressing flexibility 
scenarios, in particular the separation of Infrastructure, Template, 
Business elements and their usage in design 

Results and lessons learned 

� Detailed specification and characterization of flexibility requirements 

� Elicitation of flexibility requirements was guided by the experience of 
historical change requests to the system 

� Classification of flexibility requirements according to:  

o What has to change?  
o What is impacted by the change from an architecture perspec-

tive? 

o Which concrete business logic aspects are related to the 
change? 

� Guidelines considerably helped architects to come up with flexibility 
requirements and ask the right questions to stakeholders 

� Heuristics and guidelines for design with separated Infrastructure, 
Template, Business elements were reported to be very helpful by the 
architects  

� Applying the approach does not lead to much additional effort 
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7.3.2 Project B 

Project context and goals 

� SOA-based information system, system’s implementation nearly fin-
ished 

� Goal: Evaluate whether the built-in configuration mechanisms are 
appropriate in terms of expressiveness and flexibility or whether the 
usage of a commercial rule engine would be better 

� Fraunhofer IESE as independent reviewer for customer, project con-
ducted by method owner of flexibility engineering approach 

Contributions of this thesis applied 

� Guidelines for the elicitation of flexibility requirements 

� Conceptual model showing the relationship of flexibility to require-
ments, architecture, and implementation 

� Separation of BLA and BLS aspects 

� Change impact views for the visualization of expected change im-
pacts: used for comparison of change impacts between individual 
configuration framework and a rule engine solution 

Results and lessons learned 

� Flexibility conceptual model and in particular BLA / BLS are applicable 
to business rule systems where it had not been applied before (defin-
ing business rules for higher flexibility also means to get the mapping 
of business logic to rules right) 

� BLS-level is necessary to be able to really check whether flexibility is 
given  

� Change impact views (slightly simplified) perceived very positively also 
by business stakeholders who understood the differences between 
the two compared solution approaches 

� Results about expected flexibility of both solution approaches: very 
similar, the difference is more in the external support of business rule 
management systems (usability, testing of rules) 
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7.3.3 Project C 

Project context and goals 

� Information system; existing system, which can be only delivered as a 
monolithic block containing all functionality although it might not be 
completely needed 

� Goal: Modularize the system in order to provide more independent 
services which can be used in external systems and business process-
es. The business rationale is to increase the market (smaller custom-
ers, partnering) and to be able to compose new products 

� Project conducted as consulting project of Fraunhofer IESE, mainly 
aiming at the identification of modularization opportunities and at 
the definition of a new target architecture with more flexibility 

Contributions of this thesis applied 

� Guidelines for the elicitation of flexibility requirements 

� Conceptual model showing the relationship of flexibility to require-
ments, architecture, and implementation 

� Separation of BLA and BLS aspects 

� Enhanced architecture design process for flexibility, with a focus on 
Existing Artifacts Analysis 

Results and lessons learned 

� Guidelines for elicitation of flexibility requirements applicable and 
helpful: 9 key flexibility scenarios elicited in 6 hours with key stake-
holders of the system 

� New, project-specific classification for flexibility requirements intro-
duced: Who conducts the changes? (company itself, partnering com-
panies, outsourcing companies) 

� BLS-level is critical for formulating adequate flexibility scenarios 

� Integrated analysis of functionality, processes, and data have to be 
considered for flexibility improvement 
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8 Summary and Outlook 

“It is not our duty to predict the future,  
but to be prepared for it.” 

Pericles 

This section concludes the thesis. First, we summarize the results and 
contributions of the thesis in Section 8.1. Then, we discuss limitations, 
and sketch future activities beyond the thesis in Section 8.2. Finally, we 
close with some concluding remarks in Section 8.3. 

8.1 Results and Contributions 

This thesis originates in the discovery of flexibility problems in SOA-based 
information systems. Although SOA is widely known for its flexibility 
potential and many practitioners even expect inherent flexibility, SOA-
based systems in practice are often not flexible enough. We set the goal 
to support architects in building flexible SOA-systems by systematically 
exploiting the flexibility potential of SOA architecture mechanisms.  

We discovered that a key reason for missing flexibility is the lack of 
alignment of SOA architecture mechanisms with business logic mapping 
to these architecture mechanisms. Thus, we define the term True Flexibil-
ity, which denotes that architecture mechanisms and business logic 
mapping are aligned in a way that the resulting flexibility potential 
matches the flexibility requirements. 

