
�������

���������	��

	
��
�
������������������

�������������������������� ����!��

"�
�#"���
���
��������
�$!�����

���������������� ������������������
���
��������������� �����������������������

��������������� �!!����"���
������������������
���

��������	�
�	���

&�
�
�'�

������

�	��

����
�

����$�

��(
����	

�
�

����

�

�����������	
�����	��
��������������
�	
���	
�
�������	

��������������� �����������������������

��������������� ���������������������� �
����������������!""� ��#���
������������������������

Contact:
Fraunhofer-Institut für Experimentelles Software Engineering (IESE)
Fraunhofer-Platz 1
67663 Kaiserslautern
Telefon +49 631 6800 - 0
Fax +49 631 6800 - 1199
E-Mail info@iese.fraunhofer.de
www.iese.fraunhofer.de

Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliografic data is available in the Internet at <http://dnb.d-nb.de>.
ISBN: 978-3-8396-0477-9

D 386

�������	
�����
������������������������

Printing and Bindery:
Mediendienstleistungen des
Fraunhofer-Informationszentrum Raum und Bau IRB, Stuttgart

Printed on acid-free and chlorine-free bleached paper.

© by FRAUNHOFER VERLAG, 2012
Fraunhofer Information-Centre for Regional Planning and Building Construction IRB
P.O. Box 80 04 69, D-70504 Stuttgart
Nobelstrasse 12, D-70569 Stuttgart
Phone +49 (0) 711 970-2500
Fax +49 (0) 711 970-2508
E-Mail verlag@fraunhofer.de
URL http://verlag.fraunhofer.de

All rights reserved; no part of this publication may be translated, reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical, photo copying, recording or
otherwise, without the written permission of the publisher.
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. The quotation of those designations in whatever way does not imply the conclusion that
the use of those designations is legal without the consent of the owner
of the trademark.

Enhancing Architecture Design Methods
for Improved Flexibility

in Long-Living Information Systems

Beim Fachbereich Informatik
der Technischen Universität Kaiserslautern
zur Verleihung des akademischen Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

genehmigte Dissertation
von

Dipl.-Inf. Matthias Naab

Fraunhofer Institut für Experimentelles Software Engineering (IESE)
Technische Universität Kaiserslautern

Berichterstatter: Prof. Dr. Dr. h.c. Dieter Rombach
 Prof. Dr. Ralf Reussner

Dekan: Prof. Dr. Arnd Poetzsch-Heffter

Tag der Wissenschaftlichen Aussprache: 02.10.2012

D 386

 iii

Acknowledgement

I would like to express my gratitude to many people who supported me
in the last years while doing my PhD.

I thank my supervisors Prof. Dieter Rombach and Prof. Ralf Reussner for
their advice and support. Working at Fraunhofer IESE gave me many op-
portunities and helped me to learn much about software engineering. I
would like to thank Dirk Muthig for his support in shaping my PhD topic
in the early days of the thesis. Further, I would like to thank Jörg Dörr,
Marcus Trapp, and Thorsten Keuler for their feedback on the thesis.

At Fraunhofer IESE, I worked with many outstanding colleagues and we
had great discussions, on my PhD topic, on software architecture as well
as on other topics. I would like to thank all colleagues of the PLA, IS, and
ISD departments. In particular, I would like to express my thanks to Se-
bastian Adam, Michalis Anastasopoulos, Ralf Carbon, Jörg Dörr, Thomas
Forster, Thorsten Keuler, Jens Knodel, Dirk Muthig, Marcus Trapp, and
the whole software architecture team. When getting started with my
thesis, we had fruitful internal PhD meetings with the colleagues of the
PLA department, in which I particularly benefited from the feedback of
Michalis Anastasopoulos, Thorsten Keuler, and Jens Knodel.

I would like to thank all people involved in the validation of my ap-
proach. Anne Groß helped me to organize the experiment, in which 17
students from a practical course at the Technical University of Kaiserslau-
tern voluntarily participated. Further, I would like to thank IESE custom-
ers who gave me the opportunity to apply and improve my approach in
their contexts. Further, I want to thank Christian Webel for the oppor-
tunity to align this PhD with ongoing research projects, in particular the
ADiWa project.

With Karlsruhe Institute for Technology and FZI, we established a fruitful,
regular discussion on software architecture and maintainability. I would
like to express my thanks specifically to Prof. Ralf Reussner and Johannes
Stammel for the intense discussions on PhD-related topics.

Last, but far from least, I would like to thank my family and friends, who
had to spend many evenings and weekends without me. I would like to
thank my wife Esther and my parents Gertrud and Hans-Peter for sup-
porting me in any possible way. I thank my sister Judith for proof-
reading this thesis. Finally, I thank my daughter Anna-Lena who strongly
motivated me to bring this thesis to an end before she was born. In the
end she was born just when I was writing the very final pages of my the-
sis.

 v

Abstract

Flexibility is an indispensable quality attribute of long-living information
systems. Today’s enterprises heavily rely on information systems for run-
ning their businesses. In domains like banking, insurance, or aviation, in-
formation systems are even a core enabler of competitiveness. In a dy-
namic business world, requirements evolve and software has to follow.
How much implementation effort a change requires is strongly impacted
by a system’s architecture. Despite the availability of paradigms like SOA,
BPM, or EDA, which come with flexibility mechanisms and are widely ex-
pected to bring inherent flexibility, today’s systems are often not as flexi-
ble as expected. A major reason for missing flexibility is the lack of sys-
tematic, constructive support for flexibility in architecture definition
methods.

An in-depth characterization of the quality attribute flexibility is our
foundation for systematically defining flexible architectures for software
systems. Particular focus is on the role of architecture and on how it can
contribute to a system’s flexibility. We introduce a metric for flexibility,
measuring on flexibility scenarios and architecture models. We condense
key facets of flexibility in a conceptual model.

The key methodical contribution of this thesis is the constructive support
for defining flexible architectures. We build on existing architecture defi-
nition methods and enhance them. The detailed characterization of flex-
ibility is crucial for providing constructive guidelines and heuristics for ar-
chitects. Beyond the localization of change impact, the alignment of flex-
ibility mechanisms and business logic is of particular importance for flex-
ibility. Consequently, we support it with design heuristics. Furthermore,
we support architects with automated, near-real-time feedback on the
achieved level of flexibility, allowing quick corrections of architectural
decisions. This is facilitated by a new architectural view, the change im-
pact view, which is modeled by the architect and supports reasoning
about flexibility. For paradigms like SOA, we show how they can be
leveraged in architecture design to consequently exploit their flexibility
potential. This methodical contribution is a conceptual plugin for archi-
tecture definition methods which adds specific support for flexibility.

With an implementation of the automated flexibility measurement as an
AddIn of Enterprise Architect, we demonstrate the feasibility of this me-
thodical part. Within a controlled experiment we confirmed the hypothe-
sis that architects come up with significantly more flexible architecture
designs when they explicitly model change impact views. In projects with
industrial customers we experienced the effectiveness, efficiency, and
applicability of the contributions and collected qualitative results.

 Table of Contents

 vii

Table of Contents

Acknowledgement .. iii
Abstract ... v
List of Figures .. xi
List of Tables ..xiii

1 Introduction ..1
1.1 Business Drives IT, and Business Drives (too) Fast1
1.2 Research Method ...5
1.3 Problem Statement ..6
1.4 Solution Ideas and Hypotheses ...15
1.5 Scope, Context, and Assumptions ..21
1.6 Contributions Overview ..24
1.7 Thesis Outline ..25

2 Foundations of Architecture ...27
2.1 Architecting as an Engineering Activity27

2.1.1 Definitions and Essence ...27
2.1.2 Architecting in Practice ..28
2.1.3 The ACES Approach ..30

2.2 Service-Oriented Architecture ...36
2.2.1 Definitions and Essence ...36
2.2.2 SOA in Practice ..38
2.2.3 A Conceptual Model for Service-Oriented Engineering ...41
2.2.4 SOA as Architectural Style and Reference Architecture ...44
2.2.5 New Paradigms in Service-Orientation48

3 Flexibility: State of the Art ..49
3.1 Flexibility as a Quality Attribute ..50

3.1.1 Flexibility and Related Quality Attributes50
3.1.2 Flexibility in Information Systems Research52
3.1.3 Flexibility in other Disciplines ..53
3.1.4 Variability in Product Line Engineering55

3.2 Construction for Flexibility ..55
3.2.1 Elicitation of Flexibility Requirements55
3.2.2 Architecture Definition Approaches56
3.2.3 Architecture Mechanisms for Flexibility57
3.2.4 Design Approaches for SOA ...58

3.3 Measurement and Evaluation of Flexibility60
3.3.1 General Overview on Architecture Evaluation Methods ..60
3.3.2 Evolution Complexity ...61
3.3.3 Analyzing Modifiability at Architecture Level61
3.3.4 Modifiability and Real Options Theory62

Table of Contents

viii

3.3.5 Palladio and Maintainability Prediction 63
3.3.6 Enterprise Systems Modifiability Analysis 63
3.3.7 Further Related Research ... 65

3.4 Flexibility in SOA-Based Information Systems 65
3.5 Summary and Conclusion .. 66

4 Flexibility as a Quality Attribute of Software 69
4.1 Characterization of Flexibility ... 70

4.1.1 Principle Characteristics ... 70
4.1.2 Flexibility in the Software System Lifecycle 72
4.1.3 Flexibility and Software Engineering Artifacts 73
4.1.4 Flexibility in a Spectrum of Uncertainty 74

4.2 Flexibility Requirements ... 75
4.2.1 Capturing Flexibility Requirements with Scenarios 76
4.2.2 Characterizing and Classifying Flexibility Scenarios 77
4.2.3 Flexibility and Competing Requirements 81

4.3 The Role of Architecture for Flexibility 82
4.3.1 Which Architecture Makes a System Flexible? 83
4.3.2 How Does an Architect Make a System Flexible? 88
4.3.3 Architecture Meta-Model and Metrics for Flexibility 88
4.3.4 Cost Considerations of Flexibility 97

4.4 Conceptual Model of Flexibility ... 97

5 Engineering Flexible Software Systems 104
5.1 Methodical Overview .. 104
5.2 Eliciting Flexibility Scenarios ... 107
5.3 Architecture Design for Flexibility .. 109

5.3.1 Design Goals ... 109
5.3.2 Design Process Overview ... 110
5.3.3 Design Process Activities ... 113

5.4 Measuring Flexibility with Tool Support 121
5.4.1 Continuously Measuring Flexibility in Architecting 121
5.4.2 Features and Exemplary Application of the Tool 123
5.4.3 Realization of the Flexibility-Tool 128

5.5 Discussion ... 130

6 Flexibility in SOA-Based Information Systems 134
6.1 Challenges around Flexibility in SOA 135

6.1.1 Typical Flexibility Requirements 136
6.1.2 Characteristics Challenging Flexibility 137

6.2 Architectural Solutions for Flexibility in SOA 138
6.2.1 Architectural Principles in SOA Supporting Flexibility ... 139
6.2.2 Architectural Mechanisms in SOA Supporting Flexibility

 ... 139
6.2.3 Key Architectural Considerations for Flexibility in SOA 146

6.3 Technologies Supporting Flexibility in SOA 146

 Table of Contents

 ix

7 Validation ... 148
7.1 Objectives and Hypotheses .. 148
7.2 Controlled Experiment .. 150

7.2.1 Context of the Experiment .. 150
7.2.2 Setup of the Experiment ... 151
7.2.3 Analysis and Results .. 156
7.2.4 Observations and Discussion 161
7.2.5 Threats to Validity ... 163

7.3 Project Experiences .. 166
7.3.1 Project A ... 168
7.3.2 Project B ... 169
7.3.3 Project C ... 170

8 Summary and Outlook .. 171
8.1 Results and Contributions ... 171
8.2 Limitations and Future Work ... 174
8.3 Concluding Remarks ... 177

References ... 179

Appendix A List of Abbreviations .. 191

Appendix B Experiment Material ... 193

Appendix C Experiment Raw Data... 206

 List of Figures

 xi

List of Figures

Figure 1: Relationships between business and IT 2
Figure 2: Research method of the thesis 5
Figure 3: Cost in IT and business caused by missing flexibility 7
Figure 4: Set representation of requirements around flexibility 11
Figure 5: a) CheckIn process b) Simplified architecture of airline

system 13
Figure 6: Illustration of true flexibility 15
Figure 7: Derivation of industry goals 16
Figure 8: Research ideas in the context of architecture design 20
Figure 9: Relationship between research directions, challenges,

and ideas 20
Figure 10: Scope and context of the thesis 21
Figure 11: Contributions of the thesis in categories 25
Figure 12: Architecture engagement purposes 31
Figure 13: Development phases according to RUP [Kru03] 33
Figure 14: Competence packaging in ACES 34
Figure 15: Architecture core and domain competence 35
Figure 16: Key areas of service-orientation 43
Figure 17: Example view from conceptual model for service-

orientation 44
Figure 18: a) SOA triangle [Erl06] b) SOA element types [KBS04] 45
Figure 19: a) Solution stack view b) Middleware view [AZE+07a,

AZE+07b] 46
Figure 20: Facets of SOA and their relationships 47
Figure 21: State-of-the-art in the context of research directions 49
Figure 22: Relationships among quality attributes 51
Figure 23: Modifiability meta-model [LFJ+09] 64
Figure 24: Overview on research ideas of the thesis 68
Figure 25: Distribution of change effort to change requirements 71
Figure 26: System lifecycle phases and activities related to

flexibility 72
Figure 27: Flexibility in a spectrum of uncertainty 74
Figure 28: Characterization of architecture scenarios 77
Figure 29: Distinguishing the levels business-logic-agnostic and

business-logic specific 87
Figure 30: Architecture meta-model for modules 89
Figure 31: Principle of measuring flexibility 92
Figure 32: Flexibility metric function definition 93
Figure 33: Meta-model for change impact 96
Figure 34: Views of the conceptual model for flexibility 98
Figure 35: Conceptual model: flexibility core view 99
Figure 36: Conceptual model: architecture construction view 100

List of Figures

xii

Figure 37: Conceptual model: architecture implementation view 101
Figure 38: Conceptual model: flexibility measurement view 102
Figure 39: Architecting as activity between requirements

engineering and development 105
Figure 40: Contributions to the architecting activities 106
Figure 41: Architecting design process overview 112
Figure 42: Architecting design process overview – key

integrations 120
Figure 43: Key contributions to flexibility measurement 122
Figure 44: a) Modeling structural views in EA b) Modeling change

impact in EA 126
Figure 45: Flexibility evaluation results 127
Figure 46: a) Flexibility tool configuration b) Matrix showing

impacts-relationships 128
Figure 47: Architecture diagram for flexibility AddIn 129
Figure 48: SOA-specific contributions around flexibility 135
Figure 49: SOA architecture mechanisms mapped to SOA

technologies 147
Figure 50: Experimental design 153
Figure 51: Measuring flexibility in the experimental results 156

 List of Tables

 xiii

List of Tables

Table 1: SOA Check 2010: “Which strategic goals does your
company aim at with SOA?” [MER10] 4

Table 2: Scenario characteristics and questions 78
Table 3: Architecture principles supporting flexibility 84
Table 4: Architecture mechanisms supporting flexibility 85
Table 5: Requirements for flexibility metric 91
Table 6: Architecture example flexibility metrics - element sizes 125
Table 7: SOA architectural mechanism: Service concept 140
Table 8: SOA architectural mechanism: Basic service

communication 141
Table 9: SOA architectural mechanism: Service typing 142
Table 10: SOA architectural mechanism: Separation of services,

process logic, UIs 143
Table 11: SOA architectural mechanism: Descriptive process logic 144
Table 12: SOA architectural mechanism: Enterprise Service Bus 145
Table 13: Hypotheses for the areas of contributions 149
Table 14: Number of valid results per scenario and group 158
Table 15: Flexibility values achieved (valid ones only) per group 158
Table 16: Debriefing questionnaire: Results on task-related

questions 160
Table 17: Debriefing questionnaire: Results on flexibility-related

questions 161
Table 18: Experiment raw data: Group A – Briefing

Questionnaire 207
Table 19: Experiment raw data: Group B – Briefing Questionnaire 207
Table 20: Experiment raw data: Group A – Debriefing

Questionnaire 208
Table 21: Experiment raw data: Group B – Debriefing

Questionnaire 208
Table 22: Experiment raw data: Group A – Flexibility Results 209
Table 23: Experiment raw data: Group B – Flexibility Results 209

 Introduction

 1

1 Introduction

“It is change, continuing change, inevitable change
that is the dominant factor in society today.

No sensible decision can be made any longer without
taking into account not only the world as it is,

but the world as it will be.”
Isaac Asimov

1.1 Business Drives IT, and Business Drives (too) Fast

Today, nearly all enterprise organizations heavily rely on IT-systems1 to
support their businesses in various ways. Information systems handle the
increasing amount of data, provide automation of recurring and compu-
tation-intensive tasks, support various types of business processes involv-
ing single persons or even multiple organizations, and guide people
through their IT-supported tasks.

IT has become an indispensable and costly asset of organizations. The
result of this is that IT has conquered a prominent position in enterprises,
which leads to the danger of IT becoming an end-in-itself and produces
fancy but useless solutions. Thus, it is important that the roles of busi-
ness and IT are clearly stated and accepted. “Business drives IT” [Len11,
AH06] summarizes the relationship that IT always has the responsibility
to provide the best possible support for business, and it is widely accept-
ed by practitioners [Wit07, MER10, Bal09]. Of course, there is also a crit-
ical relationship in the other direction. “IT drives Business” [Len11] ex-
presses that many of today’s business models and business capabilities
would not exist without IT and IT is a strongly evolving enabler of busi-
ness [MER10], forcing business to change for keeping pace with compet-
itors.

Business is not static. It must continuously change according to internal
or external forces in order to stay competitive. That might be to evolve
business models and differentiators, standardize parts of the business
that become commodity, conduct mergers with other companies, or
follow regulatory requirements [Spr05]. “Business drives IT” leads to the

1 IT-System: Also named “Information System” (IT = Information Technology)

Business
relies on IT

Business
drives IT

Business
changes
require
IT changes

Introduction

2

demand for IT-systems to allow fast and cheap changes. This ability is in
particular decisive for IT-systems supporting the competition and differ-
entiation [GBD08] of an enterprise. Today’s IT-systems are often old and
have accompanied the history of a company and its business. Over time,
more and more automation and coverage of business have been
achieved and the degree of integration among systems has increased.
These changes are often expensive [Par94] and the resulting systems are
even more expensive to change.

Flexibility is the property of IT-systems, which expresses how well an IT-
system supports certain changes to it that are necessary to follow
changes in business. Intuitively, flexibility measures how easy or cheap it
is to conduct these changes. In practice, flexibility is widely perceived as
a key property of IT-systems [GS06, MER10]. Beyond the pure properties
of the involved IT-Systems, an enterprise also needs the ability to con-
duct the changes of business, organization, and IT in an aligned, con-
trolled, and efficient way. This ability is called “Organizational / Business
Agility” [Sch04]. Figure 1 illustrates the relationships between business
and IT as described. Beyond the flexibility of a system, there are many
other factors that influence how easily changes can be conducted
[BAA10].

Airline industry is an apparent example illustrating the aspects described
above. The key business of airlines is transporting people or goods from
one point to another. To provide this service, a large number of business
processes and IT-systems are necessary (excluding the systems in air-
planes). Important business processes are booking, check-in, or baggage
handling [LSY11a, Ama11]. While in the early days many of these busi-
ness processes have been done manually, nowadays there is a high and
even increasing degree of automation. This can be directly observed
when buying tickets on the internet, checking in online or at the desk,
and getting baggage delivered quickly and reliable even at huge airports.
Certainly, not all airlines follow the same business models. On one end
of the spectrum there are airlines offering high-quality service, on the

Figure 1: Relationships between business and IT

Flexibility
enables
IT changes

Example:
Airline
industry

Business IT

Drives

What is needed?
What does change?
Speed of change?

Supports

Relies on

Drives
Enable new
business
opportunities

 Introduction

 3

other end there are airlines offering extremely low prices. However, all
different types of business models highly rely on and are partially only
enabled by IT-systems. The fact that business demands change of IT-
systems can be observed in all facets. New systems like the ones for self-
boarding have been introduced to reduce cost for required staff at the
boarding desk [LSY11b]. In the airline industry, acquisitions of smaller
airlines are quite popular, which leads to large organizations that have to
harmonize and integrate their IT-systems for saving effects. Regulatory
requirements in particular are a tough challenge, originating in govern-
ments worldwide or being provided by an organization like IATA (Inter-
national Air Transport Association) [IATA]. Exemplary are the rules about
the exchange of passenger information provided by the United States
[EPIC]. If an airline’s IT-systems are flexible enough they can save the air-
line a lot of money for changes and provide the airline with competitive
advantages by being early on the market.

Software is the key part of IT-systems that allowed for their big success
over the last decades. Software development is a critical and costly activi-
ty which has a professional foundation in the discipline Software Engi-
neering [Som07]. The mission of Software Engineering is the construc-
tion and maintenance of large-scale software systems with predictable
and adequate quality and cost. Software engineering has to cope with
increasing complexity, which results from the inherent complexity of the
systems being built, the increasing interconnection of systems and inte-
gration with existing systems, the continuous change of systems, and
from the collaboration of development teams in complex situations
[KKN11].

In order to help control the increasing complexity, Software Architecture
has emerged as an important discipline in Software Engineering since
the early 1990’s [PW92, GS94, SG96] and is still strongly improving
[BCK03, TMD09, RW05]. Software Architecture allows to use appropri-
ate abstractions to put order on complexity and get complexity under
control. Software Architecture aims at early reasoning and prediction of
properties of systems under development in order to get important de-
sign decisions right and avoid late and expensive rework [KKN11]. While
this describes Software Architecture as a discipline, Software Architec-
ture is also something inherent of any software system. In that sense, it
comprises the most important [TMD09] and often hard to change
[Fow03] decisions made about a system.

Flexibility is an important property of IT-systems and thus also software
has to be flexible in order to follow changes of business. Although soft-
ware is often expected to be easy to change (as it is “soft”), practice
shows us the opposite. One main reason for that is that changes often
affect key design decisions made, which has far-reaching consequences
and is thus costly. That is, flexibility to react on changes strongly depends
on a system’s architecture and the design decisions made there. Conse-
quently, Software Architecture as a discipline has the responsibility to

Software
Engineering

Software
Architecture

Architecture
determines
flexibility

Introduction

4

build, among others, flexibility into a system by making the right deci-
sions [CN10, Naa11].

Following the need for flexibility, many recent paradigms, trends, and
technologies (like SOA, EDA, BPM, BRM2) for information systems explic-
itly address flexibility [AH06]. Architecturally, these approaches come
with architectural mechanisms and technologies that have the potential
to construct flexible systems.

Due to this inherent flexibility potential and many marketing activities of
tool-vendors and consulting companies [IBM06], practitioners expect the
resulting systems to be flexible and see this flexibility as one of the big-
gest advantages of the approaches [GS06]. For example in the study
“SOA Check 2010” [MER10], “Increasing Flexibility” was ranked the
most important strategic goal (29%) which companies aim at when in-
troducing SOA. Not only in 2010, also in 2007, 2008, and 2009, this
was the top-ranked strategic goal (see Table 1).

Nevertheless, practice shows that many of today’s IT-systems following
SOA or other paradigms are not as flexible as expected when looking at
the propositions of the paradigms.

In this thesis, we analyze why there are problems with flexibility in prac-
tice and why the state-of-the-art does not solve them. Based on this
decomposition of problems and reasons, we provide an engineering
approach that allows to make use of the flexibility potential of today’s
paradigms, trends, and technologies and to turn it into true flexibility.

2 SOA: Service-Oriented Architecture | EDA: Event-Driven Architecture |
BPM: Business Process Management | BRM: Business Rule Management

Table 1: SOA Check 2010: “Which strategic goals does your company aim at with SOA?” [MER10]

Trends with
flexibility
potential

High
expectations

Missing
flexibility in
practice

Why?
What to do?

�
This thesis!

2010 2009 2008 2007

Increasing flexibility 29% 27% 23% 28%

Optimization of processes 21% 21% - -

Reduction time-to-market 16% 14% 15% -

Increasing degree of innovation 10% 8% 9% 9%

Increasing customer satisfaction 5% 3% 13% 13%

Reduction cost 5% 5% 11% 15%

Increasing productivity 2% 7% 14% 13%

 Introduction

 5

In practice, business is obviously not always faster than IT. Rather IT of-
ten would allow much faster changes than business can do due to all
organizational, legal, and social issues. However, business is the leading
entity and thus it is worth-while to focus on the best possible support by
IT.

1.2 Research Method

As a starting point of this thesis, we motivated that information systems
in practice often are not as flexible as expected and we mentioned some
problems this fact might cause. In this section, we outline the research
method that has been applied for addressing this industry problem. The
approach is also illustrated in Figure 2.

The industry problem described is identified in several architecture con-
sultancy projects that Fraunhofer IESE conducted with customers from
industry. Additionally, the problems and the background are confirmed
by a review of articles on the state-of-the-practice. In order to work to-
wards a solution, we analyze the industry problem and identify main rea-
sons causing it. With the help of these reasons we are able to state more
detailed goals for improvement. We describe the problem statements
and their decomposition in Section 1.3.

To achieve the improvement goals, we first select promising research
directions based on general ideas from software engineering and soft-

Figure 2: Research method of the thesis

Problem
statement

Solution
ideas

IIndustry
Problem

Research
Ideas

Internal
Validation

External
Validation

Industry
Problem

Research
Challenges

IESE projects
with industry
customers

State-of-the-
Art review

Identification
of reasons

Extension of
architecture
method ACES

Iterative
refinement

I. Hypotheses

Experiment

E. Hypotheses

Project
Experiences

Initial
evaluation with
customers

Select research
directions

External
Validation

E. Hypotheses

Project
Experiences

Introduction

6

ware architecture in particular. With the help of these solution direc-
tions, we check the current state-of-the-art and identify a set of derived
scientific software engineering research challenges. Solutions to these
research challenges are expected to contribute to the solution of the in-
dustry problem. The research ideas to the research challenges can be
classified into different categories that are typical in software engineer-
ing. First, there are foundational aspects like terminology definition and
model building. Second, there are methodical aspects that introduce
new approaches and procedures as to how to improve certain engineer-
ing activities. Third, there are tool aspects that are necessary to enable
practical applicability and scaling of the methods to industry-size engi-
neering projects. All these solution aspects are based on and integrated
into Fraunhofer IESE’s architecture method ACES (Architecture-Centric
Engineering Solutions). We applied the solution ideas early and partially
in projects with our customers and iteratively refined the research chal-
lenges and solution ideas. We outline the key research directions, de-
rived research challenges, and the research ideas in Section 1.4.

We formulate hypotheses as a prerequisite to validate our solution ideas
[WRH+00, ER03]. At the level of the research challenges, we formulate
internal hypotheses, which we partially evaluate in experimental settings.
At the level of the industry problem, we formulate external hypotheses
which are supported by project experiences. We present the hypotheses
in Section 1.4.

We explicitly describe the scope and context of the contributions and
summarize the key assumptions made in Section 1.5. All research contri-
butions are summarized in Section 1.6.

1.3 Problem Statement

According to our research method described in Section 1.2, we summa-
rize in this section the industry problem, analyze the reasons for missing
flexibility and derive research challenges to be solved in order to over-
come the problems in practice.

Industry Problem

As motivated in Section 1.1, missing flexibility is an important practical
problem of today’s information systems. Even systems following para-
digms like service-orientation which offers concepts for flexibility and is
expected to lead to flexibility, are often not as flexible as expected. We
summarize these industry problems (I.P) in problem statements and con-
firm their relevance in a more detailed discussion.

Hypotheses

 Introduction

 7

I.P1: Information systems based on Service-Oriented Architecture are, in
practice, often not as flexible as needed.

I.P2: The flexibility potential of the paradigm Service-Oriented Architec-
ture is, in practice, often not exploited.

In order to confirm the practical relevance of the industry problems iden-
tified, we look at two important aspects of the problems: frequency and
severity.

Frequency: The number of organizations using SOA as a paradigm to
organize their IT-systems has continually been growing over the last
years. The survey SOA Check 2010 [MER10] reports that the number of
enterprises (participating in the study) using SOA increased from 31% in
2007 to 63% in 2010. Table 1 also describes that flexibility is the most
important strategic goal of enterprises when adopting SOA for their IT-
systems. At Fraunhofer IESE, we recurringly observed in projects with
customers from industry that the flexibility of SOA-based information
systems was not as good as expected (changes took more than three
times as long as expected) and as it would be possible. Also in several re-
search projects that applied SOA as a key architecture style for building
software systems, we came to the conclusion that the systems were not
as flexible as expected. Still, there is an extremely large number of legacy
information systems in use in enterprises. The increasing business pres-
sure on enterprises to integrate their IT-systems will lead to a further
growing adoption of SOA or similar paradigms [GBD08, MER10]. Thus, it
is important to appropriately apply the paradigm at an early point in time
to achieve the flexibility needed.

Severity: Conducting a particular change in an IT-system with ideal flex-
ibility is possible with little effort and time. On the other end of the spec-
trum, changes are possible that are so massive and have far-reaching ef-
fects that the resulting cost is similar to developing the system new. Typ-

Statement

Relevance

Figure 3: Cost in IT and business caused by missing flexibility

Impact of Change
Complete

System
Impacted

Cost

Cost to Build
from Scratch

IT change costs

Business cost due to missing competitiveness

Introduction

8

ically, the cost for changes is of course not that high, but can easily cost
several 10.000 or even 100.000 EUR and take months to even years, de-
pending on the IT-system and the change at hand. In the overall life-
cycle of a system, maintenance causes a large amount of the overall cost
[Fri09]. Changes become particularly expensive when they lead to archi-
tectural mismatches that have to be resolved [GAO09] or when they af-
fect aspects of the system that require crosscutting solutions [Moo08,
Fri09]. At the first glance these costs are costs for a development organi-
zation or an IT department of an organization only. However, as de-
scribed in Section 1.1, there is this strong dependency of business on IT.
This means that missing flexibility leads to deferred changes of IT systems
and thus to missing or delayed support for business, which can cause
higher cost than changing the IT systems (see Figure 3). Awareness has
increased that time-to-market or speed in software industry are abso-
lutely crucial for business success [Bos10, KL10]. This speed of change is
prevented by inflexible IT-systems and thus the impact of missing flexibil-
ity is much higher than only the cost for changing the IT-systems. Miss-
ing flexibility of IT-systems supporting key business processes causes im-
mediate competitive disadvantages, which might cost millions of EUR.

In accordance with the industry problems described we formulate the
following industry level goals to be addressed in this thesis.

I.G1: Support architects in constructing SOA-based information systems
with improved flexibility.

I.G2: Support architects in better exploiting the flexibility potential of ar-
chitectural mechanisms provided by the SOA paradigm.

On the way towards achieving G1 and G2 it is crucial to reveal reasons
why SOA-based information systems are not as flexible as expected and
as the architectural mechanisms of SOA would allow. Thus, we describe
in the following which reasons can be found leading to the problems de-
scribed. Based on these reasons we can refine G1 and G2 into research
challenges.

Identification of Reasons for Industry Problems

We stated that an identification of reasons for missing flexibility in prac-
tice, despite appropriate architectural mechanisms that are in place, is
necessary. Therefore, we first characterize the situation in which the
problem arises.

Typically, missing flexibility is not discovered when a system is built. It is
rather discovered when changes have to be conducted in already fin-
ished system parts, an existing system, or an existing landscape of sys-
tems. We assume a software developer who has to conduct a certain
change to a system or landscape of systems originating in a demand of

Goals

Situations in
which flexi-
bility prob-
lems arise

 Introduction

 9

business. This developer has to find out where the change has impact
and which parts of the implementation have to be changed. If the
changes cause hard effort, the system is said to be inflexible with respect
to the change at hand. This is reflected in Definition 1, which is rather an
intuitive definition. We will introduce a more formal definition in Chap-
ter 4.

Definition 1 Flexibility (Intuitive)

Intuitively, flexibility is the degree to which a system supports a set of an-
ticipated changes to its requirements. [adopted from CK06, Naa09]

Obviously, the problem of effort and cost intensive changes is not
caused in the situation when the change is conducted but when the
system has been built or maintained which was at an earlier point in
time in the life-cycle of the system.

There are different potential sources of effort and cost intensive chang-
es, which can be classified according to product aspects, process aspects,
and organizational aspects [LSR07]. Product aspects typically manifest in
inadequate architectural decisions that cause widespread impact of the
changes. Process aspects can express in adequate guidance to changes
and expensive manual rebuilds of the system. Organizational aspects can
express in unclear responsibilities for system parts which delay the reali-
zation of changes. However, the product is the key part in achieving flex-
ibility and it has to be appropriate as a foundation for the other aspects.
Thus, we focus on architectural aspects of flexibility in this thesis, only.
Definition 2 gives a definition of software architecture that will guide our
further analysis of the problem.

Definition 2 Software Architecture

“A software system’s architecture is the set of principal design decisions
made about the system.” [TMD09]

For the further analysis of flexibility problems, we classify all types of
potential changes to a system in a set notation [Naa11]. The classifica-
tion is mainly along two questions: Are the changes demanded by
stakeholders? Are the changes possible according to the architectural
decisions made about the system? As a prerequisite, we introduce defini-
tions in order to allow the classification.

Definition 3 Flexibility Requirement

A flexibility requirement is a requirement that expresses the potential
need for changing the set of requirements of a software system in the
future.

Life-cycle
aspects

Focus:
product /
architecture

Sets of
changes as
basis for
analysis

Introduction

10

Definition 4 Architecture Mechanism

An architecture mechanism can be any type of architectural style, pat-
tern, tactic, etc., which is introduced in architecture design in order to
address requirements. Architecture mechanisms are often realized by in-
frastructure technologies, which means that using such a technology
means to introduce the respective architecture mechanism.

Flexibility is facilitated by architectural mechanisms that allow changes to
be conducted with as local and little effort as possible [Naa11]. For a giv-
en architecture of a system, it can be analyzed whether a certain change
can be done with low effort, that means whether the system is flexible
with respect to the change. Then, we say the change is in the flexibility
potential of a system.

Definition 5 Flexibility Potential

The flexibility potential of a system is the set of all potential changes to
requirements that can be realized with acceptable effort.

This leads to a very important point: Only having the right architectural
mechanisms (see Definition 4) in place in a system does not guarantee
that flexibility is really achieved. For example, the architecture decision to
organize the business logic along a uniform structure of services with
clear interfaces is a good supporter of flexibility, but without knowing
how the business logic is mapped (see Definition 6) to the services it
cannot be decided whether the system is flexible with respect to particu-
lar change requirements. We demonstrate this significant difference in
the upcoming example.

Definition 6 Business Logic Mapping (BLM)

Business Logic Mapping denotes the mapping of business logic to archi-
tectural element types, which are defined by a general architecture me-
ta-model or introduced by the application of particular architectural
mechanisms.

Consequently, we introduce a differentiation between 1) the flexibility
potential that would be possible with the architecture mechanisms se-
lected and applied in a system and 2) the flexibility potential that remains
after the business logic mapping has been done. The latter is by defini-
tion a real subset of the first one. This distinction is highly relevant for
our characterization of flexibility. Figure 4 illustrates the resulting sets of
potential changes and is explained in detail in the following. Below, we
use the example from the airline domain to illustrate the different types
of changes and the associated problems.

 Introduction

 11

(0) All potential Change Requirements
As described above, we start with the (hypothetic) set of all poten-
tial change requirements to a system. Please note that this set can-
not be written down; it is a mental support for the classification.

(1) Flexibility Requirements
The set of change requirements as defined in Definition 3.

(2) Flexibility Potential of Architecture Mechanisms
The set of change requirements that can be done with low effort in
a system under the assumption that an appropriate BLM was done.
This is a hypothetic set, which is a mental support for the classifica-
tion.

(3) Flexibility Potential Considering BLM
The set of change requirements that actually can be done with low
effort in a system. This is the actual flexibility potential as described
in Definition 5.

(4) Matching Flexibility Potential and Requirements
The set of change requirements that are on the one hand demand-
ed (flexibility requirements) and on the other hand also in the actual
flexibility potential.

(5) Flexibility Requirements Missed due to BLM
The set of change requirements that is demanded as flexibility re-
quirements and could be covered with the flexibility potential of the
architecture mechanisms, but which is missed due to the chosen
BLM. This is one key reason why SOA-based systems are in practice
often not as flexible as expected, because BLM is often not seen as
an architectural task and thus not done with the flexibility require-
ments in mind.

Figure 4: Set representation of requirements around flexibility

Flexibility Potential
Considering
Business Logic

Flexibility Potential of
Architecture
Mechanisms

Flexibility
Requirements

1

2

3
4

5
6

78

0

Introduction

12

(6) Flexibility Requirements Missed due to Missing Arch. Mech.
The set of change requirements that is demanded as flexibility re-
quirements but that is not addressed by any architecture mecha-
nisms providing the necessary flexibility potential.

(7) Flexibility Potential beyond Requirements (after BLM)
The set of change requirements that is provided as flexibility poten-
tial by a system but that is not demanded as flexibility requirements.

(8) Flexibility Potential beyond Requirements (Arch. Mech. only)
The set of change requirements that could be provided as flexibility
potential based on the given architecture mechanisms, but with a
different BLM. However, the requirements are not demanded as
flexibility requirements. This set is not of much relevance and only
included for reasons of completeness.

To illustrate the key points described above, we come back to an exam-
ple from the airline industry. Please note that the example is strongly
simplified with respect to the functionality described and to the detail of
architecture modeling. It is restricted to the aspects needed to explain
our points related to flexibility. The flexibility requirements are also sim-
plified in the sense that they all focus on business process aspects, which
allows keeping the architecture modeling as simple as it is. Of course
there are also other types of flexibility requirements which will be intro-
duced in Chapter 4.

The example at hand is a CheckIn system that allows running a process
with passenger identification, seat assignment and baggage handling
(see Figure 5a).

The following architectural decisions have been made and are also mani-
fested in architectural views shown in Figure 5b:

� Service-orientation is used to organize the business logic (Architec-
ture mechanism)

o Services provide encapsulated business logic

o Separation between services and business process

� Business processes are realized with descriptive process definition,
which is executed by a BP Engine (Architecture Mechanism)

� The user interface is automatically generated for business process
steps by an UI Engine and can handle sequential handling of process
steps (Architecture Mechanism)

� Three services are provided: Identify, Seating, Baggage (BLM)

� One process is defined with the sequence: Identify, Seating, Baggage
(BLM)

Example
from airline
industry

Functionality

Architecture

 Introduction

 13

� A passenger is the key entity; seats and baggage items are assigned
to passengers

Having the architecture designed with architectural decisions as de-
scribed, we now look at flexibility requirements and how well they are
supported by the architectural decisions.

We illustrate with different flexibility requirements (all belonging to set
(1)), what makes them fall into the sets (4), (5), and (6).

FR1: Change in the CheckIn process the order of Seating and Baggage.
This change should be easily possible by adapting the declarative
process definition, as Seating and Baggage don’t have a correlation,
they are only correlated to the identified passenger.

� Matching flexibility requirement and flexibility potential (4)

FR2: Change in the CheckIn process the order of Identify and Seating.
This change is not easily possible as Seating needs a passenger to
which a seat can be assigned. That means to conduct this change
would mean to change at least the Seating service and the way
how a seat can be first reserved and then assigned to a passenger
after the identification. In principle, this change requirement would
be possible with the architecture mechanisms, but the BLM pre-
vents it.

� Flexibility Requirement Missed due to BLM (5)

FR3: Change the CheckIn process in a way that Seating and Baggage can
be worked on in parallel on the same screen.

Figure 5: a) CheckIn process b) Simplified architecture of airline system

Flexibility
requirements

BP

BP Engine CheckIn

Services

Identify Seating Baggage

UI

UI Engine

Identify Seating Baggage

CheckIn Process

a) b)

Introduction

14

This change is not easily possible as the UI Engine only supports se-
quential processing of process steps. Conducting that change
would at least require a significant change to the UI Engine and to
the interplay with the BP Engine. That means that the appropriate
architecture mechanisms to support this change are not in place.

� Flexibility Requirements Missed due to Missing Arch. Mech. (6)

This example illustrates the key sets of change requirements as intro-
duced in our model ((1), (4), (5), (6)). The other sets are rather hypothet-
ical and cannot be enumerated, but they are very helpful to construct
and understand the model. In the following, we will summarize the re-
sults from this classification and the derived reasons for missing flexibil-
ity.

Analysis Summary and Resulting Goal Hierarchy

Analyzing the reasons for missing flexibility can be done best from the
perspective of flexibility requirements. In the previous section, we sepa-
rated flexibility requirements in three subsets. Based on these three sub-
sets, we can highlight reasons for missing flexibility now.

(6) Flexibility Requirements Missed due to Missing Arch. Mech.
In this case, a flexibility requirement has explicitly not been ad-
dressed, either because it was not known or because it was deliber-
ately dropped due to some architectural decision making, or be-
cause some design mistakes happened.

(5) Flexibility Requirement Missed due to BLM
In this case, a flexibility requirement is not in the flexibility potential
although architectural mechanisms are in place that would allow
for it. However, the chosen BLM prevents covering the flexibility re-
quirement by the flexibility potential. This case, which is often expe-
rienced in practice, happens when developers believe they would
directly achieve flexibility by applying particular architecture mecha-
nisms, which is not true as shown above.

(4) Matching flexibility requirement and flexibility potential
In this case, a flexibility requirement is covered by the actual flexibil-
ity potential of a system, resulting from the architecture mecha-
nisms and the BLM. This is the desired case for all flexibility re-
quirements. In order to express this explicit match of flexibility re-
quirements and flexibility potential, we introduce the term “True
Flexibility” in Definition 7. Typically, when one speaks of the flexibil-
ity of a system, this is exactly what True Flexibility means, namely
the flexibility with respect to anticipated flexibility requirements.

 Introduction

 15

Definition 7 True Flexibility

True flexibility denotes the set of matching flexibility requirements and
actual flexibility potential.

Figure 6 (left) depicts True Flexibility as a real subset of the Flexibility Re-
quirements, as often found in practice. The goal to be addressed in this
thesis in order to support the industry level goals I.G1 and I.G2 is to, vis-
ually speaking, move the Flexibility Potential over all Flexibility Require-
ments and thus achieve True Flexibility for all Flexibility Requirements.
This is formulated as I.G3, which can be decomposed into two sub-
goals.

I.G3: Improve the degree to which a system’s flexibility potential covers
its flexibility requirements. (Point in time: Over full life-cycle of system)

Derived from Figure 4, it can be seen that the sets (5) and (6) have to be
reduced or eliminated. Reducing set (5) means to improve the BLM for
the given flexibility requirements. Reducing (6) has two aspects: First, al-
ready anticipated requirements have to be addressed with appropriate
architecture mechanisms and BLM. Second, the anticipation of flexibility
requirements at the point in time when the system is constructed can be
improved. The following two sub-goals express these aspects.

I.G3.1: Improve the degree to which a system’s architecture mechanisms
and BLM cover anticipated flexibility requirements. (Point in time: When
the system is constructed / maintained)

I.G3.2: Improve the degree to which flexibility requirements are appro-
priately anticipated when a system is constructed / maintained.

Figure 7 illustrates the relationships among the industry problems and
the industry goals as described in this section.

1.4 Solution Ideas and Hypotheses

After defining and focusing the problem domain in the previous section,

Figure 6: Illustration of true flexibility

Flexibility
Potential

“True Flexibility”Flexibility
Requirements

Goal

Introduction

16

we now concentrate on necessary research to address the identified
goals. Practical problems can potentially be addressed with many differ-
ent solution ideas resulting in completely different contributions. There-
fore, we first outline research directions, the initial ideas how to address
the goals. Based on these research directions (R.D), we outline research
challenges (R.C) not covered by the current state-of-the-art. To solve
these research challenges, we sketch our research ideas (R.I) and finally
state research hypotheses (R.H) about expected improvements.

Research Directions

We describe research directions (R.D) as general ideas, where research
contributions should be made in a way that the industry goals stated be-
fore can be addressed. We introduce a separation of research directions:
First, we consider it necessary to extend architecture design methods in
general to give better support for flexibility, independent of SOA-
specifics. Second, we see the incorporation of SOA-specifics as a promis-
ing direction to guide architects even better towards the exploitation of
the provided flexibility potential.

As a basis for methodical contributions, we need a clear foundation of
concepts and terminology.

R.D1: Clarify theoretical foundation of relationship between flexibility
and architecture.

Improving the architecture design process with respect to a specific
property of the system under design, in our case flexibility, can be done
with constructive and analytical support. Constructive means to give the
architect more specific guidance in the design process in order to achieve
the system properties. Analytical means to give the architect feedback on
the level of achievement of the property in order to allow quick rework
cycles. We include both variants as research directions.

Figure 7: Derivation of industry goals

General
architecture
aspects

I.P1 I.P2

I.G1 I.G2

I.G3 I.G3.1

I.G3.2

Define

Derive

Industry
Problems

Industry
Goals

 Introduction

 17

R.D2: Enhance architecture design processes to guide architects towards
alignment of architecture mechanisms and BLM with respect to flexibil-
ity.

R.D3: Move flexibility measurement from a manual and often neglected
task to an automated solution, which allows continuous feedback about
a system’s flexibility to the architect.

After equipping the architecture design process with specific support for
flexibility, we also want to benefit from the fact that the class of systems
we deal with is restricted to SOA-based information systems.

R.D4: Integrate SOA-specific architecture mechanisms with the architec-
ture design process for optimized exploitation of flexibility potential.

Research Challenges

Each of the described research directions bears research challenges. In
the following, we describe the research challenges (R.C) addressed in
this thesis. They are directly mapped to the research directions, as also
depicted in Figure 9. For each research challenge we describe very briefly
the gap to the state-of-the-art, which is presented in detail in Section 3.

R.C1: How can the relationship between flexibility and architecture be
precisely characterized and how can this be used for 1) better elicitation
of flexibility requirements, 2) more guidance for architecture design, 3)
measurement of flexibility?

In the state-of-the-art, the relationship between flexibility and architec-
ture is characterized from many perspectives, in particular in the context
of evaluation of flexibility. We have to synthesize a consistent meta-
model which serves all aspects from flexibility requirements over archi-
tecture to the concrete realization at code-level. In particular the con-
structive aspect is missing in related work, which has to be extended.

R.C2: How can an architecture construction process support architecture
design for flexibility with appropriate architectural mechanisms and busi-
ness logic mappings?

In the state-of-the-art, flexibility as a quality attribute is not in the focus
of specific guidance in architecture definition approaches. However, ar-
chitecture mechanisms like styles and patterns offering flexibility poten-
tial are widely published. Existing approaches rather focus on functional
decomposition or abstract design for quality attributes, but in particular,
the combination always stays very abstract and is a gap to be filled by
this thesis.

SOA-specific
aspects

Introduction

18

R.C3: How can the flexibility of an architecture under design be auto-
matically predicted for near-time feedback on flexibility to an architect?

In the state-of-the-art, analyzing architectures for flexibility (or maintain-
ability, modifiability, …) is the best-populated field. Many approaches
focusing on different aspects exist, like the estimation of resulting
change costs or the judgment of investments into flexibility. However, all
these approaches need human involvement for evaluating the impact of
changes on the system. We do not provide completely new flexibility
metrics but want to come up with an idea as to how the analysis can be
automated using metrics similar to the ones used in previous approach-
es.

R.C4: How should architectural information about paradigms / technolo-
gies like SOA be described and used in architecture construction in order
to exploit their flexibility potential?

In the state-of-the-art, architecture mechanisms of SOA are often de-
scribed in much detail, but without pinpointing the flexibility potential.
The flexibility potential is mostly rather implicitly assumed. We aim at
making this flexibility potential more explicit in order to systematically
exploit it during architecture definition.

Research Ideas

For each research challenge, we describe a short summary of the key re-
search ideas (R.I) addressing the challenge. A comprehensive elaboration
of the ideas is given later in the thesis.

R.I1: We decompose flexibility and architecture as concepts and clarify
the relationships, as already started in Section 1.3. In particular, the role
of architecture mechanisms and business logic mapping are central. We
reflect that architecture is only an abstraction of implementation and a
means to master the complexity. We build a conceptual model describ-
ing the relevant concepts connecting flexibility and architecture as a ba-
sis for engineering support. We use architectural knowledge to support
working with flexibility requirements.

Architects doing architecture design have to make decisions in order to
balance and achieve quality attributes. In the architecture design process,
we want to better support architects in addressing flexibility.

R.I2: We provide a methodical extension to existing architecture design
methods with a specific focus on flexibility. Therefore, we combine as-
pects of methods concentrating on functional decomposition and as-

 Introduction

 19

pects of methods focusing on quality driven design. We make the com-
bination concrete and guided by relating the process steps to concrete
architectural element types (e.g. business and infrastructure elements)
which are introduced to support the alignment of architecture mecha-
nisms and business logic mapping. We give heuristics for the process
steps.

Architects have to judge whether the architectural decisions made lead
to the flexibility potential needed. This needs analysis and due to missing
practical metrics for flexibility architects often do not analyze explicitly.
Further, an architect has to deal with many different requirements that
need addressing with different architectural solutions. Evolving the archi-
tecture design might harm already designed solutions for flexibility,
which needs recurring analysis. Thus, we want to give architects contin-
uous and automated feedback on the current flexibility.

As we defined flexibility relative to a set of flexibility requirements, the
automated measurement of flexibility cannot operate only on an archi-
tecture model, but it has to consider the flexibility requirements. Fully
formalizing flexibility requirements and putting them into relation to an
architectural model does not seem to be a practical approach. Thus, we
take a different approach:

R.I3: We extend the architecture model to include all information for the
automated analysis. This becomes possible by including the information
how the architecture addresses the flexibility requirements. Concretely,
that means that an architect has to model the impact of a change re-
quirement in the architecture model. We provide appropriate modeling
notations to include this piece of information. The architect has to rea-
son about this in any case, now he also puts it explicitly into the model.
We extend a modeling tool (Enterprise Architect) to automatically calcu-
late and display the current flexibility of a system under design.

Finally, we improve the exploitation of flexibility potential of SOA archi-
tecture mechanisms.

R.I4: We analyze the key architectural mechanisms of SOA for their flex-
ibility potential and how it should be used. This information is packaged
for usage in the architecture design process.

An overview of all presented research ideas and how they relate to a
simplified description of an architecture design process is depicted in
Figure 8. We give a more precise description of scope and context in the
next section.