Analyzing related work around flexibility and architecting shows that 
even for information systems in general (without a focus on SOA) there 
is a lack of constructive support for designing flexible architectures. 
While there are several methods for analyzing architectures with respect 
to flexibility or maintainability, the constructive support is restricted to 
the provision of architectural mechanisms that can help to achieve flexi-
bility.  

Consequently, we split our contributions in a general part, which sup-
ports architects of any kind of software system, and a SOA-specific part. 
In order to focus our research activities, we first defined research direc-
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tions which were considered to contribute to the achievement of our 
goals. With the help of analyzing related work, we came up with con-
crete research challenges in the areas of all the research directions. In the 
following, we summarize the key contributions of this thesis. 

Conceptual Model 

The underlying foundation of the methodical contributions is a detailed 
characterization of flexibility as a quality attribute of software systems. 
We depict what flexibility means in terms of building in flexibility during 
system design and exploiting it in later life-cycle phases of the systems 
when changes have to be made. We characterize and define flexibility in 
a way spanning software engineering disciplines, from flexibility re-
quirements over the role of architecture to the role of implementation. 
At architectural level, we elaborate how flexibility can be achieved and 
which information in architecture meta-models is flexibility-relevant. We 
define a metric for flexibility which measures the expected change im-
pact with respect to flexibility scenarios and which can be aggregated to 
the overall architecture level and multiple flexibility scenarios. These 
characterizations of flexibility are summarized in a conceptual model, 
which is represented in four views. It can serve architects and other 
stakeholders in software development as a map of guidance for the un-
derstanding of flexibility as a quality attribute. 

Methodical Contribution 

A key goal of this thesis is to support architects in constructively achiev-
ing flexibility. Our approach is to enhance existing architecture design 
methods. We provide a conceptual plugin into architecture design 
methods which builds on flexibility-specifics and uses these to give archi-
tects more guidance. It consists of mainly two parts: 1) guidelines and 
heuristics for architecture decision making and 2) continuous measuring 
of flexibility during architecture design with direct feedback for archi-
tects. 

For the constructive part, we outline a design process for flexibility, 
extending activities of existing architecture design methods. For the indi-
vidual activities, we give flexibility-specific guidelines and heuristics, in 
particular with respect to the intertwining of selecting architecture 
mechanisms and defining business logic mappings. 

A further contribution for architects in designing flexible architectures is 
that we introduce a possibility to continuously measure flexibility and 
give near-real-time feedback to architects. While the evaluation of 
achieved flexibility is typically a manual task which, if at all, is done after 
architecture design we automate the measurement of flexibility. The key 

Characteriza-
tion of flexi-
bility 

Architecture 
decisions for 
flexibility 
 

Continuous 
flexibility 
measure-
ment 



 Summary and Outlook 

  173 

idea behind this is that architects can immediately see the impact of their 
architecture decisions on flexibility, allowing quick revisions of subopti-
mal design decisions. The typical way of documenting software architec-
ture and requirements does not allow for this measurement. Thus, we 
introduce an extension to the architecture model, the so called change 
impact view. This view is modeled in a lightweight way by the software 
architect when he designs the architecture. This does not add much 
overhead as architects should make the considerations they make persis-
tent in the model anyway. Then, flexibility can be automatically meas-
ured according to our metric and the results can be provided to the ar-
chitect. 

Tool Support for automated measurement  

The computation and representation of flexibility metrics is inte-
grated as a proof-of-concept in a widely-used architecture modeling 
tool, Enterprise Architect. With this contribution, we allow architects to 
model their architectures with optimal support of the flexibility-specific 
enhancements. The underlying architecture meta-model is realized in the 
tool and the architect can very easily model change impact views. Graph-
ical representations give in-detail and overview information on the flexi-
bility metrics currently achieved.  