Introduction

20

Research Hypotheses

In alignment with our research ideas R.I1 (Conceptual Model), R.I2 (De-
sign Support), R.I3 (Evaluation Support), and R.I4 (SOA Flexibility Mecha-
nisms), we define research hypotheses. The research hypotheses address
each research idea separately; additionally, we define research hypothe-
ses spanning across the ideas. Our research hypotheses cover the aspects
Validity, Effectiveness, Efficiency, and Applicability. With our hy-
potheses, we sketch the space of expected benefits of our contributions
(see Section 7.1).

For a concrete and detailed validation, we focus. One aspect of the ef-
fectiveness of our flexibility evaluation contribution is the following hy-
pothesis: “By explicitly describing how a flexibility solution for a particular

Figure 8: Research ideas in the context of architecture design

Figure 9: Relationship between research directions, challenges, and ideas

<optional>
Architecture

Model
Evaluate

Requirements
(incl. flexibility
requirements)

Architecture
Model

<optional>
SOA Flexibility

Knowledge

R.I2

R.I1

R.I3

R.I4

R.D1 R.D2 R.D3 R.D4

R.C1 R.C2 R.C3 R.C4

R.I1 R.I2 R.I3 R.I4

Research
Directions

Research
Challenges

Research
Ideas

Derive

Conceptual
Model

Design Evaluate SOA

 Introduction

 21

scenario works, architects produce more flexible architectures.” We fur-
ther refine this hypothesis and evaluate it in an experiment. In the exper-
iment and in projects with industry we collected further qualitative re-
sults for additional hypotheses.

Summary

In this section, we elaborated the ideas how to address the industry
problems and goals presented in Section 1.3. The research ideas in
summary provide the solution for the goals; thus there is no concrete
mapping. An overview of the directions, challenges, and ideas and their
relationships is depicted in Figure 9.

1.5 Scope, Context, and Assumptions

The previous section described the ideas underlying this thesis. In order
to ease understanding of the ideas and how they contribute to the
goals, this section pinpoints the scope of the contributions and thus de-
scribes the context and assumptions made.

Figure 10: Scope and context of the thesis

RunTime

a) RunTime vs. DevTime b) System Life-Cycle

c) SE Activities d) Architecting Activities

DevTime

In Scope Out of Scope

Build Maintain

Construct for
Flexibility

Exploit
Flexibility

Requirements Engineering

Architecting

Implementation

Quality Assurance

Evaluate

Introduction

22

As described in Section 1.1, business demands quick changes of support-
ing IT-systems. This thesis focuses its contributions on IT, and in particu-
lar on software engineering, but of course always aligned with the needs
of business.

The practical problem motivated in Sections 1.1 and 1.3 have SOA-
based information systems as a background. That is, the contribution
is best tailored for this type of systems. It addresses both, single sys-
tems and landscapes of systems that are architected with service-
orientation. One key assumption when optimizing flexibility is that the
systems are under control of the architect. If not, the measurement of
flexibility still works and provides helpful insights for potential worka-
rounds. As a large part of our contributions is not system-specific, they
are also transferrable to other system types like embedded systems.

In Section 1.3, we described that architecture, development process, and
organizational aspects are all relevant in order to achieve quick reactions
on change requests. In this thesis, we concentrate on architecture as-
pects only, which means we bring the system into a shape that is the
foundation of quick reactions on change requests.

If changes to the behavior of a system are necessary, these changes can
be principally conducted at development time or at runtime. Changes
made at runtime are in any case already incorporated into a system and
require self-monitoring of the system in order to recognize which con-
figuration of behavior to expose. We focus in this thesis on DevTime
changes (see Figure 10a). All flexibility requirements are future but
(potentially) anticipated requirements. They have not been realized yet
but have to be realized by changes to the implementation of the
system. The goal in this thesis is to make such changes as cheap as
possible when they have to be realized.

In the overall life-cycle of systems, the contributions of this thesis are
mainly applied during the construction phase (see Figure 10b). During
this phase, flexibility is built into the systems targeting at the exploita-
tion of flexibility at later points in time. Building in flexibility is an early
investment which pays off later when quick reactions to change requests
are necessary. In general, it is expected to be cheaper to build in the flex-
ibility potential than to change a system when the flexibility potential is
missing. Also later in the life-cycle of a system there might be phases of
major maintenance which can be used to create new flexibility poten-
tial for newly anticipated flexibility requirements.

As described before, architecture is the key to facilitate flexibility in IT-
systems. Thus, this thesis focuses on architecting (see Figure 10c) to
achieve flexibility. This thesis does NOT introduce a new architecting
method. Rather it proposes methodical enhancements which combine
aspects of existing architecture methods and is compatible with many
existing methods. However, architecting for flexibility also requires to

Business
vs. IT

System types

Leverages for
flexibility

DevTime vs.
RunTime
changes

System
life-cycle

Software
engineering
activities

 Introduction

 23

look at the requirements level (since flexibility is always about change re-
quirements) and the implementation level (as architecture is only an ab-
straction of the implementation, which facilitates more efficient decision
making; in fact, the key effort of expensive changes always has to be
made to change the implementation).

The method contributed in this thesis clearly targets at architects in
software development projects and organizations. Thus, it is a method
for a small group of experts, which can assume a high level of archi-
tectural knowledge as prerequisite.

With the method contributed in this thesis, architects are guided and
supported in key activities (see Figure 10d) of architecture design with a
specific focus on flexibility: Design and decision making, modeling the
decisions in a consistent model, and analyzing a current draft of the ar-
chitecture with respect to achieving true flexibility. An underlying as-
sumption is that architecture design, modeling, and analysis are cheap
compared to the real implementation. That is valid for both construction
and change.

Architecture mechanisms are necessary to achieve flexibility. However,
this thesis does not contribute new architecture mechanisms, rather it
focuses on methodical support and shows how to make best use of
them to achieve flexibility.

Based on the ideas described in Section 1.4, the analysis of architec-
ture models with respect to flexibility is formally defined in such a
way that it can be automated with tools. The tool calculates the cur-
rent achievement of true flexibility. The design and modeling activities
are still manual tasks for architects. However, design and decision mak-
ing is supported in so far that the continuous analysis gives instant feed-
back as soon as the modeling of decisions is done.

Flexibility is an important quality attribute, but there are other
important quality attributes as well. Focusing so strongly on flexibil-
ity in this thesis does not mean that it is more important than other qual-
ity attributes. This prioritization depends on the concrete system. The
approach we describe for flexibility can be rather seen as a small slice in
software engineering cutting across all activities like requirements engi-
neering, architecting, or implementation. In the same manner, further
research is conducted or still needed for other quality attributes. In the
end, architecture is the point where to balance between competing
quality attributes. When all quality attributes and their approaches ex-
tend the same architecture model, there can be much better support for
tradeoff decisions than there is today.

Software
engineering
roles

Architecting
activities

Methods vs.
architecture
mechanisms

Automation
potential

Flexibility as
a quality
attribute

Introduction

24

1.6 Contributions Overview

In the previous sections, we sketched the story of this thesis from the
problem definition over the selection of research directions down to the
concrete research ideas. In this section, we outline the key contributions
this thesis makes:

� Conceptual Model: We provide a conceptual model that partially
formalizes and relates key aspects of flexibility and architecture. It is
the foundation for a clearer understanding of what flexibility is and
how it is addressed by the further contributions in this thesis.

� Design method enhancement for flexibility: We provide con-
structive, methodical support for software architects targeting at high
flexibility in their systems. This methodical enhancement makes de-
sign activities more explicit and gives guidance and heuristics with a
specific focus on flexibility. It combines aspects from functional de-
composition and quality-driven design approaches and leads to well-
aligned architecture mechanisms and business logic mappings, tar-
geting at anticipated flexibility requirements.

� Automated measurement of flexibility in architecture tool: We
further enhance the design process by providing continuous feedback
on the current flexibility level of the system being architected to the
architect. This is supported by automated measurement which is in-
tegrated in the architecture tool “Enterprise Architect”. In order to
support this automated measurement, architects enrich the architec-
ture model with information on the addressing of flexibility require-
ments

� Packaged SOA flexibility mechanisms: We provide for typical ar-
chitecture mechanisms of SOA descriptions how they can be applied
to contribute to flexibility. We achieve this by sketching for the key
architecture mechanisms which flexibility potential they bear and to
which typical challenges they contribute.

� Validation results: In a controlled experiment we got empirical evi-
dence that explicitly modeling change impact during architecture de-
sign helps architects to create significantly more flexible architecture
solution.

The contributions of this thesis can be assigned to the following catego-
ries:

� Foundations / Formalization: Contributions that have basic charac-
ter and provide the conceptual model the other contributions can
built on

Contribution
list

Contribution
categories

 Introduction

 25

� Method: Contributions that represent or enhance an engineering
method, which guide certain engineers in a particular activity in the
software engineering lifecycle

� Technique / Tool: Contributions that represent a concrete technique
like algorithms for measurement. Further, there are contributions that
make use of the fact that certain activities in the development pro-
cess can be fully automated due to their degree of formalization,
which can be realized in engineering tools

� Validation: Contributions that empirically validate certain aspects of
the contributions to check whether the proposed benefits can be
achieved

Figure 11 visualizes the relationships between the contributions and the
categories described. Further, in this figure we also link the research ide-
as as described in Section 1.4 to the contributions.

1.7 Thesis Outline

The introduction (i.e. this chapter) motivates this thesis and presents the
key ideas. We state the practical problem and analyzed reasons which
are used to find research directions. We derive research challenges and
sketch the key ideas to address the challenges. In order to precisely de-
scribe the scope of the thesis, we put it into different aspects of context
and stated the key assumptions.

Figure 11: Contributions of the thesis in categories

Flexibility mechanisms in SOA and their usage
in flexibility engineering method

R.I4

Method Tailoring

Method

Foundations / Formalization

Validation

Technique / Tool

SOA-Specific

Architecture
Core
Competence

Conceptual Model
Architecture <-> Flexibility

Constructive
Design method

enhancement: Flexibility
by aligned architecture

mechanisms and business
logic mapping

Analytical
Automated

measurement of
flexibility and

continuous feedback in
architecture tool

Project
Experiences

Experiment
H8

R.I1

R.I2 R.I3

Introduction

26

Chapter 2 continues with a description of foundations for this thesis in
the areas of architecture-centric engineering and Service-Oriented Archi-
tecture (SOA).

Chapter 3 describes the state-of-the-art, mainly in the areas of flexibility
as a quality attribute, architecture design in general and architecture de-
sign in the context of SOA. Another closely related field of research is
the analysis of quality attributes like flexibility or maintainability.

Chapter 4 describes our conceptual formalization of flexibility as a quali-
ty attribute and the particular role of architecture for flexibility. It intro-
duces in particular our metrics for flexibility and the concept of change
impact views as additional architecture views. Summarizing, all ideas are
put into relation in a conceptual model of flexibility.

In Chapter 5, our engineering method enhancements for flexibility are
presented, along with the ideas on continuous flexibility measurement
and the realization in Enterprise Architect.

Chapter 6 presents the specific aspects of flexibility in SOA-based infor-
mation systems. Architectural principles, mechanisms, and technologies
of SOA are collected and analyzed for their potential support of flexibil-
ity.

In Chapter 7, our empirical validation is described. First, the space of hy-
potheses derived from our research is sketched. Then, a controlled ex-
periment with the gathered quantitative results is presented. Finally, we
describe experiences from projects with customers from industry in
which we collected further qualitative results.

Chapter 8 concludes the thesis summarizing the results. We further dis-
cuss the achievements and their limitations and sketch future work.

 Foundations of Architecture

 27

2 Foundations of Architecture

“Complex problems have simple,
easy to understand, wrong answers.”

H.L. Mencken

In this thesis, we present an architectural approach towards the im-
provement of flexibility as a quality attribute of long-living information
systems. Whereas we briefly described the scope and the context of the
contributions in Section 1.5, we explain in this section the foundations of
architecture as a basis of our contributions, and how we integrate the
contributions. First, we will focus on architecting as an engineering activ-
ity in Section 2.1. Second, we will focus on SOA (Service-Oriented Archi-
tecture) as a paradigm of designing information systems in Section 2.2.
As we see SOA as a wide-spread and promising candidate for architec-
tural support of flexibility in information systems, we explain the neces-
sary background as needed for our contributions.

2.1 Architecting as an Engineering Activity

Flexibility in software systems is achieved by making the right architec-
tural decisions in order to limit and focus the impact and effort of
changes. The activities in software engineering aiming at an appropriate
architecture are called architecture design or architecting. Thus, archi-
tecting is the activity that we enhance with the contributions of this the-
sis. Therefore, we highlight the essence of architecting and how it is typ-
ically done in practice. As a methodical framework for our contributions,
we give an overview on the ACES (Architecture-Centric Engineering So-
lutions) architecture approach of Fraunhofer IESE.

2.1.1 Definitions and Essence

Architecture as an artifact or concept in software engineering has many
definitions. We present a few very prominent ones to elicit the essence.
The definition we use as the leading definition in this thesis (see Section
1.3, Definition 2) is:

Definitions

Foundations of Architecture

28

“A software system’s architecture is the set of principal design decisions
made about the system.” [TMD09]

“The software architecture of a program or computing system is the
structure or structures of the system, which comprise software elements,
the externally visible properties of those elements, and the relationships
among them.” [BCK03]

“Architecture is a set of concepts and design decisions about structure
and texture of software that must be made prior to concurrent engineer-
ing to enable effective satisfaction of architecturally significant, explicit
functional and quality requirements and implicit requirements of the
product family, the problem, and the solution domains.” [JLR00]

Summarizing, architecture is about key decisions of software systems
which typically manifest in abstracted structures with elements, proper-
ties, and relationships. The last definition also includes a purpose, namely
to allow fulfilling key requirements.

Abstraction is a key concept of architecture [TMD09, BCK03, Gor06]. By
abstracting from many details, architects can reason about essential
design decisions on the level of a complete, large system or even land-
scapes of systems. This allows also to reason about a system which has
not been built yet, as an architecture is much cheaper to build and easier
to oversee and to analyze than the real system.

Consequently, architecture is a critical asset in software engineering.
Architecture provides support for all life-cycle phases of software sys-
tems: construction, maintenance, evolution, migration, and retirement.
In order to make this support concrete, architecting activities around ar-
chitecture are necessary: Understanding requirements, designing archi-
tecture, documenting architecture, communicating architecture, analyz-
ing and evaluating architecture, implementing based on architecture, en-
suring of conformance of implementation to architecture [BCK03,
Bos00].

In the following sections, we present architecting activities as done in
practice and we present the ACES approach for architecting.

2.1.2 Architecting in Practice

How architecting is done in practice covers a very broad spectrum re-
garding the level of sophistication. It ranges from no explicit architecture
work at all to sophisticated architecture-based quality predictions with
architecture models. We provide a brief overview on architecting in prac-
tice, mainly based on our experiences collected at IESE in more than 50
recent architecture projects with customers from industry and based on
reported experiences in literature.

Abstraction
as key con-
cept

Architecting
activities

 Foundations of Architecture

 29

Recently, the criticality of architecture for successful software develop-
ment is more and more recognized in industry [CS09, Boo06].

Frequently the architecture’s only target is to prescribe the implementa-
tion. That means that architecture’s power to reason early about later
properties of the system under construction are neglected [Boo07]. In
particular, there is often no common understanding in companies why
architecting is done and what the expected benefits are. This leads to
the situation that it is very hard to decide how much to invest into archi-
tecting activities. However, there are also cases where companies use
their architecture models for analyses like performance predictions or for
generation approaches like in Model-Driven Development (MDD).

Architecting in practice often means to only provide a high-level blue-
print of the system under construction. Accordingly, as an intermediate
step from the requirements to the implementation, the system is de-
composed into smaller, manageable pieces.

The resulting architecture blueprints often have only informal semantics
and are ambiguous [CBB10]. Typically, they lack precision and prescrip-
tiveness for key architectural aspects and are often represented as “box-
es and lines”. Architecture modeling with tool-support is rather seldom,
in particular explicit architecture models that support particular purposes
are seldom.

Although an appropriate architecture is a crucial factor for achieving key
quality attributes of software systems, there is still little focus on these
quality attributes in practical architecture work. Quality attributes are
mostly stated rather vaguely and the opportunity to analyze the fulfill-
ment of quality attributes with the help of architecture is mostly missed.
In particular, development time quality attributes like flexibility are often
not explicitly addressed in architecture design. On the one hand, indirec-
tions and uncertainty seem to make architecting for these quality attrib-
utes difficult; on the other hand design methods only give rather limited
guidance for architects. If development time quality attributes are ad-
dressed this is typically done based on previous experiences of the archi-
tect. If development time quality attributes are evaluated this is typically
done with informal expert estimations.

Architecture work can be only effective if the architecture is consistently
reflected in the implementation. In practice, we often observed that
companies do not intensively care about consistency between architec-
ture and implementation [Kno11].

In industry, senior developers often become software architects. Unfor-
tunately, there is no common educational foundation for architects,
which is also rarely taught at universities. This results in a situation where

Criticality

Purposes of
architecting

System de-
composition

Modeling
and docu-
mentation

Quality
attributes

Connection
to code

Architects’
background

Foundations of Architecture

30

architects even in the same company do not have a common idea and
language about architecture and they also do not have a common ap-
proach to architecting [Cle10].

In recent years, agile development has become highly popular in soft-
ware companies. The most popular method, Scrum, [SB01] actually does
not tell anything about how architecture work should be done in agile
projects. Rather, it only states process aspects as to how to realize re-
quirements iteratively. Often this leads to the perception that architect-
ing as an activity and architecture as an artifact are not needed any more
in agile development [ABK10, Kru10].

Architecture is being established as a discipline in software engineering
also in practice. However, many potential benefits of architecture have
still not been achieved due to missing knowledge, missing methodical
guidance, and also missing scalability of available approaches. We target
in this thesis at providing more methodical guidance for the quality at-
tribute flexibility in architecting and design method and tool support in a
form that scales to real-world systems.

2.1.3 The ACES Approach

Fraunhofer ACES (Architecture-Centric Engineering Solutions) is Fraun-
hofer IESE’s approach to architecting [KKN11]. ACES is not intended to
be a completely new architecture method. Rather, it integrates aspects
of several existing architecting approaches [BCK03, Bos00, RW05] and
focuses on strong practical applicability, as the overall idea of Fraunhofer
proposes. Besides integrating and tailoring existing approaches, ACES al-
so adds completely new concepts like the so-called architecture en-
gagement purposes or a separation in architecture core competence and
domain competence. ACES has been applied in dozens of projects with
industrial customers and is continually evolved with the aid of practical
applications and IESE’s research contributions around architecture.

ACES [EKK+10, KKN11] is the methodical foundation of the contribu-
tions of this thesis.

Architecture Engagement Purposes

In practice, the value of architecture work is often hard to grasp and
hard to demonstrate. As architecting always means to spend effort it is
important for the activities to clearly target at goals and do not become
an end-in-itself. Generally, architecture serves two main goals: Support-
ing decision making and realizing the decisions. The respective decisions
can be all types of decisions around IT: investment, personnel, technical,
organizational decisions. Summarizing: Architecture work is an invest-

Architecture
& Agile

Summary

Investment
and benefit

 Foundations of Architecture

 31

ment to achieve particular benefits around software development or us-
age.

In ACES we introduced the concept “Architecture Engagement Purpose”
(AEP) which describes a clear purpose why a particular company does
architecture work. We provide a template for describing an AEP in more
detail, containing for example the stakeholders and perspectives in-
volved, the purposes and questions, the context, and the expected re-
sults of working with architecture. AEPs guide architects in justifying why
architecture work is needed, how much has to be invested in architec-
ture, which level of detail is needed, and in deriving the architecting ac-
tivities that have to be performed.

We identified three classes of AEPs that contribute to the goals of deci-
sion making and realization (see Figure 12):

� Prediction: A key purpose of architecture is to analyze and predict
certain properties of software systems. The reason why this is done
with architecture, and not for example with the implementation, is
that a system’s architecture allows focusing on the essential aspects
of a system for the particular prediction. During system construction,
an architecture can be designed at much lower cost than the imple-
mentation. After the construction of a system, architecture provides
the advantage to concentrate on the relevant aspects and thus cope
with the often high complexity of the implementation. The key prin-
ciple of architecture allowing these advantages is abstraction. Archi-
tecture abstracts from many details and thus allows concentrating on
the relevant aspects for an analysis or prediction. Prediction AEPs
mainly serve the goal of decision-making. Prediction is used directly in
the construction of architectures in order to make the right architec-
ture decisions or later to check the validity of decisions.

� Derivation: A second key purpose of architecture is the derivation of
other artifacts. Architecture can be seen as a blueprint of an imple-
mentation and has a prescriptive nature for all implementers. Not on-
ly the implementation can be derived from architecture; it could also

AEP

AEP classes

Figure 12: Architecture engagement purposes

Architecture Des ign
- Reasoning
- Decis ion Making

Architecture Reconstruction
Architecture Documentation

Invest into
Architecture
(Engage)

Predict Derive Control
Benefit from
Architecture
(Purpose)

Foundations of Architecture

32

be project plans, test cases, etc. For derivation, architecture has to be
well described and understandable for the respective stakeholders.
Derivation AEPs mainly serve the goal of decision-realization.

� Control: A third key purpose of architecture is to control whether ar-
tifacts derived from the architecture are compliant with the architec-
ture. The effort invested in designing an architecture and making the
predictions about properties of the resulting system only pay off if
the actual implementation also realizes the architectural decisions.
However, in practice there are often deviations introduced for multi-
ple reasons [Kno11]. Thus, there are also AEPs targeted at controlling
the compliant realization of the architecture, which contributes to the
goal of decision-realization.

In order to achieve benefits from architecture, investments are necessary.
Architecture has to be available in a form that serves the expected pur-
poses. In particular, architecture has to be made explicit to be useful. Ex-
plicit means any type of model or documentation which is appropriate to
use the architecture to achieve the purposes. For communication of cer-
tain well-known aspects, a rather high-level sketch of the architecture
might be enough, whereas a reliable performance prediction requires a
detailed architecture model with all information that impacts perfor-
mance. Although every system has an architecture [BCK03], an implicit
architecture does not help achieving the benefits as sketched. Providing
an explicit form of architecture is typically done in the activities architec-
ture design (for new or changed architectures) and architecture recon-
struction (making implicit architecture explicit again by reconstructing it
from the implementation) (see Figure 12). The effort to be invested in
these activities mainly depends on the AEPs.

Architecture-Centrism

Software systems are intended to support a company’s business with
technology-based solutions. Further, a software system is the crucial
element for another company’s business: software development busi-
ness. Further players might be involved in the operation of the system.
This shows that many companies might be connected in some way to a
software system, and all have requirements to be fulfilled or impose
constraints on the software system. These requirements might be com-
peting; very typically, a software system has to provide a certain quality
and should be developed in a certain time for a certain amount of mon-
ey. In order to allow an appropriate software system to be built, the right
design decisions have to be made supporting the requirements in an ac-
ceptable way. The architecture of the system is the right place to make
these decisions. Visually speaking, architecture is the hub that connects
all different sources of requirements and constraints and allows their
balanced fulfillment.

Explicit
architecture

Architecture
as mediator
among com-
peting re-
quirements

 Foundations of Architecture

 33

Looking at a typical software development process, architecting is a
strongly interconnected activity. Architecting has interdependencies with
requirements engineering, the implementation, quality assurance, and
project management as such. Architecting makes decisions to fulfill re-
quirements and the system is implemented according to the architecture.
In a timeline view, architecting is not a phase at a certain point in time of
software development. Due to the strong interdependencies of architect-
ing to the other development activities (in both directions), architecting
as an activity is supposed to last for the whole development project in
ACES. Of course, there are points in time where more or less effort is
spent on architecting. The graphical illustration (see Figure 13) of the Ra-
tional Unified Process (RUP) [Kru03] is well suited to represent the facts
described.

While Figure 13 mainly represents the situation of system development,
architecture also plays a crucial role in other life-cycle phases of soft-
ware, as in the maintenance phase or even the retirement phase. Also
then, architecting is necessary to make appropriate decisions about the
system and its context and to realize these decisions.

Architecting with ACES

An adequate architecture allows building or evolving a system with the
right balance among all requirements of the stakeholders.

Addressing stakeholders’ requirements adequately with architecture
requires knowing the requirements in a precisely described form. ACES
represents architecturally-significant requirements, in particular quality
attributes, as architecture scenarios [CKK01, BCK03, RW05].

In particular, quality attributes need crosscutting, uniformly realized ar-
chitectural solutions. Typically, quality attributes are addressed using
architectural styles, patterns, or tactics [BCK03, Bos00, BMR97]. ACES
provides an architecture design method involving the functional decom-
position of a system and the application of styles, patterns, or tactics to
achieve the quality attributes. In ACES, as well as in other architecture

Architecting
as the hub of
development

Figure 13: Development phases according to RUP [Kru03]

Architecting
as the hub of
all life-cycle
phases

Architectural
requirement

Architecture
design

Inception Elaboration Construction Transition

Requirements
Engineering

Architecture

Implementation
(CE & Integration)

Build, Test and
Deployment

Project
Management

Foundations of Architecture

34

design approaches, a general process for addressing quality attributes is
provided. Additionally, selected sets of tactics supporting particular quali-
ty attributes can be given.

Architecture as an abstraction of the system under construction offers
the possibility to predict whether the system will have the intended qual-
ity properties before implementing the system at high cost. In the archi-
tecture design method, there is a recurring analysis step that checks with
predictions of the quality properties whether the architecture is adequate
or has to be improved. How precise and automated such a prediction
can be done depends on the precision and formalization of the architec-
ture description.

In ACES, architectural decisions are manifested in architectural models.
The resulting models are the foundation for analysis and prediction, for
communication, or for the generation of well-readable architecture doc-
uments. As there are typically many different aspects of architecture, as
for example runtime structures or development structures, deployments
and technologies, or data aspects, ACES also uses the concept of archi-
tectural views and viewpoints [CBB10, RW05, HNS99, Kru95, IEEE00].
ACES provides a generic framework (ADF: Architecture Decomposition
Framework) that covers all architecturally relevant information and that is
project-specifically instantiated to create the appropriate set of architec-
tural views. The necessary information depths and precision depends on
the concrete AEPs that should be applied to the architecture model. Ide-
ally, there is one architecture model with the selected views on it, which
is the basis for all AEPs. Then it is also possible to determine tradeoffs
among quality attributes on the architecture model.

An adequate architecture is only of value if it is compliantly realized in
the implementation. Thus, ACES provides guidance for the derivation of
an implementation from the architecture and further allows the checking
of compliance with tool support.

Prediction of
quality prop-
erties

Architecture
models and
views

Figure 14: Competence packaging in ACES

Architecture
implementa-
tion

ALM
Architecture
Lifecycle
Management

RATE
Rapid

ArchiTecture
Evaluation

ASR
Architecture Significant Requirements

ADF
Architecture Decomposition Framework

DMM
Design, Modeling, and Migration

DPR
Decision Propagation and Reflection

 Foundations of Architecture

 35

Competence Packaging in ACES

All described aspects of ACES are packaged in six competence areas (see
Figure 14). ASR (Architecture Significant Requirements) covers all com-
petences around eliciting and representing requirements for architecture
work. ADF (Architecture Decomposition Framework) covers all compe-
tences around the documentation of architecture with models, views,
etc. DMM (Design, Modeling, and Migration) covers all competences
around the methodical guidance for making architecture decisions and
representing them in models. DPR (Decision Propagation and Reflection)
covers all competences around the connection of architecture with im-
plementation and other derived artifacts. RATE (Rapid ArchiTecture
Evaluation) covers all competences for evaluating adequacy of architec-
tures and their compliant realization. ALM (Architecture Lifecycle Man-
agement) covers all competences around the management of architec-
tural artifacts over time, managing complex models, and aligning archi-
tecture activities with other development activities.

In ACES, the standard tool for architecture modeling is Enterprise Archi-
tect (EA) [EA11a]. ACES reflects the ADF via MDG Technologies in EA
and uses the Add-In mechanism [EA11b] of EA for enhanced support of
architects. With the help of the SAVE (Software Architecture Visualiza-
tion and Evaluation) tool [BHS+08, KMN+06, KMN06, KMN08], ACES
supports reverse engineering of architecture and compliance checking of
intended architectural models with the actually implemented architec-
ture.

ACES as an approach to architecting is independent of particular do-
mains or system paradigms. In order to provide better support for archi-
tects of certain system types, it is important to analyze and understand
the specific challenges of these systems. This can be in particular com-
mon business goals and common requirements like quality attributes.

Competence
areas

Tool support

Architecture
core
competence
vs.
domain
competence

Figure 15: Architecture core and domain competence

Architecture
Core

Competence

Architecture
Domain

Competence
Challenges Solutions Technologies

ALM RATE ASR

ADF

DMM

DPR

Foundations of Architecture

36

E.g., mobile applications often share requirements like offline capability.
Based on these common challenges, common solutions can also be pro-
vided, typically in form of styles, patterns, or tactics [BCK03, Bos00,
BMR97], as described before. Finally, common solutions are often real-
ized in form of reusable technologies (e.g. communication technologies),
which are highly relevant for architects to efficiently realize systems. De-
signing architectures for a particular domain of systems highly benefits
from the knowledge of typical challenges, solutions, and technologies
[CJM+08]. Figure 15 depicts the overview of core competence and do-
main competence. In this thesis, the methodical part belongs to the do-
main-independent core competence whereas the specialization towards
SOA belongs to a domain competence.

ACES provides the foundation to integrate the contributions of this the-
sis. The contributions extend in particular DMM by adding more concrete
guidance for designing, modeling, and analyzing flexible architectures.
However, our contributions can be also used with other architecture
approaches.

2.2 Service-Oriented Architecture

SOA is a paradigm for the construction of information systems, which is
widely used today. It comes with mechanisms for flexibility, which in
practice are rarely effectively exploited. This led us, as described in Chap-
ter 1, to the motivation for this thesis. As SOA is also a widely used term
with many different notions, we provide in this section a brief overview
on different perspectives on SOA, how SOA is used in practice, and what
it architecturally means to organize a system along the principles of ser-
vice-orientation.

2.2.1 Definitions and Essence

Service-Oriented Architecture as a term was coined by Gartner as early
as 1996 [SN96]. In recent years in particular, it was used heavily in IT
industry. Nevertheless, there are still many different perspectives on and
definitions of SOA available. They are also considerably diverging regard-
ing their level of abstraction, scope, and focus. A set of different per-
spectives is given in [Til08]. Typical extremes in a spectrum of definitions
are very high-level business-oriented definitions like “A paradigm to
achieve better alignment of IT and Business with the goal to get more
flexibility for business processes.” [Til08] and on the other end very tech-
nical definitions like “A standardized technical architecture, based on
XML, SOAP, WSDL, UDDI, and further WS-*-Standards.” [Til08]. The first
one might be from the perspective of managers with a strong focus on
IT strategy and cost savings, the latter one might be from the perspective

Contribu-
tions to
ACES

Not THE
definition of
SOA

 Foundations of Architecture

 37

of developers developing in a service-oriented environment with some
standard technologies.

There are also definitions from standardization bodies like OASIS (Organ-
ization for the Advancement of Structured Information Standards): “Ser-
vice Oriented Architecture (SOA) is a paradigm for organizing and utiliz-
ing distributed capabilities that may be under the control of different
ownership domains.” [OAS06, OAS09]. Further, there are also books on
SOA giving definitions like in [KBS04]: “A Service-Oriented Architecture
(SOA) is a software architecture that is based on the key concepts of an
application frontend, service, service-repository, and service bus. A ser-
vice consists of a contract, one or more interfaces, and an implementa-
tion”.

It can be observed that SOA is often seen as a paradigm (which is the
broadest scope, covering many sub-aspects like architecture or technol-
ogies), whereas other definitions aim at particular sub-aspects like archi-
tecture or technologies only. One key aspect that is found in nearly all
definitions is the relation to the service concept, as also indicated in the
name SOA. While the technical and architectural aspects behind SOA are
mainly not new [KBS04], the alignment of business and IT along the ser-
vice concept might be the distinguishing aspect of SOA. For this thesis,
we use the following definition of SOA:

Definition 8 Service-Oriented Architecture

“SOA as a paradigm aims at an adequate support of business through IT-
systems. Therefore, business and IT are conceptually aligned by the utili-
zation of the service concept.” [ANT+11]

Similar to other paradigms, architectural styles, or design patterns, SOA
is a way to capture and describe best practices for a certain type of sys-
tems (see also Figure 15). More characterization of this type of systems is
given in the subsequent sections.

Although SOA has a lot to do with business, it is not a paradigm tailored
to a certain business domain like financials. Rather, each organization
and business can build IT-systems according to their own needs along
the principles of SOA. Consequently, SOA is nothing that someone can
simply buy out of the box (similar to object-orientation as a paradigm for
programming). SOA is not a product rather it has to be applied in a con-
crete context with appropriate engineering techniques.

Because SOA as a paradigm comes with so many aspects, it has often
been misconceived. Several of these misconceptions will be presented in
Section 2.2.2 and should support a better understanding of SOA. In Sec-
tion 2.2.3, we present a conceptual model for SOA, which aims at a
more in depth explanation of the different aspects of SOA, in particular
Business, Architecture, Technology, and the role of Services and Engi-

SOA as a
paradigm

What SOA
is NOT

Foundations of Architecture

38

neering. For this thesis, the focus is on architecture (which of course also
involves business and technology aspects). An introduction into the ar-
chitectural background of SOA is given in Section 2.2.4 and more details
can be found in Chapter 6.

One approach often helps to characterize a term: We give criteria for the
decision whether a certain system is built according to SOA principles or
not. Therefore, we give the following criteria which have to be fulfilled
for a system to be recognized as a SOA system:

� Organization of the business to be supported by the IT-system ac-
cording to service concepts (clear modeling of services and business
process, e.g. as described in Section 2.2.3)

� Fulfillment of key architectural characteristics as described in Section
2.2.4 (self-contained services with clear interfaces, etc.)

� Alignment (clear mapping / tracing) between the services at business
level and the services in the IT-system

2.2.2 SOA in Practice

In early years, business was mainly supported by IT with very specialized
and local systems which were often even not directly accessible for users.
Later on, in the 1970s and 1980s, users got direct access to the systems
with the emergence of terminals and personal computers. Then, a
stronger integration of business functions into integrated product suites
could be observed, as for example in SAP for ERP and financials. In the
1990s, even more integration evolved. Technically, standards and prod-
ucts emerged for distributed computing, like RPC, CORBA, or DCOM. All
types of systems became integrated, first locally, then more and more
globally, and also across enterprise borders, with the appearance of the
internet. Integrations were often done on a one-to-one basis with con-
siderable effort. EAI (Enterprise Application Integration) [Lin00] was one
earlier concept addressing the integration issues.

The term SOA was introduced in 1996 by Gartner [SN96]. In the earlier
days, SOA mainly aimed at the integration of systems with clearly de-
fined services. With the appearance of Web Services [KBS04] a standard-
ized technology was available, which promised more interoperability by
open, standardized, XML-based protocols like SOAP, WSDL, and UDDI
that were defined and maintained by W3C [W3C]. Many of the underly-
ing concepts like interface definition languages had already been availa-
ble in CORBA [KBS04]. The rather new idea was to see services as a con-
tract between a service provider and a service consumer who are often
not located in the same organization.

In the 1990s and 2000s there was more and more tendency to support
users in their workflows or business processes. This required the interplay

SOA or
NOT SOA?

SOA’s
history

 Foundations of Architecture

 39

of different systems in the workflow of a user and the orchestration of
activities among many users by a workflow system. As business process-
es are a key differentiation factor for many companies today, there is the
need for high customizability. This led to the evolution of the SOA para-
digm that also business processes and their contribution to business ser-
vices became part of the representation. Consequently, also the technol-
ogies evolved towards larger stacks of protocols, covering also execution
of service orchestrations with languages like BPEL [BPEL]. The resulting
technologies are large modeling frameworks and runtime solutions, of-
ten centered around a central communication infrastructure, the so-
called Enterprise Service Bus (ESB) [Cha04]. ESBs are often based on Web
Service technologies but add other infrastructure functionalities like
managing services, transforming between different data formats, etc.

In the meantime, SOA is quite wide-spread in industry [MER10]. Never-
theless, it is difficult to get reliable numbers about the real usage of SOA
and about how much of today’s IT is organized according to SOA. This
missing transparency is also caused by the fact that SOA is understood
and lived as strongly diverging ideas in different enterprises [MER10].
The range is from only using Web Services technology to provide easier
means for integration with external systems up to the organization of a
complete enterprise and its IT according to service-oriented principles.
The case that mainly technologies like Web Services are adopted is quite
common as our practical experience has shown.

Because many large enterprises see SOA as a promising paradigm to
improve their IT’s support for more productive business and to reduce
the cost for IT itself, there is a big business around SOA. Particularly,
technology vendors (selling so-called SOA-stacks, i.e. infrastructure com-
ponents) and consulting services companies (often coming together in
the same company) support enterprises to transform their IT towards
SOA [GBD08, AH06]. Besides the enterprises using large IT systems, also
many companies developing software products organize them along
SOA principles for better integration into the customer’s IT environment.
The alignment of SOA with other trends like BPM (Business Process
Management), EAM (Enterprise Architecture Management), or BAM
(Business Activity Monitoring) seems to be a further source for many
consulting projects.

Despite the wide adoption of SOA, many practitioners have been disap-
pointed with their SOA introduction projects in the past. However, scien-
tific or industrial publications rather focus on success stories. In internet
articles and blogs there is a more open discussion on this topic going on
(e.g. [Man09]). One key observation often described is that SOA is re-
duced to technology discussions about ESB or Web Services whereas the
big picture, in particular the business aspects, are often neglected.

A key reason for disappointment of practitioners is that they did not
achieve their goals with SOA projects. Typically, SOA is introduced in en-

SOA is
wide-spread

SOA is
big business

SOA and
misconcep-
tions

Foundations of Architecture

40

vironments of highly complex, heterogeneous, distributed systems, with
a focus on integration of legacy and standard software and the
achievement of critical quality requirements like performance, scalability,
flexibility, and security. These are a lot of challenges, which have caused
a lot of problems for IT in the past and the expectation was that SOA
would overcome these problems. Such expectations are not least caused
by marketing claims of technology vendors and consulting companies.

Several expectations, which did not fulfill in practice, can be summarized
as common misconceptions and have been widely observed in practice
[LMS+07, NP07, Naa08, Pro11]. In the following, some of the common
misconceptions are briefly described:

� “SOA defines a system’s complete architecture”: SOA defines ra-
ther an architectural style or a reference architecture than the com-
plete architecture of a system. There are still many architectural deci-
sions open, in particular how to represent the business logic in terms
of a service-based architecture. Further decisions are necessary for
constructing user interfaces, defining appropriate deployments, or
addressing quality attributes like performance.

� “SOA vendor stacks provide a system’s architecture”: SOA ven-
dor stacks are big collections of all types of technologies in SOA, like
communication infrastructures as ESB, engines for service orchestra-
tion with BPEL, etc. Although such vendor stacks realize several key
architectural decisions and solutions of SOA, they do not cover all
necessary architectural decisions, as described also in the previous
point.

� “SOA leads to a high degree of flexibility and reuse”: Only the
fact that SOA comes with several architecture mechanisms that allow
constructing for flexibility and reuse does not automatically lead to
the achievement of these goals, as described and motivated in Chap-
ter 1 of this thesis. Rather, a lot of further reasoning and engineering
is necessary to get the architecture right.

� “SOA enables interoperability by standardization”: Interopera-
bility of systems has many aspects, e.g. the syntactic interoperability
and the semantic interoperability. By standardized communication
protocols and the possibility to execute transformations SOA provides
a means to overcome syntactic heterogeneity. However, there are a
lot of further assumptions made in systems which often make practi-
cal integration a real challenge, even with a SOA.

Analyzing different misconceptions may lead us to the conclusion that
SOA often offers the appropriate architecture mechanisms to achieve re-
quired properties a system. However, for the further decisions needed,
sound engineering and governance is necessary, because they cannot be
provided by architecture and technology only. As a conclusion, engineer-
ing is important also in the world of SOA, which is known in recent days

 Foundations of Architecture

 41

as Service-Oriented Engineering (SOE). The next section describes a con-
ceptual model as a background for SOE.

2.2.3 A Conceptual Model for Service-Oriented Engineering

As described in previous sections, there is not THE definition for SOA
which would be generally accepted or applicable. Further, we discov-
ered, that sound Engineering might be one of the key missing aspects
why many SOA initiatives and projects fail in practice. In order to have an
adequate foundation for engineering methods, we decided to define a
conceptual model that should put all the concepts and aspects of SOA
into relationship, which is not possible in a crisp definition. This model is
described in [ANT10, ANT+11] and will be briefly introduced in this sec-
tion as context information for this thesis.

The key goals for the definition of the conceptual model are the follow-
ing:

� Unification of perspectives: As described in Section 2.2.1, many
different perspectives on SOA exist, of which most are somehow
right, but seem to be incompatible. Our conceptual model aims at
covering all these aspects at least in a way that an easy mapping of
the known perspectives is possible in order to allow discussions fo-
cused on content rather than on terminology.

� Foundation for communication with customers: All enterprises
and people have some perception of SOA, which might be restricted
to one specific perspective. Talking about SOA with customers re-
quires to sketch the big picture and to be able to clearly describe the
role of the customer in the overall SOA model. This needs to be cov-
ered in the conceptual model.

� Foundation for service-oriented engineering and methods: En-
gineering IT systems based on service-oriented concepts requires a
thorough understanding of the relationships between business as-
pects and potential solutions in IT. The conceptual model has to ex-
press all these aspects in a consistent and traceable way as a basis for
derived artifact models and process models.

There is also earlier and related work detailing the SOA paradigm with
conceptual models. The standardization organization OASIS published
two documents called reference model [OAS06] and reference architec-
ture [OAS09] which describe models with an intention similar to ours.
The SOA method described by sd&m in [EHH08] comes with a conceptu-
al model, too. Our model is not intended to come up with something
completely new. Rather, it is strongly inspired by the two sources named
and it adds the aspects important to us. These are in particular the fol-
lowing aspects:

Goals and
inspiration

Foundations of Architecture

42

� Seamless coverage from business concepts to IT systems

� Strong focus on engineering, in particular on the quality of the sys-
tems considered

� Strong focus on user perspective in addition to enterprise perspective

� Explicit description of all types of organizations involved around SOA
(usage, operation, development)

SOA as a paradigm is not a general-purpose development paradigm for
building any type of IT-systems. Rather, it is dedicated to a certain type
of systems with common characteristics and shared challenges. Only by
such a level of specialization of system types [GAO09], the solution as-
pects in terms of architectures (see also Section 2.1.3), technologies and
tailored engineering methods can be specific. In the following, some
common characteristics of typical SOA-based systems are listed (taken
from [ANT+11]).

� supporting of business and business processes

� serving multiple users

� constituting system landscapes (systems-of-systems)

� integrating multiple heterogeneous systems

� integrating legacy or COTS systems

� being complex and distributed

� being developed for long life-time and maintenance

� being continuously evolved following business

� being controlled by distributed responsibilities

Our conceptual model is based on the following key ideas which are
here briefly described below:

� View-based documentation and glossary: The number of ele-
ments described in the model is too large to be described in a single
diagram. Therefore, we decided to represent it in different views
showing coherent aspects.

� Organization in 5 key areas (see Figure 16): Business, Architecture,
Technology, Service, Engineering. Business expresses the real world
which is to be supported by the IT-systems at hand. Technology is
the technological world of a physical realization and operation of IT-
systems. Architecture is the set of principal design decisions made in
order to achieve IT-systems which fit the business’ needs. Service is
included as a key area as it is seen as the linking theme in service-
orientation which spans from business over architecture to technolo-

System type
in focus

Key ideas

 Foundations of Architecture

 43

gy. Finally, Engineering is included as an area which is needed to
construct the IT-systems at hand in alignment with business. The or-
ganization in these areas is also inspired by [Mas07], where the areas
Architecture, Enterprise, Computing, Platform, and Engineering are
distinguished.

� We distinguish three main classes of services which are necessary to
express all constellations of enterprises and the business services they
offer to each other. The first, and typically anticipated, category is
called Plain Business Service in our model . This can be any service,
organizations offer or consume which might be totally independent
of software or supported with software. An example would be a lo-
gistics service. The other two service types became necessary to bring
more light into very general sentences like “company X offers a ser-
vice for stock exchange values”. This might be a company offering
the plain business service delivering data. Or it might be also a com-
pany operating such a service. Alternatively, it might even be a com-
pany developing the software for such a service. Or a combination of
the aforementioned. Thus, we introduced two new service types:
Operation Service and Software and Systems Engineering Ser-
vice. First this classification is only at the business level but has of
course several connections to services at the software level.

As described above, the conceptual model is described with the help of
views, showing particular aspects of the model. In total, there are cur-
rently 14 views, each described with the rationale behind the view. Addi-
tionally, there is a glossary explaining all the elements in the conceptual
model. In order to give an idea what such views look like, Figure 17 gives
some insight. It describes with a focus on the service term which types of
services we distinguish in our model, and particularly how they relate to
each other. All details can be found in [ANT+11].

Architecture as the core topic of this thesis has a specific role in service-
orientation, too. This is also part of the conceptual model, mainly what it

Figure 16: Key areas of service-orientation

Views and
glossary

EngineeringService

Business

Technology

Architecture

Foundations of Architecture

44

means to look at SOA as an architectural style or a reference architec-
ture. These aspects are described in more detail in the following section.

2.2.4 SOA as Architectural Style and Reference Architecture

SOA is often perceived as defining an architectural style or a reference
architecture as a blueprint for designing software systems. Because of
the architectural focus of this thesis, we describe these aspects of SOA as
a foundation here. More details, in particular on the support of SOA for
flexibility, are presented in Chapter 6.

Both, architectural styles and reference architectures aim at a common
goal, but with a different focus. They provide proven solutions and best
practices for recurring challenges in the construction of IT systems. By
focusing on a class of systems with more or less abstract commonalities,
for example the need to achieve particular quality attributes like main-
tainability, it becomes possible to find reusable solution concepts. Be-
sides describing an abstract solution idea, architectural styles and refer-
ence architectures also provide a common language that eases commu-
nication among stakeholders in software development.

Architectural
styles and
reference
architectures

Figure 17: Example view from conceptual model for service-orientation

Service

Software Serv ice

Function Serv iceProcess Control
Serv ice

Atomic Function
Serv ice

Molecular Function
Serv ice

Infrastructure Serv ice

Business Serv ice

Business Process

Business Activ ity

Elementary Business
Activity

Business Function

Human Function System Function

Plain Business Serv ice

Operation Serv ice

S&S Engineering Serv ice

1..*

realizes

1..*

0..*

(partially)
controls

11..*

realizes
1

0..*

uses

0..1

1..*

is step in

1..*

1..*

is step in

1..*

 Foundations of Architecture

 45

Architectural styles [GS94, BCK03] define component types, connector
types among these components and rules how a system might be con-
structed from these components and connectors. Architectural styles
typically do not have any prescription about functionality of a system, ra-
ther they define only abstract meta-elements that can be used to organ-
ize the functionality and allow communication among such elements.
Well-known examples of architectural styles are the layering style, black-
board style, or client-server style.

Reference architectures [NAB11] define more detailed but still abstract
architectures that are shared by a class of systems in order to solve their
common challenges. Reference architectures can also be domain-specific
and thus might give a standard decomposition of the domain-specific
functionality. Reference architectures are often composed of multiple ar-
chitectural styles and typically cover the whole scope of a system,
whereas architectural styles only cover certain aspects quite abstractly.
The level of detail of reference architectures can vary widely due to dif-
ferent purposes of reference architectures. A well-known example is the
reference architecture for Java Enterprise Applications [JEE].

As described in Section 2.2.3, SOA also aims at providing solutions for
common challenges in the targeted system class. Such challenges are at
an abstract level:

� Flexibility for changes following an evolving business

� Distribution serving multiple users and their business processes

� Integration of heterogeneous systems from multiple sources

The so-called “SOA-Triangle” [Erl06] (see also Figure 18a) is widely per-
ceived as the architectural style prescribed by SOA. In particular due to
the spreading of Web Services [KBS04] as a realization technology, it has

Challenges
addressed
in SOA

Figure 18: a) SOA triangle [Erl06] b) SOA element types [KBS04]

SOA as
architectural
style

a) b)

Service
repository

Service
consumer

Service
Bind

PublishFind

Foundations of Architecture

46

gained popularity. It prescribes that there are service providers and ser-
vice consumers. The key connection is that a service consumer requests a
service provided by a service provider. This can also be done indirectly by
querying a service registry which returns at runtime an address of the
service provider and thus facilitates a kind of runtime flexibility in select-
ing an appropriate service provider. It is important to note that this type
of flexibility is not the one in the focus of this thesis which deals with
changing the system at development time (see Section 1.5). A similar
definition of the architectural style defined by SOA is given in [KBS04]
(see also Figure 18b): There, it is made more concrete that also applica-
tion frontends are needed which offer the user interface and consume
services, whereas the main business logic is offered via services. The ser-
vice registry is also there; in addition a service bus is added which is a
more concrete representation of the connector responsible for the com-
munication among service providers and service consumers.

Beyond this initial description of element types, there are also proposals
on the properties of single services [e.g. Erl06, KBS04, HHV06, Jos07]. It
is proposed that services should be stateless, idempotent, technology-
agnostic, etc.

Based on the SOA architectural style, several reference architectures are
currently available. The most prominent example is the IBM S3 (Service-
oriented Solution Stack) SOA Reference Architecture [AZE+07a,
AZE+07b]. This reference architecture is a compilation of best practices
in IBM’s SOA consulting projects and comprises several architectural as-
pects. They are covered in two views (see Figure 19): The solution stack
view and the middleware view. These two views cover important design
ideas like the separation of business processes and services, or different
types of services and their communication via a service bus. This refer-
ence architecture does not cover any domain-logic related parts, but it
offers the placeholder elements how to organize concrete business logic.

Summarizing, the term SOA is used for an architectural style, a reference
architecture and finally also for the concrete architecture of a system or

SOA as
reference
architecture

Figure 19: a) Solution stack view b) Middleware view [AZE+07a, AZE+07b]

a) b)

 Foundations of Architecture

 47

system landscape following the ideas of SOA. The relationship between
these aspects is depicted in Figure 20. A SOA-based reference architec-
ture is typically based on the SOA architectural style. A concrete SOA-
based system architecture is typically based on a reference architecture
or at least on the SOA architectural style. This categorization also has a
close relationship to the five key areas of our conceptual model we in-
troduced in Section 2.2.3. By means of dashed ellipses Figure 20 shows
abstract areas which denote a different coverage of the five key areas
and the decisions taken about software in these areas. While the archi-
tectural style only covers some architectural concepts and the service
concept, the reference architecture already incorporates aspects of busi-
ness and technology. The concrete system architecture has the largest
coverage as it has to resolve decisions that might be left open by archi-
tectural styles or reference architectures. For example, a concrete system
architecture has to care about all concrete business-specific instances of
business processes and services.