SOA-specific Support for Flexibility 

In addition to these generally applicable contributions, we also make a 
contribution specific to flexibility in SOA-based systems. We collect 
typical flexibility requirements in SOA-based software systems as 
guidance for the elicitation of flexibility requirements. Additionally, we 
analyze and package architectural mechanisms used in SOA with re-
spect to their support for flexibility. We elaborate these architectural 
mechanisms in a uniform way with their typical architectural principles 
and design decisions. Further, we sketch which architectural elements 
are typically found, how they are related to each other, and how this 
contributes to flexibility. A specific focus is on making the relationship of 
architecture mechanisms and business logic mapping explicit. Finally, we 
give an overview of how SOA-technologies realize the architecture 
mechanisms and thus can support architects in achieving flexibility. The 
contribution is an explicit description of architectural aspects around flex-
ibility in SOA which guides architects during architecture design tasks. 
This contribution leads us back to our initial starting point of the thesis, 
namely supporting architects in building flexible SOA-based software sys-
tems. 
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Validation 

We validated parts of our contributions in a controlled experiment and 
had first experiences with the method in projects with customers from 
industry.  

In a controlled experiment in the context of a practical course at TU 
Kaiserslautern, we analyzed how the explicit modeling of change 
impact views during architecture design impacts the flexibility of the re-
sulting system. We found that the modeling of change impact views 
alone, even without tool-supported automated measurement, leads to a 
strong improvement of flexibility compared to a control group. The 
measured effect was statistically significant and had a strong effect size. 
This experiment gives evidence that architects, supported by our me-
thodical enhancement, can design architectures that are more flexible; 
thus less effort for changes has to be spent. 

8.2 Limitations and Future Work 

This section sketches limitations of the approach and validation contrib-
uted in this thesis and proposes research directions for future work. We 
align this section with the areas of contributions of this thesis and elabo-
rate additional research directions in terms of practical applicability. 

Enhanced conceptual model and flexibility metrics 

Our conceptual model and flexibility metrics concentrate on the effort 
for changing the implementation only. The flexibility metrics could be 
extended towards covering other software engineering activities neces-
sary in line with software changes, like build and deployment.  

In the flexibility metric, only the size of the impacted implementation is 
considered, but not other properties like the readability of the source 
code. Such properties, e.g. expressed by metrics like code complexity, 
could be combined with the flexibility metric in order to give a holistic 
picture on the expected change effort. 

Our flexibility metric covers only the effort for conducting anticipated 
changes, but it does not take into account how much the building in of 
this flexibility really costs. By extending the metric and finding a good 
way of measuring this cost, the return on investment into flexibility can 
be formalized and calculated. 
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Constructively guiding all stakeholders towards flexibility 

So far, the approach of this thesis mainly supports architects and to 
some extent requirements engineers. However, the guidance for re-
quirements engineers is not integrated with requirements engineering 
approaches but rather describes relevant questions and areas of re-
quirements elicitation. More integration of the overall approach with 
requirements engineering is desirable. This would also involve a concept 
for traceability among requirements that are realized and requirements 
that concern flexibility and only prepare future changes. This could help 
to identify change impacts and serve as a first automated approximation 
of change impact views, assumed that full traceability of requirements to 
realizing architectural elements exists.  

Our approach covers only the construction of flexibility, but not how to 
conduct concrete change requests. More support for architects and in 
particular developers is desirable for making best use of the flexibility 
potential built into a software system. Only then, flexibility is supported 
over the full lifecycle of a software system. 

Tool support 

Currently, modeling and maintaining change impact views is a complete-
ly manual task for architects. By the means of formalized heuristics, tool-
supported creation of change impact views could be possible. With the 
help of name-based heuristics, requirements traceability, or knowledge 
about relationships between template and business elements in the ar-
chitecture model, likely change impacts could be identified and suggest-
ed to the architect. 

The constructive process of making architectural decisions towards a 
flexible architecture is not tool-supported at the moment. An interesting 
research direction would be to find out how business logic mapping to 
architectural mechanisms could be tool-supported with adequate heuris-
tics. 

In practice, architects are often concerned with existing systems and 
have to change them in order to have more flexibility in the future. Then, 
far more concrete information on existing implementation artifacts is 
available and can be used to make the calculations of flexibility more 
precise. In particular, the implementation size could be automatically 
extracted and integrated into the architecture model. 
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SOA and other development paradigms 

In this thesis, we analyzed the architectural mechanisms of SOA with 
respect to their contribution to flexibility. Looking at architectural mech-
anisms like patterns in general reveals that there are too many to analyze 
all of them with respect to flexibility. However, there are other interest-
ing paradigms like business rules or event-driven architecture which also 
promise strong support for flexibility. They should be analyzed in more 
depth to give architects more guidance about their flexibility potential. 