In Section 2.1.3, Figure 15 described how architecture domain compe-
tence and best practices can be captured (challenges, solutions, technol-
ogies). So far, we describe key challenges and solution concepts of SOA-
based systems. For SOA, many technologies in form of frameworks, plat-
forms, protocols, etc. exist [Jos07, KBS04]. In the following, we will list
some of the most prominent ones:

� Web Services

o Service-Interface-Language (like WSDL)

o Communication languages (like SOAP)

� Enterprise Service Bus (ESB)

Figure 20: Facets of SOA and their relationships

Technologies
for SOA

Business

Technology

Architecture

Engineering Service

SO
A Style

SO
A-based

Reference
Architecture

System
Architecture

Foundations of Architecture

48

� Process Execution Engines (with or without generation of graphical
user interfaces) (like for BPEL)

� REST (Representational State Transfer)

2.2.5 New Paradigms in Service-Orientation

Today, the term “service” is prominently found in another context: the
different service models [MG09] in cloud computing are called:

� Software-as-a-Service (SaaS)

� Platform-as-a-Service (PaaS)

� Infrastructure-as-a-Service (IaaS)

The key idea behind these services is that the consumer of the services
can use software (SaaS), runtime execution platforms (PaaS), or infra-
structure entities like computational power or data storage volume
(IaaS), which are provided and particularly operated by the service pro-
vider. By offering such services to multiple customers, the service provid-
er can achieve and realize economic benefits (economies of scale by
sharing resources, balancing resources between consumers, more effi-
ciency in management of resources), which makes cloud computing a
successful business model in today’s IT.

Although SOA and cloud computing share common ideas around ser-
vices, there are significant differences. Whereas SOA mainly targets at
the construction and integration of system landscapes, cloud computing
targets at outsourced and scalable operation of IT services.

The quality attribute flexibility is also often mentioned in the context of
cloud computing, but with a different meaning than the one underlying
this thesis. The expectations for flexibility in cloud computing mainly tar-
get at changing and adapting providers, services, or resources [IBM11];
the change of the software itself is rather out-of-scope.

Cloud
Computing

 Flexibility: State of the Art

 49

3 Flexibility: State of the Art

"The only constant is change"
Heraclitus

Flexibility as a quality attribute of software has many facets. This reaches
from the principal understanding of what makes software flexible over
constructive and analytical methods for engineering to concrete architec-
tural mechanisms and technologies that can induce flexibility in a certain
domain of systems. Consequently, also the analysis of state-of-art
around flexibility has to consider these facets. This chapter presents the
current state-of-the-art around flexibility and describes how it contrib-
utes to the research challenges and research ideas addressed in this the-
sis.

To contribute solution aspects to the practical problems described in
Chapter 1, we derived research directions to which this thesis contrib-
utes. We also described in Chapter 1, which research challenges we de-
rived for focusing and which research ideas are supposed to address the
challenges. These research challenges and ideas are obviously depending
on the current state-of-the-art in the sense that they build on many ex-
isting ideas and exceed them in certain points. While Section 1.4 only

Figure 21: State-of-the-art in the context of research directions

Approach

R.D

R.C

R.I

Research
Directions

Research
Challenges

Research
Ideas

Derive

State-
of-the-

Art
&

Related
Work

Inspire & Identify Gaps

Flexibility: State of the Art

50

outlined the challenges and ideas, this chapter presents the background
on existing work.

Figure 21 describes the role of state-of-the-art and related work in the
context of this thesis. From our research directions, the areas of related
work are derived. The identification of research challenges and research
ideas is an iterative process of shaping the contributions of this thesis by
inspirations of state-of-the-art work and the identification of gaps in this
work which would be worth to be filled.

The following research directions are approached in this thesis (see Sec-
tion 1.4). They are used for an according categorization of related work
(summarized in few words):

� R.D1: Theoretical foundation of flexibility and architecture [3.1]

� R.D2: Constructive support of flexibility [3.2]

� R.D3: Flexibility measurement and evaluation (automated) [3.3]

� R.D4: Flexibility for SOA (mechanisms and how to use them) [3.4]

The following sections describe related work belonging to the research
directions. Obviously, research approaches are not always matching ex-
actly one research direction, but we will assign them to the most appro-
priate one. Section 3.5 summarizes the related work and the gaps found
and explains how our research challenges can be derived.

3.1 Flexibility as a Quality Attribute

In this section, we first describe flexibility as a quality attribute in a field
of other similar quality attributes (3.1.1). Then, we describe flexibility as
researched in the area of information systems (3.1.2) and in other disci-
plines like systems engineering for space ships (3.1.3). Finally, we com-
pare flexibility to the key characteristic in product line engineering, which
is variability (3.1.4).

3.1.1 Flexibility and Related Quality Attributes

Flexibility is one among several so-called development time quality at-
tributes. That is, these quality attributes denote how well a software
system supports development activities. Many different terms and defini-
tions for development time quality attributes are around, e.g. maintaina-
bility, evolvability, flexibility, changeability, modifiability, adaptability.
Mostly, they are not precisely defined and interchangeably used in prac-
tice. One reason for difficulties in distinguishing these quality attributes is
that their concrete meaning for a system can only be expressed with the
help of architecture scenarios [CKK01], but not with a brief definition of

Research
Directions

Development
time quality
attributes

 Flexibility: State of the Art

 51

the quality attribute. Consequently, the definition of quality attributes
can give only rough directions and characterize quality attributes with
certain properties. In this section, we refer to typical definitions to show
how flexibility can be delineated from other quality attributes. Figure 22
shows a sketch of refinement relationships among quality attributes;
however, according to different definitions it could also look quite dif-
ferently.

Maintainability serves as our starting point for exploring the quality at-
tributes. Maintainability is probably the most frequently used name for
quality attributes in the area discussed [IEEE90, ISO1926, Bar03]. Typical-
ly, maintainability is characterized via different types of changes (correc-
tive, perfective, adaptive), and it covers several aspects that are needed
to allow easy changes to a software system. First, there is of course the
inherent property of the software to require only little portions of the
software to be touched or not (changeability / modifiability). Second,
there is the question how fast engineers can understand the system to
conduct changes (analyzability). Third, there is the question how well the
system can be tested after conducting the change (testability). A more
detailed quality model for maintainability is described in [BDP06,
DWP+07, WDF08], where maintainability is defined via a two-
dimensional matrix of maintenance activities vs. artifacts impacted by
these activities.

Modifiability [BCK03] is often seen as the property of the software sys-
tem to handle changes locally. Therefore, architectural mechanisms are
used [BCK03] in order to control the impact of certain changes. In the
understanding of this thesis, flexibility is that part of modifiability which

Figure 22: Relationships among quality attributes

Maintain-
ability

Modifiability
Flexibility

Agility

Producibility
Stability

Testability

Analyzability

Maintainability

corrective

perfective

adaptive
Evolveability Modifiability /

Changeability

corrective

perfective

adaptive
Flexibility

Adaptability

Runtime aspects

Adaptivity

Quality Attribute Sub-Category Refinement
Restricted to
Sub-Categories

Flexibility: State of the Art

52

has no corrective aspects. Other definitions of flexibility [BKL+95] have a
broader focus.

Evolvability is an often found term, too, which spans across many as-
pects of change [MM98, BCE08, BC10]. We classified it here as being
everything concerning changes except for corrections of a system.

The ultimate goal of a company relying on software is Agility [Sch04],
which means on the one hand that software systems have the properties
to be easily changed (maintainability) and that on the other hand the or-
ganization is able to conduct these changes efficiently. Therefore, opti-
mal processes and organizational prerequisites are necessary, as well as
adequate alignment of processes and organization with the system’s ar-
chitecture (producibility [Car12]). Please note that this interpretation of
Agility does not directly match to agile development processes.

Further aspects of change are often called adaptatability or adaptivity
[Che08]. However, these changes mostly mean that a system is prepared
to adapt to different contexts during runtime. That is, all change behav-
ior is already built in and has to be selected and activated.

For all characteristics and definitions given above, different terminologies
and definitions exist. It is not the intention of this thesis to come up with
consistent definitions of all terms. For the context of this thesis, a precise
definition and scope of Flexibility is given in Chapter 4.

3.1.2 Flexibility in Information Systems Research

Information Systems are one type of software systems which are often
described as opposed to Embedded Systems. In that sense, they are a
particular system class or domain in which the methods and technologies
of software engineering are applied. Beyond this definition, there is an-
other interpretation of Information Systems: the one which mainly cares
about the business to be supported by IT-systems and how this can be
best done3. There is a lot of research on Information Systems around
that is often rather dedicated to economic sciences.

From this perspective of Information Systems, flexibility is an important
quality attribute of software systems and some research exists, mainly by
Judith Gebauer, Franz Schober et al.

In [GL05], a conceptual model for flexibility in information systems is in-
troduced. A major distinction is made between flexibility-to-use and flex-
ibility-to-change. While flexibility-to-use is a property which is visible to
the user of a system due to the possibility to provide different behavior

3 In German: Wirtschaftsinformatik

Evolvability

Adaptability
Adaptivity

 Flexibility: State of the Art

 53

in different contexts, flexibility-to-change is the kind of flexibility which is
also in the focus of this thesis.

In [GS06], an extension is provided which is based on the characteriza-
tion of business processes. Three major characteristics are described: Un-
certainty, Variability, and Time Criticality. In combination with decision
variables that indicate whether to go for flexibility-to-use or for flexibility-
to-change, calculation models are presented which allow determining
business process performance in terms of cost. In [GL08], based on the
elaborated model, strategies and considerations for the introduction of
new information systems in enterprises are presented. The latest publica-
tion [SG11] is based on the calculation models and is dedicated to the
question of determining the value of flexibility for information systems.
Whereas these publications deal with detailed mathematical models
concerning the economic value of flexibility, they do not go into detail
about achieving flexibility as it is in the focus of this thesis.

Business Process Management (BPM) is a discipline that unifies parts of
the economic world and of the technical world (software systems sup-
port business). There is a strong need for flexibility in business processes
and thus in the supporting IT systems as well [OS03, ENS07]. Business
Process Management Systems often explicitly target at process flexibility
by decoupling processes from functions and making processes descrip-
tive first class development artifacts (see Chapter 6).

3.1.3 Flexibility in other Disciplines

Flexibility as a quality attribute is not only important for software sys-
tems, but also for other types of systems or products. Consequently,
there is research on flexibility in other disciplines, which is briefly
sketched in this section. Most of the research is conducted in the envi-
ronment of Massachusetts Institute of Technology (MIT).

In the area of industrial goods and products, for example electronic
tools, there are publications about methods for the analysis of flexibility.
In [RWC+03], a method called CMEA (change modes and effects analy-
sis) is described. It works by decomposing the product into modules and
parts and then reasoning about potential change causes, potential
changes on the causes, and potential effects of the changes. Then, the
flexibility is ranked with the help of a table which assigns a value of 1 to
10 (10 is lowest impact) to the estimated effects. Additionally, the occur-
rences of changes and the readiness for changes are rated in a similar
way. Finally, the overall flexibility is calculated taking all potential chang-
es into account. In [RWC+05], further case studies of applying the meth-
od are presented. The method is purely analytical and based on an idea
similar to change scenarios. Further research in this direction is presented
in [TSW09], but with a different way of measuring: There, the so-called

Industrial
products

Flexibility: State of the Art

54

high-definition design structure matrix is used for the representation of
change impacts and interdependencies.

More research on flexibility can be found in the domain of space vehicles
like satellites. Such systems often have a very long life-span and are no
longer physically accessible having been launched. Nevertheless, changes
are necessary to react to recognized situations, which means they need
more flexibility. Early publications [SHN01, SHN03] start with the obser-
vation that flexibility is important for many disciplines but is not well-
defined and often mixed up with other quality attributes like robustness.
One reason is the valid but too simple definition “Flexibility is the ability
to handle change”. In order to further explore flexibility, the authors
pose some questions which are a good foundation for any type of quali-
ty attribute to explore, and which are also tackled in our thesis:

� “What is flexibility? How does a formal definition look like?”

� “Why or when is flexibility needed in system design?”

� “How can one design for flexibility? What are the design principles?”

� “What are tradeoffs associated with flexibility?”

The papers [SHN01, SHN03] focus on the first question and therefore
broaden the definition of flexibility with the following aspects, which are
also included in our characterization: 1) time and occurrence of change
during system life-cycle; 2) characterization of what is changing; 3) clear
metrics for flexibility. Their resulting definition is: “Flexibility is the prop-
erty of a system that allows it to respond to changes in its initial capabili-
ties and attributes – occurring after the system has been fielded, i.e. is in
operation, in a timely and cost-effective way”. In a later publication
[RRH08], the definition is further refined, mainly with the focus of de-
scribing changeability as the core concept of other quality attributes
(modifiability, flexibility, scalability, adaptability), which is mainly in line
with our classification in Section 3.1.1. They add three aspects to classify
change: 1) change agents: where does the change originate (external or
internal to the system); 2) change effects: what changes in the system or
is kept constant on external triggers; 3) change mechanisms: what is
necessary to bring the system from the original state to the target state
of change. Further work on calculation of flexibility metrics is published
in [NHJ05, SWV+08]. Additionally, several doctoral theses have been
published in this research area: 1) [Sal02] describes how to weave time
into system architectures as an enabler for flexibility; 2) [Suh05] describes
the design of flexible product platforms; 3) [Nil05] describes a framework
concerned with the value of space system flexibility.

Building houses needs dealing with flexibility, too. [TMD09] describes an
analogy to software with typical aspects of a house that are easy to
change (e.g. the furniture) or hard to change (the main walls). The dif-
ferent levels of ease of change are described as “Shearing Layers”.

Space
science

Buildings

 Flexibility: State of the Art

 55

3.1.4 Variability in Product Line Engineering

Product Line Engineering (PLE) is a discipline in software engineering
which aims at generating benefits from the fact that multiple but similar
systems have to be built. The idea is to realize savings by explicitly ex-
ploiting the commonalities among different systems and by managing
their variabilities [CN07, LSR07]. Variability [GBS01] is one key property
in PLE which is challenging to handle for development organizations.
Managing variability means to minimize the impact of variations and to
localize variations in well-defined variation points. In that sense, variabil-
ity is similar to flexibility. During design of software product lines, the
elicitation of commonalities and variabilities is a key activity. Often, this
activity is called Scoping [Sch02] and aims at coming up with economi-
cally feasible product instances and well-defined commonalities and vari-
abilities. In that sense, scoping has similarities to the elicitation of flexibil-
ity requirements. Further, product lines evolve over time like single sys-
tems do. Thus, there is also the need for flexibility in product lines. Elici-
tation of evolution requirements is supported by methods as described in
[VDG08, VEG08].

3.2 Construction for Flexibility

Flexibility as a quality attribute is mainly addressed analytically in re-
search. That means, there are dedicated methods and metrics as to how
to evaluate the flexibility of a certain software system. This research is
explored in Section 3.3. Constructively, there is not much support for
flexibility. In this section, we summarize how contemporary architecture
methods support definition of flexible architectures. First, we give an
overview on the elicitation of flexibility requirements (3.2.1). Second, we
look at architecture definition methods (3.2.2). Third, we describe archi-
tectural mechanisms for flexibility (3.2.3) which can be applied during in
the process of designing. Finally, we present how SOA design approach-
es support flexibility, a key quality attribute in SOA (3.2.4).

3.2.1 Elicitation of Flexibility Requirements

Flexibility is a quality attribute or also called non-functional requirement
(NFR). In the field of requirements engineering, many methods exist (e.g.
TORE, Task-Oriented Requirements Engineering [PK04, ADE+09]), which
support the elicitation of functional as well as non-functional require-
ments. Additionally, there are more specialized methods to elicit quality
attributes and their particular meaning for a software system at hand
(e.g. [Doe11]). Such methods typically support the requirements engi-
neer with a systematic approach and with guidelines characterizing the
quality attributes [VEG08, VDG08]. Flexibility as a development time

Flexibility: State of the Art

56

quality attribute is often not as well supported as other quality attributes
that are directly visible for the user of the system.

As an input for architecture design, it is a wide-spread practice to ex-
press quality attributes precisely with architecture scenarios [BCK03]. In
particular the flexibility evaluation methods as described in Section 3.3
heavily rely on architecture scenarios [e.g. BB99, BB00, BB01, Ben02,
LRV99a, LRV99b].

Stating flexibility requirements is in a way a prediction of what will be
needed in the future. Therefore, flexibility requirements are often uncer-
tain. That is, it is not clear whether the requirements stated will ever be
realized and it is not clear whether all important changes have been
foreseen. Lassing et al published a study on how well flexibility require-
ments have been foreseen in a specific context [LRV99b, LRV03]. Bengts-
son and Bosch conducted an experiment on identifying change scenarios
[BB00] and found that groups come up with better scenarios than indi-
viduals. Interesting observations of the experiment are that nearly always
changes to a database and operating system are assumed changes and
that change scenarios cover significantly more often changes to interfac-
es and hardware than to the application logic.

3.2.2 Architecture Definition Approaches

In this section, we explore architecture definition approaches for their
support for the specific quality attribute flexibility.

Very early work in the direction of flexibility has been done by David Par-
nas. In [Par72], he writes about decomposition of systems into modules,
which is a very early approach for architecting software systems. There,
he already brings the idea in to determine likely changes (similar to
change scenarios) and to encapsulate the changes. He proposes to fol-
low the principles of Information Hiding and Localization of Change. In
[Par79], this work is followed up. In [Par94], Parnas describes the phe-
nomenon of software aging and demands planning for change (“To ap-
ply this principle [design for change], one begins by trying to characterize
the changes that are likely to occur over the “lifetime” of the product.
[…] Since we cannot predict the actual changes, the predictions will be
about classes of changes.”)

In our problem statement (Section 1.3), we identified the need for
alignment of architectural mechanisms and business logic mapping in
order to achieve flexibility. Contemporary architecture definition ap-
proaches can be classified in three major groups, according to their sup-
port for architecture mechanisms and to the decomposition of business
logic.

 Flexibility: State of the Art

 57

First, there are approaches mainly concentrating on the achievement of
quality attributes, like [BCK03] by Bass, Clements, and Kazman. The
focus is on the design for quality attributes, which is also reflected in the
name of the design method: Attribute Driven Design. Implicitly, there is
of course also the assumption that the system under design is first func-
tionally decomposed and then the mechanisms are applied, but there is
little guidance on how this decomposition is done and in particular on
how it is aligned with the architecture mechanisms to achieve quality at-
tributes like flexibility.

Second, there are approaches mainly concentrating on the decomposi-
tion of the domain and on the system in components of a software ar-
chitecture. [ABB+02] for example completely neglects the design for
quality attributes in the design process and focuses only on functional
decomposition. Further approaches in this category are the SOA model-
ing approaches as described in more detail in Section 3.2.4. Siedersleben
describes in [Sie04] an architecture approach which focuses on function-
al decomposition, but with a strong focus on the separation of business
logic and infrastructure. Thereby, he does not focus on system-specific
quality attributes but rather presents typical reference solutions which
can be entitled as best practices and might work for a larger amount of
systems.

Third, there are approaches that incorporate aspects of both, functional
decomposition and design for quality attributes. Bosch describes in
[Bos00] an approach that iteratively decomposes a system and then ap-
plies so-called Architecture Transformations to achieve quality attributes,
which means to introduce architectural mechanisms like styles. Several
further architecture approaches exist that cover both aspects, e.g.
[Kru03, Gor06, TMD09, Fai10]. It is common to all these approaches that
they address the interplay of architecture mechanisms and the resulting
elements of a functional decomposition only very roughly. That is, an
alignment of architectural mechanisms and business logic mapping as
needed for flexibility in particular, is not part of these methods. This is a
gap that is identified as an open research question in this thesis.

Besides the methodical aspects, the knowledge about architectural
mechanisms to achieve flexibility is crucial. The next section explores the
state-of-art concerning such mechanisms.

3.2.3 Architecture Mechanisms for Flexibility

In Definition 4, the term Architecture Mechanism is defined. We use the
term architecture mechanism as there are many different terms (style,
pattern, tactic, etc.) in literature which have similar meanings but are
also used differently in some contexts. Architecture mechanisms are ap-
plied to solve certain requirements, in particular quality attributes which
cannot be achieved by a simple decomposition and which often affect

Focus on
quality
attributes

Focus on
functional
decomposi-
tion

Approaches
coving
both aspects

Architecture
mechanisms

Flexibility: State of the Art

58

many components of a system. For example, flexibility or performance
require the usage of architecture mechanisms. Architecture mechanisms
are often described as best practice solutions to recurring problems in a
certain context, often known as patterns.

Architecture mechanisms for flexibility typically base on abstract and
general software engineering principles like separation of concerns
[Dij82, ER03], information hiding [Par72, Par79, ER03], low coupling &
high cohesion [SMC74, ER03] and make them more concrete.

In [BCK03, BBN07], the term Modifiability Tactics is used. The key goal
for modifiability is localization of change and avoidance of ripple effects
(see [Bla01]). Further work in this context [OKK07a, OKK07b] deals with
the value achieved by introducing architectural tactics and patterns.

In [TMD09], architectural adaptation is motivated and described. There,
the term adaptation is also mainly in line with our flexibility definition.
Architectural styles are mentioned as the mechanisms supporting
change. For example, the styles Application Programming Interface (API),
Scripting Languages, Plug-Ins, or Event Interfaces are mentioned.

There are several books available specializing on patterns for design and
architecture. The so-called Gang-of-Four (GoF) patterns [GHJ94] are
originally used at a more concrete design level, but many of the ideas
can be applied at the architectural level, too. Often, these patterns target
at the separation of concerns and thus they can contribute to flexibility if
appropriately used (“Each design pattern lets some aspect of system
structure vary independently of other aspects, thereby making a system
more robust to a particular kind of change.” [GHJ94]). A further source
of many patterns is the Pattern-Oriented Software Architecture (POSA)
[BMR97] series, which also provides many patterns supporting flexibility.

Evolution styles [GBS+09, GS09] are no typical architectural styles, but
the idea is quite close to supporting an architect in conducting changes
to a software system. An evolution style captures a domain-specific set
of evolution paths which determine constraints on how evolution has to
take place starting from an initial architecture and resulting in a target
architecture.

3.2.4 Design Approaches for SOA

Due to the popularity of SOA, several design approaches specializing on
the properties of SOA-based systems were defined. SOA design ap-
proaches mainly focus on functional decomposition of systems and the
mapping of functionality on the architectural element type Service. That
is, these approaches rather focus on the properties of single services
than on the overall architecture. Thus, design for flexibility is mostly no
inherent property of these methods.

Principles

Modifiability
tactics

Styles sup-
porting ad-
aptation

GoF patterns
& POSA

Evolution
styles

 Flexibility: State of the Art

 59

Quasar Enterprise by sd&m [EHH08] is an extensive approach for design-
ing service-oriented application landscapes which gives detailed guide-
lines on the step-wise analysis and design of SOA-based systems. Addi-
tionally, typical challenges like integration and the usage of SOA tech-
nologies are addressed. In [HHV06], more information on desirable
properties of single services is described, like coarse-grained or context
free.

IBM specialized the Rational Unified Process (RUP) [Kru03] towards a
method for service-oriented systems: It is called Service-Oriented Model-
ing and Architecture (SOMA) [AGA+08, AA06]. SOMA describes how to
analyze the business to be supported and then how to identify and re-
fine services which adequately support the business and its processes.
Zimmermann developed a further approach in IBM, which is described in
[Zim09]: A framework is developed which supports making and model-
ing architectural decisions for service-oriented systems. The focus in this
work is on making knowledge about SOA-design explicit and use it to
guide architects in designing their own systems.

Erl describes a method for service-oriented analysis and design [Erl06].
He decomposes the business and its business processes and identifies
service candidates which are assigned to three categories (entity services,
task services, and utility services). Erl gives extensive guidelines on the
decompositions, but focuses on the functionality only.

Lee et al describe an approach for developing service-oriented product
lines [LMN08, LMN10]. The analysis step is based on feature models and
the features are translated to services. Therefore, guidance on service
identification and definition is given.

The Software Engineering Institute (SEI) describes in the report “Archi-
tecting Service-Oriented Systems” [BLM+11] typical properties and chal-
lenges of service-oriented systems. Less focus is on the method. Rather,
the architecture mechanisms like Enterprise Service Bus or Business Pro-
cess Engine are discussed in the light of their impact on quality attrib-
utes.

The Object Management Group (OMG) defined a new UML-based lan-
guage standard for the description of service-oriented systems [OMG09].
The language extensions are mainly meta-model elements and UML ste-
reotypes, adapted to the SOA terminology.

Gebhart proposes an extension for SOA design approaches which focus-
es on a high-quality design [Geb11]. As quality, he proposes properties
like Unambiguous Categorization, Retrievability, Loose Coupling, and
Autonomy for individual services. For these properties, he introduces
metrics and proposes how to identify problems regarding these proper-
ties and how to improve the design.

sd&m

IBM

Erl

IESE

SEI

OMG

Gebhart

Flexibility: State of the Art

60

All approaches outlined focus on the definition of single services and
lack support for proactively designing quality attributes like flexibility into
a system.

3.3 Measurement and Evaluation of Flexibility

Measuring and evaluation of flexibility is in the focus of several methods
and approaches. Different names for the quality attribute under evalua-
tion are used, mainly maintainability, modifiability, and flexibility, but the
general ideas are mostly transferrable. In the following sections, we will
briefly sketch different research directions and approaches for the evalu-
ation of flexibility.

3.3.1 General Overview on Architecture Evaluation Methods

Architecture is the appropriate level of abstraction to analyze and evalu-
ate many important questions about software systems. Thereby, archi-
tecture offers the possibility to focus on the most relevant facts for a cer-
tain question and to abstract from less relevant facts. Additionally, archi-
tecture offers the advantage that architectural ideas can be made availa-
ble quite early in the development lifecycle, which allows the analysis of
crucial properties of the resulting systems, without the need to build
them first.

Different types of architecture evaluation methods exist which mainly
differ with respect to the different prerequisites they require (point in
time in system lifecycle, availability of artifacts and documentation, avail-
ability of resources and time for evaluation) and to the type of evaluation
result (questions to be answered, required level of confidence) they can
produce.

A very widespread type of architecture evaluation is scenario-based eval-
uation. Therefore, important requirements are elicited from stakeholders
and precisely expressed with so-called architecture scenarios [BCK03].
Then, evaluators and architects discuss together how the architecture at
hand fulfills the scenarios and where there are gaps or risks in fulfill-
ment. Well-known approaches of this type are SAAM (Software Archi-
tecture Analysis Method) [KAB96] and ATAM (Architecture Tradeoff
Analysis Method) [CKK01] by the SEI (Software Engineering Institute).
These methods can be applied at any level of detail of architecture speci-
fication. Of course, a low level of precision in input artifacts also results
in lower confidence in the evaluation results. Scenario-based architecture
evaluation methods like SAAM and ATAM are typically targeting at qual-
ity attributes in general, but do not provide specific support for quality
attributes like flexibility.

Different
types of
methods

Scenario-
based

 Flexibility: State of the Art

 61

For more confidence in the evaluation results, more detailed evaluation
inputs and more focused evaluation methods are necessary. That means
that typically formal architecture models have to be provided which cov-
er specific information for the analysis at hand. For example that would
mean that for detailed performance analyses architecture models must
cover the necessary timing information. Many of the architecture evalua-
tion methods for maintainability and flexibility as described in the follow-
ing sections fall into this category. However, there is still a broad range
in the degree of formalization. With a high degree of formalization, also
automatic calculations and simulations [Bos00] become possible, as real-
ized in this thesis.

A survey of architecture evaluation methods is published in [RG08].

3.3.2 Evolution Complexity

Eden and Mens introduced the term Evolution Complexity [EM06] fol-
lowing the idea of Computational Complexity. Thus, they introduce simi-
lar to the Big Oh notation a notation which expresses the complexity of
changes in classes of growth; that means a change is independent of the
system size (O(1)) or grows linearly with the system size (O(n)). They
count the number of affected modules for a certain change scenario in a
software system. However, there are basically only two complexity clas-
ses in evolution and thus these metrics are not accurate enough.

Consequently, in a second step they introduce more evolution metrics,
for example depending on the number of lines of codes affected or on
the cyclomatic complexity of the affected modules. In a number of case
studies they apply their metrics on well-known Java design constructs or
on architectural styles and calculate the metrics for assumed change sce-
narios.

Summarizing, they introduce interesting ideas for measuring flexibility
but they do not provide a consistent idea of how to use these metrics
and of how to embed them into engineering practices.

3.3.3 Analyzing Modifiability at Architecture Level

Two major (and intertwining) research streams in architecture-level mod-
ifiability analysis can be observed and are described in the following.

Lassing, van Vliet et al describe two larger case studies of evaluating flex-
ibility of software architectures [LRV99a, LRV99c]. They base their analy-
sis on scenario-based architecture evaluation methods [KAB96], but they
do an explicit analysis of the quality attribute flexibility / modifiability and
derived criteria. These criteria (Impact level in terms of components af-
fected by change; Multiple owners; Arising conflicts from multiple ver-

Quality
attribute-
specific and
more formal
methods

Flexibility: State of the Art

62

sions of software) are used to evaluate how flexible a system is with re-
spect to a particular scenario. For their case studies, they describe the ar-
chitecture of the systems (system itself (micro architecture) and system in
context (macro architecture)) and discuss for a set of elicited flexibility
scenarios how well they are supported by the architecture.

Bengtsson and Bosch developed a method “Architecture Level Prediction
of Software Maintenance” (ALPSM) [BB99], which aims at analyzing
maintenance effort during architecture design. It is a scenario-based ap-
proach as well and introduces a weighting of change scenarios and an
estimation of component sizes. In a step “scripting the scenarios”, the
change impact of scenarios is analyzed and in a final calculation the av-
erage size (in LoC) of a change is derived, from which, with several as-
sumptions, maintenance efforts can be derived.

In the following, Lassing, van Vliet, Bengtsson, and Bosch published to-
gether and called their method “Architecture-Level Modifiability Analy-
sis” (ALMA) [BLB+00]. The core of the method is scenario-based, aiming
at the analysis of change impact of anticipated scenarios. In [LRV01], ar-
chitectural viewpoints that provide information for modifiability analysis
are introduced (context, technical infrastructure, conceptual, develop-
ment viewpoints) which represent a meta-model of architecture.

Refinements, more case studies, and experiences with ALMA have been
published in [BB01, Ben02, LBV+02, BLB+04]. This thesis bases on sever-
al ideas introduced in ALMA, e.g. the weighting of scenarios and the
calculation of impact sizes. While ALMA puts more focus on the calcula-
tion of maintenance efforts and the process of scenario elicitation, we
put more focus on the integration of flexibility evaluation in the architec-
ture construction process and in particular on more explicit separation of
business logic and infrastructure. Additionally, we provide a notation for
modeling change impacts as part of the architecture model. This allows
automatic calculation of flexibility metric values in architecture modeling
tools.

3.3.4 Modifiability and Real Options Theory

Bahsoon and Emmerich developed an approach to calculate the value of
investing into architectural flexibility, which is called “ArchOptions”
[BE03, BE04, Bah05, BE06]. They put architectural stability [Jaz02] as a
major goal as it leads to moderate cost for occurring changes. In order to
achieve architectural stability, the architecture has to be flexible enough
to absorb the changes. They developed a model based on real options
theory: Put simply, they see investing into flexibility similar to buying real
options which allow conducting a certain change at a certain later point
in time at a certain price. They found analogies for typical parameters in
real options theory and thus can use the calculation models provided by
the model they used. Consequently, they provide interpretation guide-

 Flexibility: State of the Art

 63

lines which allow a judgment on whether the investment into flexibility
for certain changes is worthwhile or not.

There is little overlap of this work on real options theory and the work of
our thesis. We do not emphasize the ratio of investment into flexibility
and the payoff in detail; thus this work complements our approach well.

3.3.5 Palladio and Maintainability Prediction

At Karlsruhe Institute of Technology (KIT), the Palladio Component Mod-
el (PCM) [RBB+11] was developed. It is an architectural framework
providing methods for architecture definition and analysis. The basis of
the framework is an architecture meta-model and a distinction of roles
involved in development and their relationship to the models. Architec-
ture modeling and architecture analysis based on PCM are supported
with Palladio Bench, an Eclipse-based tool-suite [Palladio].

Palladio supports architecture analysis for several quality attributes like
performance, reliability, or maintainability. In [BKR07, BKR09], they de-
scribe how PCM is utilized to represent the relevant information for per-
formance prediction and how the model can be analyzed. For maintain-
ability, the Karlsruhe Maintainability Prediction (KAMP) [SR09] approach
is defined. It is also based on PCM and supports the calculation of
change effort for certain anticipated change scenarios. A detailed
change impact analysis for a scenario is conducted which can be cali-
brated with bottom-up effort estimations for conducting the changes.

KAMP bases on some ideas about the analysis of maintainability that are
similar to the ones of our thesis: It works in a scenario-based way and
calculates maintainability based on impacted architectural elements.
While KAMP prescribes in more detail how to take architectural elements
like components and interfaces into account, our approach stays rather
general and allows including any architectural element as needed by the
architect. KAMP supports the automatic derivation of change impact by
model comparison whereas our approach targets at a light-weight and
more abstract modeling of change impacts by the architect during archi-
tecture design. KAMP rather supports the execution of changes at a cer-
tain point in time by estimating the change effort and deriving work
plans for the change whereas our approach targets at the construction
time of the architecture when the flexibility needed is built in. Further-
more, KAMP takes activities like deployment into account for the effort
estimation.

3.3.6 Enterprise Systems Modifiability Analysis

Lagerström, Johnson et al developed an approach for analyzing the
modifiability of enterprise systems; they target at application landscapes

Flexibility: State of the Art

64

with an enterprise-wide focus. First, they developed so-called Extended
Influence Diagrams [PLN+07] as a basis for the expression of their meta-
models. In [Lag07], the first meta-model for maintainability is developed.
Thereby, maintainability is seen in our broadest sense, comparable to
what we called “Agility” in Section 3.1.1 (covering aspects of Personnel,
Process, Documentation, Architecture Quality, Platform Quality, Source
Code Quality). As a quantitative basis for the meta-model, Probabilistic
Relational Models (PRM) are used. The analysis is done scenario-based
and the evaluation results are probabilistic values, too.

In [LFJ+09], a method for creating enterprise architecture meta-models is
introduced, which is then applied for modifiability (renamed from main-
tainability). The resulting models have a qualitative part with elements,
attributes, and causal relationships (see Figure 23) and a quantitative
part which contains probabilistic calculations for the derivation of the
overall modifiability or cost values. A more detailed meta-model is pre-
sented in [LJE10], which is dedicated to software change cost estimation.
It describes different views of the meta-model (organizational, project,
documentational, system) and hierarchical views for characterizing sys-
tem parts in order to control the model complexity. In [LJH10], the au-
thors summarize the evaluation models and methods and illustrate their
usage with case studies.

The approach of Lagerström and Johnson differs from our approach
mainly in the coverage of aspects concerning changes. Whereas they try
to cover all relevant aspects influencing modifiability in the broadest
sense, we aim at a much smaller scope, namely at the impact of archi-
tectural decisions on flexibility, and thus achieve a higher accuracy. Fur-
ther, we also support constructive aspects. An approach like the one dis-

Figure 23: Modifiability meta-model [LFJ+09]

 Flexibility: State of the Art

 65

cussed is helpful in the sense that it covers the relationships among dif-
ferent types of influence factors and allows identifying where investment
into improvements is promising. It could be combined with our approach
in the sense that our approach delivers more accurate evaluation results
for a small excerpt of the overall evaluation.

3.3.7 Further Related Research

In this section, we present some more related individual research results.

In [ZYX+02] an approach for change impact analysis at the architectural
level is introduced in order to support evolution. This approach defines
the notions of slicing and chopping at the architectural level. The main
usage from a change impact analysis perspective is to identify in an ar-
chitecture how changes propagate to other components in case a cer-
tain component has to be changed. Doing so does not take the relation-
ship to change requirements into account but works at architectural el-
ements only. Consequently, this approach is complementary to the ap-
proach introduced in this thesis: It could be used for auto-completion of
change impact views after adding first impacted architectural elements.

In [AFL+05], an experiment on the exploitation of flexibility is described.
They have several findings: developers not always make use of built-in
flexibility; even sophisticated flexibility mechanisms might not be recog-
nized and used; their conclusion is that besides a sound documentation
also the intention behind flexibility mechanisms has to become clear.
Further, deterioration of architecture has to be prevented to benefit from
flexibility in the long run.

Sneed provides a method for estimating maintenance cost [Sne95]. For a
specific change he also analyzes the size of the so-called Impact Domain
and applies several adjustment factors like the complexity factor, the
quality factor, and the project influence factor. Finally, the effort for the
change is derived from a maintenance productivity table. The approach
is more related to cost estimation work than to our approach; however,
it uses similar mechanisms for the impact estimation and the variation
with influence factors.

3.4 Flexibility in SOA-Based Information Systems

Flexibility is often promised and expected as one of the key benefits of
SOA (see Chapter 1). However, there is not much research on this topic.
One publication with a strong focus on business flexibility and some ar-
chitectural aspects is [Spr05]. Mostly, when it comes to the idea of flexi-
bility in SOA, runtime adaptation is in focus, as described in [Smi08].

Flexibility: State of the Art

66

SOA as an architectural style with some implications for flexibility is de-
scribed by IBM in [Lub07].

A SOA research agenda has been published under the supervision of SEI
and others [LSK07]. It identifies among many other research questions
also those that are closely related to our thesis. In the Engineering Do-
main, Architecture and Design and Maintenance and Reengineering
have been identified. With respect to Architecture and Design, we pro-
vide our architecture approach for flexibility as well as the SOA-specifics
in Chapter 6. With respect to Maintenance and Reengineering we pro-
vide proactive tool-support for maintenance activities and impact analy-
sis, mainly by the change impact views and our tool support.

As architecture mechanisms for flexibility in SOA, ESB (see Section 2.2)
[Cha04], BPM [Wes07], or BRM [BS09, End04] are often found. Howev-
er, these descriptions typically describe only the architectural mecha-
nisms and not how to use them in terms of business logic mapping for
achieving True Flexibility, as aimed at in our thesis.

Another branch of research that is related to BPM deals with process
flexibility [RSS06, SMR+08, Kan09, Kan10]. This typically means that
processes which are supported by workflow languages and engines can
be changed flexibly, even during the runtime of the system. This type of
flexibility is out of scope of this thesis.

3.5 Summary and Conclusion

In the previous sections, we described related work to all our research di-
rections as sketched in the introduction of this chapter and provided
one-to-one comparisons. In this section, we summarize the analysis of
related work and the gaps to be filled by this thesis.

It turned out that there is no single comparable approach, which is sup-
posed to be improved in this thesis. Rather, for all the research direc-
tions, there are many related ideas and approaches which provide partial
foundations for our thesis. This thesis contributes mainly in the area of
design for flexibility, with support of analytical methods and refinements
for SOA-based systems. Therefore, a consistent and crosscutting ap-
proach around the quality attribute flexibility is introduced.

The center of this thesis is the constructive support for flexibility. As de-
scribed in Section 3.2, current architecture definition approaches in gen-
eral and SOA design approaches in particular do not offer this support.
We introduce a more detailed process and guidance on how to achieve
flexibility in combining the application of adequate architecture mecha-

 Flexibility: State of the Art

 67

nisms (based on quality-driven design) and business logic mappings
(based on functional decompositions).

A key idea of our approach is to support an architect with immediate
feedback on the flexibility of the architecture under construction. Most
of the related work we found is on evaluation of flexibility or similar
quality attributes at architecture level (see Section 3.3). Consequently,
there is a strong foundation for our analytical support. However, the ap-
proaches found still require manual analysis and interpretation for flexi-
bility evaluation, which is not desired in our approach. Therefore, we
need an idea of how to achieve an automated analysis of flexibility.

As a basis for our methodical contributions, we need a consistent foun-
dation in terms of defining flexibility and the relationship to architecture.
Thus, we reviewed related work on flexibility and related quality attrib-
utes from different domains (see Section 3.1). This related work gives a
solid foundation to synthesize a consistent meta-model of flexibility at
architecture level, similar to what others did for different scopes.

Finally, we explored how flexibility is addressed in research for SOA-
based systems (see Section 3.4). There we found that although many ar-
chitecture mechanisms with inherent flexibility potential exist, it is not
clear how they are to be selected and utilized in architecture definition.
This is the gap we fill there.

From our research directions (R.D1 – R.D4) and the related work we de-
rive the following research challenges (see Section 1.4):

� R.C1: How can the relationship between flexibility and architecture
be precisely characterized and how can this be used for 1) better elic-
itation of flexibility requirements, 2) more guidance for architecture
design, 3) measurement of flexibility?

� R.C2: How can an architecture construction process support architec-
ture design for flexibility with appropriate architectural mechanisms
and business logic mappings?

� R.C3: How can the flexibility of an architecture under design be au-
tomatically predicted for near-time feedback on flexibility to an archi-
tect?

� R.C4: How should architectural information about paradigms / tech-
nologies like SOA be described and used in architecture construction
in order to exploit their flexibility potential?

As described in Section 1.4, the research ideas R.I1 – R.I4 are followed
(see Figure 24) in order to address the research challenges.

In summary, we provide an approach for guiding architecture definition
towards flexibility. One aspect is direct feedback about the achieved level
of flexibility to the architect, which requires extending existing flexibility

Flexibility: State of the Art

68

evaluation methods towards automated evaluation. As a basis we need a
consistent meta-model of flexibility at architecture level. Finally, we con-
tribute support for making best use of typical SOA architecture mecha-
nisms in achieving flexibility.

Figure 24: Overview on research ideas of the thesis

Flexibility mechanisms in SOA and their usage
in flexibility engineering method

R.I4

Method Tailoring

Method

Foundations / Formalization

Technique / Tool

SOA-Specific

Architecture
Core
Competence

Conceptual Model
Architecture <-> Flexibility

Constructive
Design method

enhancement: Flexibility
by aligned architecture

mechanisms and business
logic mapping

Analytical
Automated

measurement of
flexibility and

continuous feedback in
architecture tool

R.I1

R.I2 R.I3

 Flexibility as a Quality Attribute of Software

 69

4 Flexibility as a Quality Attribute of Software

"Flexibility is the root of all evil."
Scott Jenson

Scott Jenson writes in “The Simplicity Shift” [Jen02]: “Flexibility is the
root of all evil”. Although not written for software systems and their in-
ternal organization but rather for industrial product design and the relat-
ed user interfaces, this citation and its explanation hold also for flexibility
of software: Flexibility per se is not evil, but trying to make everything
flexible leads to poor design. On the other hand, flexibility can be very
valuable when fitting the needs. We will describe these ideas more for-
mally and grounded for the world of software in this chapter.

In this chapter, we provide an elaborate definition and discussion of
characteristics and aspects around flexibility. Our definitions are based
on existing definitions and concepts but aim at more depth in clarifying
concepts and their relationships. We introduce or reference definitions of
the key terms in this chapter. Some of the definitions have already been
introduced in Chapter 1 for precisely describing the problem addressed
in this thesis.

In [SHN01] (see Section 3.1.3), flexibility research in the area of space
systems is introduced. Questions are posed which also guide our re-
search well. These questions will be addressed in this and the next chap-
ter.

� “What is flexibility? How does a formal definition look like?”

� “Why or when is flexibility needed in system design?”

� “How can one design for flexibility? What are the design principles?”

� “What are tradeoffs associated with flexibility?”

First, we start with a characterization of flexibility in Section 4.1. Then,
we elaborate on flexibility requirements in Section 4.2. For the achieve-
ment of flexibility, the role of architecture is discussed in Section 4.3. Fi-
nally, all concepts are summarized and formalized in a conceptual model
for flexibility in Section 4.4.

Flexibility as a Quality Attribute of Software

70

4.1 Characterization of Flexibility

In this section, we characterize flexibility. First, principle characteristics
are sketched (4.1.1). Second, flexibility is viewed in the perspective of the
software product lifecycle (4.1.2). Then, the relationship of flexibility to
software engineering artifacts is outlined (4.1.3). Finally, flexibility is de-
scribed in a spectrum of uncertainty (4.1.3).

4.1.1 Principle Characteristics

Flexibility is always about changing software in the future. In practice,
software is often expected to support any type of change, as it is inher-
ently “soft”. Theoretically, most changes can be conducted but the ef-
fort for conducting a change can be enormous. Thus, flexibility always
means to support changes with little effort and acceptable cost.

Definition 9 Software Change (or simply “Change”)

A change of a software system is a change of implementation artifacts
of the system (and consequently the executable system) in order to fulfill
changes in the system’s set of requirements.

Flexibility is always about future, anticipated requirements to a sys-
tem which have not been realized yet and can only be realized via
changes to the system at development time. Keeping effort for
changes little requires that only local changes to a few implementation
artifacts are necessary. The realization of a software system always leads
to the situation that certain requirements have encapsulated realizations
while other requirements have crosscutting realizations (determined by
the architecture and the nature of requirements). Consequently, there
are always potential changes to requirements which cannot be conduct-
ed with little effort, which means that a system cannot be flexible
with respect to all changes of requirements. This is depicted in Figure
25, where all potential changes to requirements are sketched with an as-
sumed effort for conducting the changes. Thus, most approaches to-
wards flexibility (see Chapter 3) state that flexibility of a system can only
be judged with respect to certain anticipated changes. Such antici-
pated changes are expressed as flexibility requirements (see Definition
3). On the other hand, for the same reasons there are changes in each
system that can be easily conducted. For these, the term flexibility po-
tential (see Definition 5) is introduced. Only if the changes expressed in
flexibility requirements are covered by the changes supported by the
flexibility potential, the system has valuable flexibility (= true flexibility,
see Definition 7).

Besides the effort for changing implementation artifacts (as men-
tioned above), changing a software system leads to effort caused by

 Flexibility as a Quality Attribute of Software

 71

other activities like first analyzing and understanding the system, testing
the system after change, putting the system into production after
change, etc. However, these efforts are related to the quality flexibility as
defined in this thesis, but they are expressed in other quality attributes
like understandability and maintainability, as delineated from flexibility in
Section 3.1.1. Please note that this is the definition for this thesis and it
is not commonly agreed on as described in Section 3.1.

As flexibility requirements are requirements about changes of re-
quirements in the future, there is an inherent indirection, which makes
flexibility in practice often harder to understand, to construct for, and to
evaluate than other quality attributes. An additional complexity is intro-
duced as flexibility requirements are often not sharp and clearly defined
but rather fuzzy (see Section 4.2). Definition 10 gives a summarizing def-
inition of flexibility covering the aspects discussed. A more formal and
measurable definition is described in Section 4.3.3.2.

Definition 10 Flexibility

Flexibility is the property of a software system to allow conducting cer-
tain anticipated changes to the system (expressed in flexibility require-
ments) with acceptable effort for modifying the system’s implementation
artifacts. This means that the flexibility requirements are covered by the
flexibility potential of the system.

Consequently, when we use the term flexibility, true flexibility is meant.
True flexibility is thus an additional term that was introduced to make
the distinction between flexibility and flexibility potential clear. Actively
designing for flexibility means to come to a situation where only little ef-
fort is needed for important changes and high effort is needed for
changes never conducted, rather than having a random relationship.

An architect aiming at flexibility has to accept limitations with respect to
flexibility requirements that can be covered. This has several reasons for
this:

Figure 25: Distribution of change effort to change requirements

All changes to
requirements

Effort to conduct change at
implementation level

Low effort
� High Flexibility

High effort
� Low Flexibility

Flexibility as a Quality Attribute of Software

72

� A system cannot be flexible with respect to all flexibility requirements
at the same time (see arguments above)

� Introduction of flexibility often comes with additional cost (see Sec-
tion 4.3.4)

� Flexibility typically requires tradeoffs with other quality attributes (see
Section 4.2.3)

4.1.2 Flexibility in the Software System Lifecycle

Flexibility affects the whole life cycle of a software system from initial
development to retirement. As described, flexibility is the property of a
system to support changes to a software system at acceptable cost.
Changes to a software system typically occur during maintenance activi-
ties or also in later phases of initial system development. In order to ben-
efit from flexibility later on, it has to be designed and built into a system
earlier. Designing and building in flexibility is very typical during initial
system development, but it can be also done in larger maintenance pro-
jects when the need for flexibility is recognized. We distinguish mainly
two high-level activities around flexibility (see Figure 26):

1. Designing and building in flexibility

2. Exploiting flexibility

Both activities can basically happen at all times in the system lifecycle. Of
course flexibility has to be first built in with respect to a particular
change, otherwise exploitation is not possible. This thesis focuses on de-
signing and building in flexibility (see Chapter 1), whereas the exploita-
tion of flexibility is not covered.

Looking at flexibility requirements is possible from two points in time
in the system life-cycle. From the a-priori point, flexibility requirements
have been anticipated and weighted during system design and building.
From the a-posteriori point, which means looking back at the changes
conducted in a system, all actual change requirements can be listed and

Figure 26: System lifecycle phases and activities related to flexibility

System Lifecycle
Phase

Activities wrt. Flexibility

Flexibility
Construction

Flexibility
Exploitation

Construction Maintenance

 Flexibility as a Quality Attribute of Software

 73

also the effort to realize them is known. For our method and thesis,
mainly the a-priori perspective is relevant.

4.1.3 Flexibility and Software Engineering Artifacts

Flexibility has a relationship to artifacts along the software engineering
process. Thus, we sketch the role of requirements, architecture, and im-
plementation for flexibility.

Flexibility requirements are non-functional requirements as many other
requirements. A specific aspect is that they express some indirection:
They are requirements about changing the set of requirements at a cer-
tain point in time in the future. Consequently, flexibility requirements are
elicited and treated similar than other requirements. Guidelines for their
elicitation and description are outlined in Section 4.2.

According to our definition of flexibility (see Definition 10), flexibility
means that changes can be conducted with acceptable effort for modify-
ing implementation artifacts. The key assumption behind this is that
most of the effort for modifying system artifacts has to be spent on the
implementation level. With implementation level we basically mean all
artifacts that are developed to become part of the executable system, for
example source code files in any programming language (e.g. Java, C,
C#, Fortran files, etc.), scripts and descriptors as parts of technologies
(like SQL queries, Java EE deployment descriptors, XML-based files for
configuring Spring or Eclipse, etc.), or database definition schemas. In
the context of model-driven development [Sel03], such implementation
artifacts are often not directly created by programmers, but they are
generated fully automatically from higher-level model artifacts. Inter-
preted in our understanding, the flexibility definition always refers to the
last stage of implementation artifacts to which the modifications have to
be done manually by programmers (because the update of the generat-
ed artifacts is very easy through automation). This can also be models.
An example is the addition of a data field through all levels of software
from database over the logic layer to the UI: If the system is described
with a model that contains the data and can be updated and the respec-
tive code parts can be generated, there are a lot of changes to the code
but only minimal effort for programmers, which results in high flexibility.
Summarizing, we can say that flexibility is related to the artifacts that
have to be changed by programmers or other engineers and cause the
significant efforts.