Validation 

In this thesis, we outline several hypotheses which could not be evaluat-
ed in the context of the thesis. Thus, more empirical work around the 
approach is desirable.  

Although our flexibility metric is comprehensively constructed in a way 
that directly covers the size of impacted implementation, there should be 
more evidence that a better flexibility value measured on the architecture 
also leads to lower implementation effort (H2). Thus, an experiment 
should be conducted, which also covers the realization of change re-
quests, for which the architecture was made flexible. This experiment 
could be set up in a way that different architectural solutions are provid-
ed. Then, first a measurement of flexibility according to our metric could 
be conducted and second an implementation of the changes could be 
done, observing the effort spent and the real change impact.  

Our approach builds on the usage of flexibility scenarios as a basis for 
measuring flexibility since an architecture cannot be flexible with respect 
to all changes. A very interesting and challenging research question is 
how big, on average, the gap is between explicit design for concrete 
flexibility scenarios on the one hand and following the principles of good 
design on the other hand (see Section 4.1.4).  

So far, we have not included the tool-support in evaluation activities. 
However, in particular the hypotheses H8 and H9 are closely related to 
each other. Thus, it should be evaluated which effects on flexibility occur 
when the tool support is used. Particularly in large architecture models 
we expect that tool-support helps to control the complexity and thus 
might get stronger influence. 

Practical applicability and situations in projects 

In order to fully apply our approach in practice, organizations need a 
certain maturity in architecting. At least architecture models in a model-
ing tool are necessary in order to apply automated measurement of 
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flexibility. The guidelines for construction of flexibility can also be applied 
in rather informal settings. For sustainable transfer of the approach into 
industrial organizations, an introduction concept should be elaborated. 

Not all software projects are in a situation that building in flexibility is 
desired by all organizations involved. Often, there is the situation that a 
company develops a software system but is not involved in the mainte-
nance. Then, flexibility is mainly a cost driver but does not provide im-
mediate benefit for the developing company. As flexibility is hard to 
measure by the customer, it is then often neglected. There are more sit-
uations like this and thus it would be worthwhile to characterize the dif-
ferent constellations of organizations and their stakes in flexibility during 
the lifecycle of a software system. This characterization could serve as a 
guideline for companies involved to become aware of their responsibili-
ties and opportunities with respect to flexibility. 

8.3 Concluding Remarks 

The research conducted in this thesis follows the principles of applied re-
search. In projects with industrial customers we identified the problem 
that SOA-based information systems are not flexible enough and not as 
flexible as expected. Then, we analyzed the reasons for the missing flexi-
bility and reviewed the state-of-the-art in the identified research direc-
tions. We separated our contributions into SOA-specific and general ar-
chitecture contributions and came up with the key idea to support archi-
tects with both, constructive guidelines and tool-supported near-real-
time analytics of flexibility. We elaborated the different solution compo-
nents and implemented a tool prototype. Finally, we evaluated parts of 
our approach in an experiment and in industrial projects. 

With our contributions, we showed how to holistically cover a quality at-
tribute, in our case flexibility. We provide a conceptual model, guidance 
for the elicitation of the concrete flexibility requirements, constructive 
and analytical guidance during architecture design, and tool-support. In 
future research, other quality attributes should be covered in a similar 
way. Then, integration on the same architecture model becomes possible 
and brings us closer to the vision of architecture-centric engineering, 
with all individual and tradeoff analyses being possible at the architec-
ture level. 

We will further apply our approach in projects with industrial customers 
and collect more experience, which will help to focus our future im-
provements of the approach. We are confident that we can improve the 
flexibility of large information systems and help companies to realize crit-
ical changes faster, resulting in lower costs for software maintenance 
and in higher competitiveness. 
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Appendix A List of Abbreviations 

ACES Architecture-Centric Engineering Solutions 

ALMA Architecture-Level Modifiability Analysis 

BAM Business Activity Monitoring 

BPEL Business Process Execution Language 

BLA Business-Logic-Agnostic 

BLM Business Logic Mapping 

BLS Business-Logic-Specific 

BPEL Business Process Execution Language 

BPM Business Process Management 

BPMN Business Process Modeling Notation 

BRM Business Rule Management 

CORBA Common Object Request Broker Architecture 

EA Enterprise Architect 

EAM Enterprise Architecture Management 

EDA Event-Driven Architecture 

ESB Enterprise Service Bus 

GQM Goal-Question-Metric 

IT Information Technology 

IESE Institute for Experimental Software Engineering 

LOC Lines of Code 

OASIS Organization for the Advancement of  
Structured Information Standards 

OMG Object Management Group 
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OSGi Open Services Gateway initiative 