Referring to the definition of flexibility: Why is architecture important
and why should we not care about the implementation level only? Archi-
tecture is the blueprint and manifestation of all design decisions which
are realized at implementation level. Consequently, architecture is the
abstraction used to design and measure flexibility without the need to
consider every detail of the implementation level. In that sense, architec-

Require-
ments

Implemen-
tation

Architecture

Flexibility as a Quality Attribute of Software

74

ture allows controlling the high complexity of today’s systems when talk-
ing about flexibility and it allows us to plan for flexibility at an early point
in time in the development lifecycle. Another aspect of architecture in
the context of changing a system is that the architectural model and
documents might undergo changes, too. Our assumption is that chang-
ing architectural models and documents causes negligible effort com-
pared to the effort for changing the implementation. One exception is in
line with the discussion of model-driven development above: In case the
architecture models can be directly used to generate the implementation
artifacts, they are the artifacts that are changed by “programmers” and
thus have to be considered for flexibility. Although the effort for chang-
ing a system is mainly caused at the implementation level, flexibility can
be only designed for at architectural level, as flexibility requires the con-
sideration of crosscutting aspects in software. Thus, we strongly focus on
the role of architecture for flexibility (see Section 4.2.3) and on how to
design flexible architectures (see Chapter 5), always maintaining the rela-
tion to the implementation level.

4.1.4 Flexibility in a Spectrum of Uncertainty

Flexibility always comes with uncertainty. Changes have to be anticipat-
ed to design for and it is not clear what exactly the changes will look like
and whether they will really happen (probability). In this section, we look
at situations where the uncertainty is not given and at situations where
the uncertainty is very high. This spans a spectrum in which flexibility is
located. The idea is to compare flexibility with these situations and learn
about the differences. Figure 27 depicts all the aspects discussed.

Figure 27: Flexibility in a spectrum of uncertainty

Configurability Flexibility „Good Design“

Level of uncertainty
(change? probability?)

Low
(all changes
anticipated)

Medium
(anticipation of
changes and
probabilities)

High
(no anticipation of
changes)

Principle how to
design for change

Build every anticipated
configuration into the
system

Build solutions that
allow low effort for
anticipated and likely
changes

Use general design
principles like „low
coupling“, „high
cohension“

Possibilities to measure
adequate support for

changes

Check whether all
anticipated
configurations are built
in

Check whether
anticipated changes can
be conducted with
acceptable effort

Calculate metrics about
design principles, like
low coupling and high
cohesion

Principle how to
realize a change

Simply select the
appropriate
configuration

Development activities
exploiting flexibility
(low effort if change
was anticipated)

Development activities,
effort depends on how
well change is
supported by design

 Flexibility as a Quality Attribute of Software

 75

The situation with low uncertainty, in which changes can be anticipated
rather easily, is typically addressed with Configurability [NM10], as often
found in Product Line Engineering. That is, changes are well known and
likely and can thus be built directly into the software system as alterna-
tive configurations. On the other end of the spectrum, uncertainty is
high and no concrete changes can be anticipated. Of course, there is still
the wish to be able to conduct changes at relatively low cost, but with-
out having a clue of what they could be. Then, the only possibility for
design is to follow best practices and design principles like “low cou-
pling”, “high cohesion”, “encapsulation”, etc. (see also Section 4.3.1),
which we call here “Good Design”. When designing for flexibility, an ar-
chitect will probably apply the same or similar design principles, but tar-
get them explicitly at optimizing the anticipated flexibility requirements,
whereas in the case of no anticipated changes the architect has to rely
on his experience and to some extend luck. This can be discussed with
Figure 25: In case of anticipated flexibility requirements, the architect can
concentrate on those, neglecting the change effort for other changes. In
case of high uncertainty, the architect has to balance and try to minimize
effort at a more general level.

Depending on the level of uncertainty, different types of measurements
can be applied. In the case of configurability, it is quite easy to check
whether all configurations are built in. For flexibility, the measurement is
possible indirectly only, by checking whether the anticipated scenarios
have limited impact. In the case of “Good Design”, it can only be
checked whether the design principles are adhered to.

When it comes to a change, in case of configurability the appropriate
configuration can simply be chosen. In case of flexibility, the change is
conducted with relatively low effort, provided it was an anticipated
change. In the case of “Good Design”, it is to a greater or lesser extent
by chance how much effort has to be spent on changes: It can be very
low effort if the change fits the design decisions made, but it can also be
high effort impacting large parts of the system.

In [NM10], we discussed the differences between configurability and
flexibility in more detail. The classification and distinction as introduced
here is intended to understand typical situations and to know how to
deal with them. Information systems in practice do not belong to just
one of the three categories. Rather, they have aspects of configurability,
flexibility, and “good design”, depending on the possibility to clarify un-
certainties.

4.2 Flexibility Requirements

The term Flexibility Requirement is defined in Definition 3 as “a require-
ment that expresses the potential need for changing the set of require-

Designing
for change
depending
on uncer-
tainty

Measuring
support for
changes

Realizing
changes

Flexibility as a Quality Attribute of Software

76

ments of a software system in the future”. A flexibility requirement is
very similar to a Change Requirement (see also Definition 9). The key dif-
ference is that a flexibility requirement expresses only the potential need
whereas a change requirement can be seen as an actual requirement
that has to be realized. A term also often found is Change Request,
which denotes a request to conduct a particular change requirement. In
the perspective of the software system lifecycle (see Section 4.1.2), flexi-
bility requirements occur in the activity of constructing for flexibility and
change requirements occur in the activity of exploiting flexibility.

In the following sections, we describe how flexibility requirements can be
captured with scenarios (4.2.1) and how scenarios can be characterized
and classified (4.2.2). Finally, we give an overview on requirements typi-
cally competing with flexibility and requiring adequate tradeoffs (4.2.3).

4.2.1 Capturing Flexibility Requirements with Scenarios

For the evaluation and definition of software architectures, architecture
scenarios [BCK03, CKK01, RW05] are a proven and established means to
precisely express the architecturally-relevant requirements. Also for quali-
ty attributes related to change (maintainability, modifiability, etc.), archi-
tecture scenarios are strongly applied (see Chapter 3). Different names
can be found in literature, e.g. Change Scenario, Modifiability Scenario,
Evolution Scenario, which all have a similar meaning. In line with our
terminology of flexibility, we use the term Flexibility Scenario.

Definition 11 Flexibility Scenario

A flexibility scenario is an architecture scenario expressing flexibility re-
quirements from an architect’s perspective.

By expressing standardized information like source, stimulus, environ-
ment, artifact, response, and response measure, architecture scenarios
provide a frame for a detailed description of requirements. In particular
the context information as the triggering stimulus or the environment in
which the scenario takes place give an architect additional information
to reason about. In that sense, flexibility scenarios mainly have the task
to foster the precise and complete elicitation and description of flexibility
requirements. Further, they fully integrate in the typical approaches of
architecture definition and evaluation approaches.

Our definition says “… from an architect’s perspective”. This is an im-
portant aspect of flexibility scenarios, as they do not only focus on the
problem space, but can incorporate knowledge about the solution space
of a system can be incorporated as well (see Figure 28). Concretely, this
means that in the formulation of flexibility scenarios intended or existing
design decisions, components, or technologies can be mentioned to be
as accurate as possible.

 Flexibility as a Quality Attribute of Software

 77

Architecture scenarios in general are not expected to always express the
same level of abstraction or accuracy (see Figure 28). Rather, they are
used to express the information as it is necessary and possible in the
concrete context. This particularly holds for flexibility scenarios. Inherent-
ly, there is a certain level of fuzziness for future changes, which results in
the accuracy of the scenarios and the assumptions about probabilities of
scenarios. Depending on the level of accuracy of flexibility scenarios, the
construction and evaluation activities can be more or less focused.

In the following section, we describe how flexibility scenarios can be fur-
ther characterized and classified in order to elicit and document the most
relevant information for flexibility construction and evaluation.

4.2.2 Characterizing and Classifying Flexibility Scenarios

Characterizing a quality attribute in detail has the main intention to
make previous experiences about challenges in designing software sys-
tems explicit (see also Section 2.1.3). For the quality attribute Modifiabil-
ity, which, according to our classification, is very similar to flexibility (see
Figure 22), a characterization is given in [BCK03]. There, modifiability is
characterized along the standard scenario template (source, stimulus, ar-
tifact, environment, response, response measure). Further characteriza-
tions of scenarios can be found in [BLB+00, LRV99b], which mainly char-
acterize along the requirements for change and the types of change im-
pact from an architectural perspective.

We base our characterization on the standard scenario template
[BCK03]. Our contribution extends the characterization of modifiability
with typical questions and sub-characteristics to be asked to elicit the re-
spective information (see Table 2), and typical values for the characteris-
tics (see elaborations of the questions).

Figure 28: Characterization of architecture scenarios

Problem and
Solution Space

Accuracy

Low

High

Problem Space Solution Space

Flexibility as a Quality Attribute of Software

78

Scenario Template
[BCK03]

Questions

Source Who or which event triggers the change?

Stimulus How likely is the change?

How often does the change occur?

Artifact What has to change?

Which concrete business logic aspects are related to the change?

Environment Who makes the change?

When is the change made?

Response What is impacted by the change from an architecture perspective?

Response Measure How much effort is needed to change existing parts?

How much effort is needed to conduct the change?

Table 2: Scenario characteristics and questions

As typically done for architecture scenarios, there is no need for a tabular
representation. Rather a pure textual representation focusing on the key
information parts is more appropriate for an architect’s work.

In the following, we provide for all questions typical values as experi-
enced in projects or derived from literature [BCK03]. This overview of
typical values is not intended to be complete but covers experiences that
are useful when eliciting and documenting flexibility scenarios.

Who or which event triggers the change?

A change to a software system is typically triggered by a stakeholder of
the system or initially by an event which makes stakeholders triggering
the change.

Typical stakeholders: manager, customer, user, architect, developer

Typical events: merging of organizations’ IT, migration or exchange of IT
systems, business process improvement activities, integration of systems
with external systems, change of legal or other regulations, availability of
new technologies

How likely is the change?

Flexibility requirements are defined as potential changes, thus there is
always some uncertainty whether the change will be conducted in the
future. As the probability of different potential changes can strongly

 Flexibility as a Quality Attribute of Software

 79

vary, it is an important information for an architect to know the proba-
bility of a flexibility scenario in order to balance architectural solutions.

How often does the change occur?

The expected frequency of changes is also an information that should be
provided for an architect in order to allow adequate support for frequent
changes.

What has to change?

The key aspect of a flexibility scenario is to describe which aspect of a
software system has to be potentially changed. As there are different
types of requirements, these types can also be affected by changes.

Business Logic or functionality: Changes of functions, data, processes,
UI, etc.

Quality: New quality attributes, qualities in new context, change of quali-
ty level, new capacity levels, etc.

Technology: Integration or replacement of technologies, usage of new
features of used technologies, etc.

External systems: Integration with new or other external systems, chang-
es due to changes in external system, etc.

Which concrete business logic aspects are related to the change?

Changes are often described at a level relating to realization concepts
but not related to concrete business logic (functionality). An example
change would be to say: “The order of steps in a business process has to
be changed”. As analyzed in Section 1.3, this change could have very
different consequences depending on the concrete steps impacted.

Thus, we make this distinction explicit in our model by introducing two
levels to denote whether concrete business logic is referenced (Business
Logic Specific (BLS)) or no concrete business logic is referenced (Business
Logic Agnostic (BLA)). Typically, this distinction becomes meaningful
when changes aim at quality aspects, technology aspects, or the integra-
tion with external systems. When changes aim at functionality, they are
often BLS by nature.

It can be valid to specify flexibility scenarios at both, BLS or BLA, levels.
However, when specifying at the BLA level, typically the accuracy of the
change impact estimation is much lower and constructive activities might
aim at further refining of the scenario.

Flexibility as a Quality Attribute of Software

80

Who makes the change?

Each change has to be conducted by a particular stakeholder to some
implementation artifacts of a software system (according to our defini-
tion of flexibility).

Thus, the typical stakeholder to conduct a change is a software develop-
er. Nevertheless, the characterization can be more detailed: Developers
can be in different organizations (e.g. in the case of sub-contracting or
partnering), or different skills might be needed to conduct a certain
change. Furthermore, easy changes to implementation artifacts like de-
scriptive files could also be done by administrators or even skilled users.

When is the change made?

The time a change is made and applied to a system is also called Binding
Time. According to our characterization of flexibility, this is typically at
development time. Depending on the types of implementation artifacts
changed (e.g. descriptive configuration files), some changes can also be
conducted at installation time, but typically not at runtime.

What is impacted by the change from an architecture perspective?

The impact of changes from an architecture perspective (see Section 4.3)
are the most solution-oriented aspects in the description of flexibility
scenarios. The scenario description can range from describing no impact
at all up to describing exactly the architectural elements that might be
impacted, depending on the intention of the architecture scenario.

Typical architectural elements potentially impacted: Modules (or compo-
nents) [functionality, process, data, UI, business rules], connectors, infra-
structure and technology elements

Further architectural aspects potentially impacted: Architecture decisions
in general, integration with external systems, deployment

The change impact description is closely related to Section 4.2.3, which
in depth describes the role of architecture for flexibility.

How much effort is needed to change existing parts?

A change to a system can mean either to change existing parts of the
system or to create new ones. It might be acceptable to invest quite an
amount of effort to create new parts, but it might be expected to have
as little impact as possible on the existing parts. Thus, we distinguish two
aspects of effort needed for a change: The effort spent to change exist-
ing parts (this question) and the effort spent to create new parts (the
next question).

 Flexibility as a Quality Attribute of Software

 81

How much effort is needed to conduct the change?

The overall effort to conduct a change might be also relevant since time
and budget under certain circumstances might be strongly limited. Thus,
it might be necessary to invest more upfront to allow a cheaper conduc-
tion of change later, during exploitation of the flexibility.

According to the characterization of elicited scenarios in the outlined
categories, flexibility scenarios can be classified to give an architect bet-
ter overview and easier access to the scenarios.

Section 5.2 briefly describes how to elicit flexibility scenarios and in par-
ticular how to make use of the characterization given here.

4.2.3 Flexibility and Competing Requirements

Flexibility as a quality attribute has to be balanced with competing re-
quirements by finding adequate tradeoffs [BCK03, CKK01]. In this sec-
tion, we sketch typical requirements competing with flexibility.

First, flexibility requirements are in competition with other flexibility
requirements. Achieving flexibility always follows the strategy to local-
ize change impacts: this results in certain architecture decisions about
the modularization of the system. Different flexibility requirements might
need different modularizations which cannot be realized at the same
time. Second, there are other development time quality attributes
like analyzability or testability which might be adversely impacted by flex-
ibility. As flexibility often introduces architecture mechanisms with indi-
rections, the system becomes harder to understand and to test. Third,
flexibility can be competing with runtime quality attributes like per-
formance or security. Depending on the architecture mechanisms intro-
duced, additional indirections can lead to adversely impacted timing be-
havior or they might introduce security risks caused by additional tech-
nologies. This list is not intended to be complete, it rather sketches the
different areas of potentially competing requirements. A well-founded
analysis of tradeoffs can only be made at the level of concrete scenarios,
describing flexibility and other quality attributes.

Although this thesis strongly focuses on flexibility from an architectural
and methodical perspective, this does not judge the relative importance
of flexibility compared to other requirements. This has to be balanced in
the context of a concrete system (landscape) and thus architecture ap-
proaches have to provide similar support for all quality attributes.

The following section looks at flexibility from the architecture perspective
and elaborates how an appropriate architecture makes a system flexible.

Flexibility as a Quality Attribute of Software

82

4.3 The Role of Architecture for Flexibility

In Section 4.1, we contrasted architecture and implementation as soft-
ware engineering artifacts with respect to their role for flexibility. In this
section, we further elaborate the analysis of the role of architecture for
flexibility. This also covers the clear distinction of three different facets of
architecture.

We defined the flexibility of a system by the effort needed to change the
implementation of the system to accompany the respective change (see
Definition 10). How much effort is needed for the change mainly de-
pends on how locally the changes can be conducted. This locality of
changes is mainly determined by the design decisions made about the
system, implicitly or explicitly. The entirety of principal design decisions
exactly makes up the architecture of a system [TMD09]. In that sense,
the architecture of a real system, comprising all principal design deci-
sions, strongly determines the flexibility of the system, although the main
effort for changes is at the implementation level (see Section 4.1). In Sec-
tion 4.3.1, we present a closer look at different types of design decisions
and at how they contribute to making a system flexible with respect to
particular flexibility requirements.

The entirety of principal design decisions about a system is an abstrac-
tion that can be documented as architecture models (e.g. represented as
architectural views) and architecture documents for a software system.
Then, architecture becomes a set of software engineering artifacts which
are necessary to use the architecture for reasoning, analysis, or commu-
nication. Architecture models and documents are a means to achieve
flexibility, as they allow architects to make explicit decisions for flexibility
and to analyze these decisions early in the development lifecycle before
the system has to be implemented. As described in Section 4.1.3, the ef-
fort for changing architectural models compared to the effort for chang-
ing the implementation is assumed negligible.

A third facet of architecture is the one as an engineering activity, also
called Architecting. In that sense, architecture comprises all activities that
deal with definition, evaluation, or communication of architectural arti-
facts. A key task of architecting is architecture decision making; in the
context of flexibility that means to make decisions that make the system
flexible with respect to the flexibility requirements. In Chapter 5, we de-
scribe our architecting approach for flexibility. Systematic construction of
flexibility is only possible at architectural level because global design de-
cisions might be necessary to localize changes, which is not possible af-
ter distributing development to different development teams. Thus, this
thesis focuses on architecture to constructively achieve flexibility. Section
4.3.2 explicitly describes how architects work to achieve flexibility, Sec-
tion 5.4 introduces our analysis approach of flexibility to guide architects
with short evaluation and feedback cycles towards a flexible architecture.

Architecture
as design
decisions
and abstrac-
tion

Architecture
as engineer-
ing artifacts

Architecture
as engineer-
ing activities

 Flexibility as a Quality Attribute of Software

 83

In this section, we first discuss which architecture decisions make a sys-
tem flexible (4.3.1) and how an architect has to act to make a system
flexible (4.3.2). Then, we describe an architecture meta-model covering
the appropriate information for constructing and analyzing flexibility at
architecture level (4.3.3), together with metrics for flexibility. Finally, we
sketch cost considerations about flexibility (4.3.4).

4.3.1 Which Architecture Makes a System Flexible?

An architecture makes a system flexible when it prescribes design deci-
sions that allow the flexibility requirements to be conducted with ac-
ceptable effort. Independent from a concrete flexibility requirement, sim-
ilar strategies and architecture principles are available for realizing the
needed flexibility potential. According to our definition of flexibility (see
Definition 10), the effort to conduct the change described by a flexibility
requirement has to be acceptable. How much effort is acceptable might
vary considerably in the concrete context and cannot be defined in gen-
eral. As the principles to achieve flexibility remain the same, we make
the following simplification: We assume ideal flexibility to be given if a
change proposed by a flexibility requirement can be realized with nearly
no effort, meaning to change only a few lines of code.

The key strategy to achieve flexibility is to minimize and localize the
change impact of anticipated flexibility requirements [BCK03]. Localiza-
tion of change impact is achieved with architectural decisions that or-
ganize the overall implementation in a way that exactly the anticipated
changes have only local impact. In particular, that means that a change
does not require to revise key decisions, as they typically manifest over a
larger extent of the system. Design decisions for minimizing change im-
pact do not require to be invented from scratch for each new system.
Rather, there are many architecture principles and mechanisms that give
high-level guidance for making architecture decisions.

In this section, we start with an overview of general architecture princi-
ples and their support of flexibility (4.3.1.1). Then, we outline concrete
architecture mechanisms supporting flexibility (4.3.1.2). Finally, we elab-
orate the interplay of architecture mechanisms and business logic map-
ping for flexibility (4.3.1.3) which we identified as a critical factor for
flexibility in Section 1.3.

4.3.1.1 Architecture Principles Supporting Flexibility

Architecture principles are very fundamental ideas that are applied in the
design of software systems. The term architecture principle is not com-
monly agreed on, but the principles we list are widely-known and men-
tioned in literature (see also Section 3.2). The following list of architec-
tural principles is not necessarily complete and the principles are not al-

Flexibility as a Quality Attribute of Software

84

ways orthogonal or disjoint. Rather we list these principles to clarify the
relationship of widely known principles and flexibility.

Architecture Principle Relationship to Flexibility

Abstraction /
Generalization

Abstraction allows handling common aspects with localized
solutions

Indirection Indirections allow to concentrate the impact of changes to a
dedicated software module, which is addressed and included
via the indirection

Information Hiding Information hiding allows to encapsulate a certain aspect or
internals of a solution in a software module, which allows
localized changes of internal aspects

Loose Coupling Loose coupling allows to reduce assumptions about other
system parts and thus localizes change impacts

Low Coupling
& High Cohesion

Low coupling and high cohesion of software modules allows
localization of changes similar to loose coupling and infor-
mation hiding

Modularization Modularization allows separating different functionalities and
system aspects into different modules so that module-internal
changes can be handled locally

Separation of Concerns Separation of concerns allows in the broadest sense the sepa-
ration of different aspects of software in different realization
units. By appropriate separation criteria, changes can be local-
ized.

Table 3: Architecture principles supporting flexibility

The following architecture mechanisms supporting flexibility build on
these architecture principles, too.

4.3.1.2 Architecture Mechanisms Supporting Flexibility

Architecture mechanisms (see Definition 4) are introduced into architec-
tural designs in order to address certain requirements. For flexibility,
there are many supporting architecture mechanisms available. Often, ar-
chitecture mechanisms come in form of architecture styles, tactics, or
patterns, which are proven best practice solutions for recurring design
challenges. Whereas we introduced architecture mechanisms at a very
high level of abstraction in Section 3.2.3, we give now classes and ex-
amples of architecture mechanisms and explanations. As for the archi-
tecture principles, this is not intended to be a complete list, but rather to
give an introduction into flexibility mechanisms.

 Flexibility as a Quality Attribute of Software

 85

Architecture
Mechanisms

Example and Explanation

Virtual Machines Virtual machines are a very powerful and diverse mechanism
to achieve flexibility. The basic idea is that an infrastructure
component interprets some content in order to realize a be-
havior. Well-known examples are business process engines or
business rule engines. Both types realize an externalized de-
scription of business process or business rules, which aims at
easy and localized changes. The executing infrastructure com-
ponents and the using components can remain unchanged.

Programming
Language
Mechanisms

Programming languages offer mechanisms like polymorphism
or generics which can be used to build abstractions from cer-
tain system aspects and define a common behavior. This al-
lows on the one hand easily changing the common behavior
and on the other hand easily adding new classes for which to
change the behavior.

Generation
Approaches

With generation approaches, a meta-level of implementation
is introduced, for example in model-driven development. With
such approaches it becomes possible to localize change as-
pects that are not local according to the chosen decomposi-
tion of a system. For example, a data definition language can
be introduced, from which data access components, all
transport objects as well as the UI fields are generated. Then,
it is very easy to introduce new data fields, although it poten-
tially impacts all layers of a system.

Layering The layered architecture style explicitly focuses on the separa-
tion of certain system aspects and on the limitation of rela-
tionships among the resulting layers. Depending on the flexi-
bility requirements, changes can be localized to single layers.

PlugIns PlugIns are a concept to achieve extensions of a system in an
expected manner with nearly no change effort to the system
(e.g. realized in Eclipse or Firefox). Thus, PlugIns are an exam-
ple that brings very high flexibility and on the other hand re-
quire clear specification in terms of the potential changes
being applied.

Service-Orientation Service-orientation comes with a couple of mechanisms which
are covered in detail in Section 6.

Table 4: Architecture mechanisms supporting flexibility

The architecture mechanisms as described can cover flexibility require-
ments concerning different system aspects like functionality, data, pro-
cesses, or UI. Thus, the architecture mechanisms are typically specialized.

Flexibility as a Quality Attribute of Software

86

Applying the described architecture mechanisms often comes with the
need for additional infrastructure components like business process en-
gines or plugin frameworks. Depending on the needed degree of spe-
cialization, these infrastructure components can be individually devel-
oped or reused from available technologies. For example, many open-
source or commercial business process engines are available that can be
used in the development of a system for improving the flexibility.

4.3.1.3 Architecture Mechanisms and Business Logic

Flexibility cannot be achieved by only selecting appropriate architecture
mechanisms supporting flexibility. As analyzed and described in Section
1.3, there is another type of architectural decisions which are crucial for
flexibility: The decisions about the decomposition of business logic (or
functionality) and the mapping to architectural elements and architec-
tural mechanisms are decisive, too (see Figure 4). The actual flexibility
potential (see Definition 5) of a system is always determined by the deci-
sions made about architectural mechanisms and business logic mapping
(see Definition 6). Consequently, the goal of designing for flexibility is to
find appropriate combinations of flexibility mechanisms and business
logic mappings to address the concrete flexibility requirements and to
achieve what we call True Flexibility.

Business Logic is a broad term in this context. It subsumes the aspects
Functions, Processes, Data, and UI of a software system. In particular, it
aims at the concrete functional requirements of a system and the deci-
sions how to decompose and realize these functional requirements.