PLE Product Line Engineering 

REST Representational State Transfer 

SCA Service Component Architecture 

SEI Software Engineering Institute 

SOA Service-Oriented Architecture 

SOAP Simple Object Access Protocol 

SOE Service-Oriented Engineering 

UDDI Universal Description, Discovery and Integration 

UI User Interface 

UML Unified Modeling Language 

WCF Windows Communication Foundation 

WSDL Web Service Description Language 

XPDL XML Process Definition Language 

XML eXtensible Markup Language 
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Appendix B Experiment Material 

In the following, we provide the experiment material that was given to 
the experiment participants in the experiment described in Section 7. 

Please note that the material provided here contains the entirety of ma-
terial sheets. Depending on the groups A and B, the respective material 
was handed out according to the experiment design described in Section 
7.2.2.2.  

The differences between material for groups A and B are the following:  

� Different Task Descriptions (pages 4(A) and 4(B)) 

� Different Debriefing Questionnaires (pages 5(A) and 5(B)) 

� Material 4 handed out at different points in time (group A got it after 
conducting the described tasks, group B received it directly, accord-
ing to the experimental design) 
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Appendix C Experiment Raw Data 

In the following, we provide the raw data of the experiment. This is 
mainly the answers to questionnaires and evaluation of flexibility meas-
urement results. 

The data analysis procedure is described in detail in Section 7.2.3.1. The 
results are grouped by the experiment groups A and B; each participant 
is identified by a number in their group. 

On the following pages, we always contrast groups A and B on one 
page. The results are organized in the following groups, each on one 
page: 

� Briefing questionnaire and time needed 

� Debriefing questionnaire 

� Flexibility measurement results 
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A1 10 70 24 CS 2 Y Tester 3 3 2 

A2 7 82 25 SE 2 Y UI 4 1 2 

A3 20 75 23 CS 3 Y UI 2 4 1 

A4 13 65 27 CS 3 Y RE 3 3 2 

A5 5 78 26 TC 3 Y Project Manager 1 1 1 

A6 5 60 30 SE 3 Y Tester 4 3 3 

A7 12 78 23 CS 2 Y RE 3 3 2 

A8 10 62 24 SE 3 Y Architect 4 3 3 

Avg. 10,25 71,25 25,25   2,63     3,00 2,63 2,00 

Table 18: Experiment raw data: Group A – Briefing Questionnaire 
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B2 3 29 25 SE 3 Y RE 5 5 1 

B3 14 78 26 CS 5 N RE 3 3 2 

B4 4 83 24 CS 3 Y Architect 3 4 3 

B5 4 69 25 CS 4 Y Architect 1 2 1 

B6 6 63 23 CS 3 Y Developer 4 3 2 

B7 5 71 27 CS 3 N Project Manager 4 1 1 

B8 20 70 27 CS 3 Y Architect 4 4 4 

B9 4 41 27 SE 3 Y Developer 4 4 4 

Avg. 8,89 64,56 25,33   3,33     3,33 3,00 2,11 

Table 19: Experiment raw data: Group B – Briefing Questionnaire 
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A6 4 2 3 5 1 4 

A7 4 1 4 2 3 3 

A8 3 3 3 4 3 5 

Avg. 3,50 2,75 3,00 3,38 2,75 4,00 

Table 20: Experiment raw data: Group A – Debriefing Questionnaire 
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B7 3 3 3 2 2 3 

B8 4 3 3 4 3 4 

B9 3 3 3 2 2 4 

Avg. 3,56 2,89 3,33 2,56 2,11 3,11 

Table 21: Experiment raw data: Group B – Debriefing Questionnaire 
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Avg. 1,75 3,88 3,50 2,50 3,00 3,00 2,38 3,25 3,00 

Table 22: Experiment raw data: Group A – Flexibility Results 
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Table 23: Experiment raw data: Group B – Flexibility Results 
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