Both, in the context of flexibility requirements and in the context of ar-
chitectural solutions, descriptions with and without concrete business
logic are possible and can be found in practice. Thus, we introduce a
new terminology to distinguish whether flexibility is addressed at a level
of detail only covering architecture mechanisms (Business-Logic-
Agnostic, see Definition 12) or covering business logic mapping (Busi-
ness-Logic-Specific, see Definition 13). An example of a BLA flexibility
scenario is: “Change the order of process steps in a business process.”
An example of a BLS flexibility scenario is: “Change the order of Seating
and Baggage in the CheckIn process.” (see Section 1.3)

Definition 12 Business-Logic-Agnostic (BLA)

Flexibility scenarios as well as architectural solutions are called business-
logic-agnostic if no description of concrete business logic is used to de-
scribe the flexibility scenario or the architectural solution.

Definition 13 Business-Logic-Specific (BLS)

Flexibility scenarios as well as architectural solutions are called business-
logic-specific if concrete descriptions of business logic are included to

 Flexibility as a Quality Attribute of Software

 87

make the flexibility scenario or the architectural solution more precise.
The amount and level of detail of business logic description may vary.

Further, we introduce a terminology to denote elements that are used at
BLA or BLS level: Infrastructure Element (see Definition 14), Template El-
ement (see Definition 15), and Business Element (see Definition 16). This
distinction is aligned with other approaches like [Sie04], which also dis-
tinguish between business and infrastructure elements. The main exten-
sion we make is that we add a Template element, which is utilized dur-
ing the design process as a placeholder for business elements and which
explicitly allows making the distinction between BLA and BLS in architec-
tural representations.

Definition 14 Infrastructure Element

An Infrastructure Element is an element which is introduced in the archi-
tecture of a software system in order to realize requirements that are
typically non-functional.

Definition 15 Template Element

A Template Element is an element which serves as a placeholder for a
business element during the development process, either in the require-
ments or in the solution. It represents typical properties of business ele-
ments but abstracts from the concrete business logic.

Definition 16 Business Element

A Business Element is an element which represents a business logic as-
pect of a software system, either in the requirements or in the solution.

An example of an infrastructure element is a business process engine, an
example of a template element is a general service, and an example of a
business element is a concrete service for seating in airline CheckIn.

Figure 29 summarizes the relationships of different element types and
BLA, BLS, and BLM. The more business logic is described in flexibility

Figure 29: Distinguishing the levels business-logic-agnostic and business-logic specific

Flexibility
Scenarios

Architecture
Solutions

Business
Logic
Agnostic

Template
Element

Business
Element

Template
Element

Infrastructure
Element

Business
Element

Infrastructure
Element

Business
Logic
Mapping

Business
Logic
Specific

Flexibility as a Quality Attribute of Software

88

scenarios and architecture solutions the higher the accuracy and confi-
dence of architecture-level evaluations and predictions of flexibility can
be. That is, specifying flexibility scenarios and architectural solutions
comes on the one hand with higher investments for creating the details,
on the other hand it might return more accurate results. However, often
it is not possible at an early point in time of system development to spec-
ify all business logic details for flexibility scenarios.

4.3.2 How Does an Architect Make a System Flexible?

An architect makes a system flexible by making appropriate architecture
decisions which are sketched in the previous section. However, besides
these decisions there are also the engineering activities and the artifacts
produced and used by the activities. Architecting has different facets:
Making decisions, modeling and documenting decisions, analyzing deci-
sions for appropriateness. These facets can also be also supported for
flexibility with more detailed guidance. Chapter 5 describes our method-
ical contribution to engineering flexible systems.

A key benefit of making architectural decisions for flexibility is that the
decisions are made at an early point in time in the sequence of develop-
ment activities. At architectural level, decisions can be comparably easily
evaluated and revised if they are not appropriate. By working at an ab-
stract level, a lot of later rework effort can be saved. Thus, one of the
key purposes (AEP, see Section 2.1.3) why to invest into architecture
work is to predict the resulting flexibility properties of a system and avoid
expensive rework. Another key purpose is to prescribe consistent and
adequate decisions supporting flexibility, as potentially many developers
have to derive an implementation fulfilling the flexibility requirements. In
order to allow predictions of flexibility and consistent realizations, the ar-
chitecture has to be made explicit in architectural models containing the
adequate information to analyze flexibility and communicate the solu-
tions. Hence, we describe an architecture meta-model covering this flex-
ibility-relevant information in the next section.

4.3.3 Architecture Meta-Model and Metrics for Flexibility

After describing which design decisions are necessary to achieve flexibil-
ity and how to make these decisions, we describe in this section how ar-
chitecture has to be modeled and represented in order to serve as a use-
ful artifact in the process of defining a flexible architecture. Thus, we de-
scribe which architectural views capture the flexibility-relevant infor-
mation (4.3.3.1). Then, we describe which metrics we introduce to ana-
lyze flexibility at the architecture level (4.3.3.2). Finally, we introduce a
new architectural view, the change impact view (4.3.3.3)

 Flexibility as a Quality Attribute of Software

 89

4.3.3.1 Flexibility-Relevant Architectural Views

A system is flexible with respect to a certain change if the change can be
conducted with only minimal impact on the implementation (see Defini-
tion 10). Thus, the focus of relevant architectural views is on the ones
representing development time artifacts and properties of a system. In
ACES-ADF, the Development Time dimension summarizes these relevant
architectural views. However, our approach is not limited to a particular
architecture meta-model; rather it is universal and can be used with
nearly every architecture meta-model.

The key architectural element type with respect to flexibility is Module. A
module is an abstraction of any development time or implementation ar-
tifacts. In literature, there is no common understanding of the term
Module. Our definition is aligned with [CBB10]. Figure 30 sketches a me-
ta-model with the key ideas about modules. A module can be a hierar-
chical grouping of other modules. Modules can have uses-relationships
to other modules or to interfaces realized by modules. The uses-
relationship is aligned with the definition in [Par79, CBB10].

Modules as described can represent and encapsulate different aspects of
a software system, either in rather separated or in mixed form. The main
aspects represented by modules in software are functions, data, user
interface, processes, or infrastructure.

Modules are architecture-level abstractions of implementation-level arti-
facts (see Section 4.1.3): Such artifacts can be diverse, depending on the
decisions for implementation technologies. Examples of implementation-
level artifacts are source code files in any programming language (e.g.
Java, C, C#, Fortran files, etc.), scripts and descriptors as parts of tech-
nologies (like SQL queries, Java EE deployment descriptors, XML-based
files for configuring Spring or Eclipse, etc.), or database definition sche-
mas. Additionally, in the context of model-driven development, models
used to automatically generate other implementation-level artifacts are
considered implementation-level artifacts, too (see Section 4.1.3).

Our meta-model does not assume any particular realization technology.
Rather, implementation-level artifacts in any technology can be repre-

Figure 30: Architecture meta-model for modules

Modules

Types of
modules

Realization
of modules

Role of
technologies

Module Interface
realizes

* uses **

uses

*

1
groups

*

Flexibility as a Quality Attribute of Software

90

sented as modules. For convenience of architects and easier communica-
tion with developers, the modules as architectural elements can be
tagged with information about the technologies used for realization.
Technologies often realize architectural mechanisms that support quality
requirements, as flexibility requirements. Section 4.3.3.2 gives examples
of architectural mechanisms, as they are partially also realized in tech-
nologies. More details on flexibility mechanisms introduced by SOA are
described in Chapter 6. With respect to modules and change impact,
technologies are typically seen as black boxes, as they are externally de-
veloped and cannot be changed (of course there are exceptions like in-
house development of technologies, open source technologies, or indi-
vidually contracted technologies). Thus, technologies rather realize infra-
structure elements or merge into other modules.

Typical architectural views providing relevant information for flexibility
analyses are development time views with a focus on functions, data,
user interface, and processes. Depending on the view-framework used,
different names for the views are found: Implementation View [Kru03],
Module View [CBB10], Development View [Kru95].

As described above, runtime architectural elements and architectural
views play only a minor role in terms of constructing and evaluating a
software system for flexibility. However, in practice there are some nota-
ble relationships. First, runtime architectural elements are often better
related to functional requirements and thus they can be used as entry
point for identifying potential change impacts (assuming traceability
from runtime architectural elements to development time architectural
elements). Second, in practice there is often no clear separation between
runtime and development architectural views and architectural elements.
Rather, they are mixed or even unified, which denotes a simplification of
the architectural model. This can be fully accurate if runtime elements
are realized one-to-one by corresponding development time elements.
Then, flexibility analysis can work on runtime elements as an approxima-
tion of development time elements.

4.3.3.2 Measurement and Metrics of Flexibility

The ability to measure the degree of achievement of a quality attribute is
the prerequisite for constructively approaching it. Several approaches
towards measuring flexibility, maintainability, or modifiability exist (see
Section 3.3). One key contribution of this thesis is to overcome today’s
situation that evaluating flexibility is an effort-intensive manual task. Ra-
ther, we aim at automating the evaluation of the current flexibility level
and provide feedback to the architect in nearly real-time. By this, an ar-
chitect can be supported during architecture design by indicating insuffi-
cient degrees of flexibility at an early stage. Then, the architect can revise
design decisions for improvement with relatively low effort. This contri-
bution is described by R.D3, R.C3, and R.I3 in Section 1.4.

Typical
architectural
views

Role of
runtime
elements

 Flexibility as a Quality Attribute of Software

 91

The major goal of our measurement approach and metrics for flexibility
is (formulated according to the GQM (Goal Question Metrics) approach
[BD88]):

Analyze the degree of flexibility of a software system with respect to a
flexibility requirement with a focus on automatic analysis and real-time
feedback about the degree of flexibility from the perspective of a soft-
ware architect in the context of software architecture design.

Table 5 lists categorized requirements for our flexibility metric, derived
from the measurement goal.

Category Requirements

Measurement subject Alignment with flexibility definition (see Definition 10)

Measurement of “true flexibility” (anticipated flexibility re-
quirements matched by flexibility potential)

Metric covers “intuitive idea of flexibility”

Measurement results Allow comparing architectural solutions with respect to their
flexibility (with respect to a set of flexibility scenarios)

Applicability on single flexibility requirements and system parts

Hierarchical aggregation of flexibility results up to the overall
system and all flexibility requirements

Ease of use Automated calculation of metric results

No complicated data as manual input needed

No impact on existing architecture models and views

Accuracy Allow working with flexibility scenarios of different levels of
accuracy

Extensibility of metric for further influence factors

Allow computing approximated results with simplified input

Table 5: Requirements for flexibility metric

One main obstacle towards the automated measurement of flexibility in
existing approaches is the gap between informally specified require-
ments and the informal description of architectural decisions. This gap
between the problem space and the solution space does not allow the
automated analysis of change impacts, as the respective models are lack-
ing information and formality. The key idea (R.I3) for this contribution is
that the architect modeling the architecture of a system indicates change
impacts of concrete changes (expressed as flexibility scenarios) as part of
the architecture model. In order to easily model and represent the infor-
mation about change impacts in the architecture model, the Change Im-

Measure-
ment goal

Measure-
ment idea

Flexibility as a Quality Attribute of Software

92

pact View is introduced (see Section 4.3.3.3). The architecture design
method incorporating this measurement approach is described in Chap-
ter 5. The resulting measurement model for analyzing the flexibility with
respect to one flexibility requirement is depicted in Figure 31.

In the following, we introduce our metrics for flexibility. As flexibility is
primarily defined by the effort to change the implementation, we start
with the metric definition at implementation level. Architecture is an ab-
straction of a system’s implementation and it allows earlier (no imple-
mentation available) and easier (lower complexity and details) analysis of
flexibility. Thus, we approximate the measurement of flexibility at the ar-
chitecture level. Finally, we describe the aggregation of flexibility results
for single flexibility scenarios to an overall flexibility value.

At the implementation level, flexibility means minimal impact of changes
that are described in flexibility requirements. Thus, we count the
changed lines of code (LOCChanged) in the overall code-base. Changed
means a deleted LOC, a changed LOC, or an added LOC. As the code-
base, we see the entirety of development artifacts, as described in Sec-
tion 4.3.3.1.

Flexibility is a function (FLEX) that calculates for a given implementation
(IMPL) of a system and a flexibility requirement (FR) the ratio of
change impact to the overall implementation size. To address the re-
quirements of comparability and results aggregation (Table 5), we define
flexibility on a [0, 1] interval. 0 denotes low flexibility and high change
effort, 1 denotes high flexibility and minimal change effort. In order to
normalize the change impact, we define the change ratio (CHR).

Figure 31: Principle of measuring flexibility

Implementa-
tion level
metrics

Flexibility of
A wrt. FR

Measure

Architecture A

Flexibility Requirement FR

BP

BP Engine CheckIn

Services

Identify Seating Baggage

UI

UI Engine

FR1: Change in the CheckIn process the order of Seating and Baggage

Change Impact of FR

Architect documents
change impact

 Flexibility as a Quality Attribute of Software

 93

Please note that for the change ratio at implementation level the case
could occur that more LOC are changed than LOC are initially there (in
case many new ones are added). We cover this in the definition of the
function. At architecture level, the definition is slightly changed and this
case does not occur.

We define the function FLEX with the curve depicted in Figure 32. It is
based on the change ratio, but it defines a tailored function which ex-
presses mainly two aspects.

� We define flexibility to be “1” not only when there is no change at
all, but we allow change impact up to a threshold, which is 10 LOC
as our default.

� We define flexibility to be “0” not only when the overall implementa-
tion is impacted, but already when there is a significant change im-
pact that makes the system hard to change, which is 10% of the
overall LOC as our default.

� Between these thresholds, our flexibility function is linear.

In our metrics, we only calculate the change impact in terms of changed
LOC in the implementation. This metric is not intended to be used in our
method. Rather, it is needed as a preparation for our metric at architec-
ture level, which is defined below and used in our method. We do not
cover the calculation of change efforts in terms of time or cost. We as-
sume for simplicity an equal distribution of change difficulty for each
type of implementation artifacts (that means, that for example changing
1 LOC of a Java class is equivalent to changing 1 LOC in an XML-based

Figure 32: Flexibility metric function definition

Change Ratio

Flexibility

1

0

100%10%10 LoC

Flexibility as a Quality Attribute of Software

94

process definition language).

Measurement of flexibility at architectural level is essential as it allows
flexibility prediction when no implementation is available yet and it can
be done at a level of abstraction that allows controlling the complexity of
large systems. Thus, we follow the key ideas introduced for measure-
ment of flexibility at implementation level and approximate the flexibility
results by measuring at the architecture level.

The key architectural elements to approximate the system size and the
change impact are Modules. As a system (SYS) is decomposed into mod-
ules (MOD) at architectural level, they can be used to estimate their size
on a more local level and conclude the overall size of a system. We call
modules atomic if they do not group further modules.

In order to estimate change impacts we introduce two concepts: Impact
Type (IMP_T) and Impact Size (IMP_S).

� The key reason to introduce the Impact Type concept is that we want
to distinguish between changes affecting existing modules or chang-
es requiring the creation of new ones, or changes requiring the dele-
tion of existing ones. Modules that are newly created are not count-
ed as impacting the existing implementation. Only the changes of ex-
isting modules to appropriately include the new modules are count-
ed. Thus, we introduce the basic operations Add Module, Modify
Module, Delete Module for modules (also used in [SR09, VEG08]).
Adding a module means at implementation level to create new
source code artifacts. Modifying a module means at implementation
level to make changes inside existing source code artifacts. Deleting a
module means at implementation level to remove an existing source
code artifact.

� The key reason to introduce the Impact Size concept is that we want
to ease the estimation of change impacts for architects. Thus, an ar-
chitect does not have to exactly estimate the number of lines of code
affected, but rather ranks a change on a scale [low, medium, high].
The impact size is only relevant for the impact type Modify Module.
The impact size values are then translated into a change ratio for the
module, the defaults are low=0.1, medium=0.3, high=0.5.

In the following, we define the approximation of impacted lines of code
in a module for a flexibility requirement. Then, the impacted lines of
code for the overall system can be calculated.

Architecture
level metrics

 Flexibility as a Quality Attribute of Software

 95

Then, we can calculate the change ratio of a flexibility requirement on a
system:

Finally, the flexibility FLEX(SYS, FR) is determined according to Figure 32,
analogous to the implementation level. Further refinements of the flexi-
bility metric are possible. For example, it is meaningful to decrease the
flexibility value in case of strong scattering of changes: Many different
locations to change typically cause more effort than one local but larger
change.

Using modules as a hierarchical decomposition of a system at architec-
tural level has several benefits for the calculation of our flexibility metric.
First, it allows easier estimation of implementation sizes by limiting the
scope. Second, it allows having modules with different levels of granular-
ity for different parts of the system. Third, it allows local and incremental
refinement of size measures. Forth, it allows connecting the module size
to the implementation size of actual source-code in case an implementa-
tion exists.

As described in Sections 4.1.3 and 4.3.3.1, the estimation of change im-
pacts always has to be done at the modules that are manually changed
or created.

So far, flexibility metrics are defined for single flexibility requirements
only. Now, we aggregate the flexibility values to a flexibility result of a
system with respect to the entirety of flexibility requirements.

As described in Section 4.2.2, flexibility requirements can differ in their
probability, priority, or frequency. Thus, we introduce a weighting for
the calculation of the overall flexibility which can include these factors.
wi is the weighting factor for FRi.

Aggregation
to overall
flexibility

Flexibility as a Quality Attribute of Software

96

Our flexibility metric is intentionally constructed with a focus on imple-
mentation effort and change impact. This makes the metric more com-
prehensible, in particular compared to complex mathematical metrics,
like the maintainability index [CAL+94]. The flexibility metric as defined
at architecture level is used in our tool extension (see Section 5.4) in or-
der to give quick feedback of achieved flexibility to architects during ar-
chitecture construction or rework. All the influence factors introduced
for the metric are incorporated in the tool. Thresholds like in the flexibil-
ity definition (see Figure 32) or the Impact Size factors can be configured
in the tool. In the following section, the Change Impact View is de-
scribed in order to allow architects easy modeling and entering of infor-
mation necessary for calculating flexibility.

4.3.3.3 Change Impact View for Automated Flexibility Analysis

In Section 4.3.3.2, we introduced the idea of how to measure flexibility
with a high degree of automation. The key aspect of this measurement
is that the architect makes his reasoning about the change impact of
flexibility scenarios explicit while designing the architecture. Additionally,
we described the different factors we include in our flexibility metric.
One requirement from a method perspective is that the information an
architect has to provide can be easily entered (see Table 5), without dis-
turbing the architecture design process but rather supporting it.

In order to be able to run automated analyses on the architecture, all in-
formation about the change impact of flexibility requirements have to
become part of the architecture model, too. Thus, we extend the archi-
tecture model by the Change Impact View. In this view, all the infor-
mation necessary for calculating the flexibility metric can be easily mod-
eled by an architect or entered as attributes. The meta-model of the
change impact view is depicted in Figure 33. Flexibility Scenario becomes
a first-class element of the architecture model. In many architecture
modeling approaches (as in ACES-ADF), architectural requirements are
already part of the architecture model. An Architectural Element can be
any element of the architecture that is considered an implementation ar-
tifact which is impacted by the change described in the flexibility scenar-
io. Foremost, architectural elements in the change impact view are Mod-

Discussion

Figure 33: Meta-model for change impact

Flexibility Scenario

- Probability :double

Architectural Element

- ElementSize :int

- ImpactSize :(low, medium, high)
- ImpactType :(add, modify, delete)

*

impacts

*

 Flexibility as a Quality Attribute of Software

 97

ules, but depending on the way of modeling (see Section 4.3.3.1) they
can also be interfaces, components, connectors, data elements, etc. The
impact of flexibility scenarios on architectural elements is explicitly mod-
eled with an Impacts-relationship. Beyond the model elements, our flexi-
bility metric requires some more detailed information (Probability of oc-
currence of flexibility scenario, ImpactSize and ImpactType of the im-
pacts-relationship, ElementSize in terms of lines of code for architectural
elements). The architect can simply enter or select the appropriate in-
formation as tagged values of the model elements. Covering this model
information, an architectural modeling tool can calculate the flexibility
metrics as defined above and provide the results to the architect (see
Section 5.4).

4.3.4 Cost Considerations of Flexibility

So far, we have mainly discussed the benefits of a software system offer-
ing flexibility. However, flexibility always comes at a price. First, flexibility
requirements might be competing with other requirements (see Section
4.2.3). Second, building in flexibility can mean to increase the complexity
of a software system, which might increase the effort for particular
maintenance tasks. Third, flexibility is often achieved by additional archi-
tectural mechanisms and indirections which cause additional complexity
and effort in the implementation of the system.

In particular in the light of cost considerations, knowing probabilities and
priorities is important when designing for flexibility. Architects can dis-
cuss with the relevant stakeholders about the level of flexibility to realize
which is an investment and leads to potential benefits during later
changes. In [Bah05], a detailed discussion of cost aspects is described.
The key idea is to apply concepts of Real Options Theory to flexibility
considerations (see Section 3.3.4). In practice, a quantification of all in-
volved cost factors related to flexibility is often impossible. Thus, an ar-
chitect has to take the key cost factors into account and make justifiable
decisions.

4.4 Conceptual Model of Flexibility

In the previous sections, we characterized flexibility in detail, covering all
aspects from flexibility requirements over architecture as a means of con-
struction and evaluation of flexibility down to the implementation which
is in the end impacted by changes to a system. In this section, we sum-
marize all these aspects in a conceptual model. Thus, we do not explain
each concept and each relationship in detail again, but we focus on giv-
ing a brief overview and appropriate references to the detailed explana-
tions above.

Flexibility as a Quality Attribute of Software

98

The conceptual model, together with its details described before, pro-
vides a formalization of flexibility as a quality attribute of software. It
serves as the foundation for the methodical contributions presented in
Chapter 5. The conceptual model provides a level of formalization which
is aligned with the needs of the methodical ideas. Thus, the measure-
ment of flexibility is fully formalized as it is intended to be conducted
with tool-based automation support. The methodical guidance for the
construction of flexible systems is less formalized: There, the target is
mainly to put all concepts involved in flexibility in relation to each other
as support for architects.

For all technical roles involved in software development, the conceptual
model is intended to be a guidance for understanding what flexibility is
and what it means to deal with flexibility in software development, both
constructively and analytically. The conceptual model is intentionally sep-
arated in different views. This allows concentrating on particular aspects
of the model. Additionally, model views with a limited number of model
elements and limited complexity can better serve as mental models tech-
nical stakeholders can remember and use.

The overall conceptual model is represented in four model views. Figure
34 depicts these views and the conceptual areas they mainly cover. The
conceptual areas are organized along the artifacts and activities in soft-
ware development: First, there are flexibility Requirements. Second, there
is Architecture as the set of architectural decisions facilitating flexibility
and as the means to analyze flexibility at an appropriate level. Third,
there is the Implementation which typically causes the main effort for
changes. This effort has to be minimized by flexibility. Finally, Measure-
ment is also a conceptual area of our model since measurement of flexi-
bility with a high degree of formalization is important for our methodical
support with architecture-tool-based flexibility measurement. The con-
ceptual model comprises the following model views:

� Flexibility Core View: Flexibility requirements and how to address
them at architectural level.

� Architecture Construction View: Architectural aspects in detail, in par-

Purpose of
the model

Target
audience

Figure 34: Views of the conceptual model for flexibility

Model views

Requirements Architecture Implementation

Measurement

Architecture Construction View
Flexibility Core View Architecture Implementation View

Flexibility Measurement View

 Flexibility as a Quality Attribute of Software

 99

ticular the concepts introduced for constructively approaching flexibil-
ity.

� Architecture Implementation View: Relationships between architec-
ture and an implementation of a system with respect to flexibility.

� Flexibility Measurement View: The relevant aspects across flexibility
requirements, architecture, and implementation with respect to
measuring flexibility.

We explain the model views in a rather brief style, as all the details are
described in earlier sections. Thus, we summarize the key ideas and link
to the sections that cover the relevant aspects.

Flexibility Core View

The flexibility core view (see Figure 35) relates the most important con-
cepts around flexibility. The distinction between Flexibility Requirements
and Flexibility Potential is introduced and the match of both is called
True Flexibility (Section 1.3). Flexibility Requirements express the poten-
tial need for Changes in the future (Section 4.2). Flexibility Potential is
achieved by making adequate Architectural Decisions (Sections 4.1.3,
4.3.1). Important Architectural Decisions are about Architecture Mecha-
nisms (Section 4.3.1.2) and Business Logic Mapping (Section 4.3.1.3);
that is how a system’s functionality is mapped to architectural elements.

Figure 35: Conceptual model: flexibility core view

Flexibility
Scenario

Ov erall Required
Flexibility

Flexibility
Potential

Ov erall Flexibility
Potential

Architectural
Decision

Architecture

Architecture
Mechanism

Business Logic
Mapping

"True Flexibility"

Change

Flexibility
Requirement

*

1

1..*

1..*

*

requires

*

1

enables

*

*

1

*

matches?

*

1

matches?

1

0..*facil itates1..* *

manifested as

*

**

addresses

*

*

1
1

has

1

Flexibility as a Quality Attribute of Software

100

Architecture Construction View

The architecture construction view (see Figure 36) aims at explaining and
relating the most important concepts needed for constructively address-
ing flexibility at architecture level. This view is compatible and aligned
with typical architecture meta-models, as for example ACES-ADF
[KKN11] or the IEEE Recommended Practice for Architectural Description
[IEEE00]. However, it focuses on and extends typical architectural models
with respect to flexibility.

Architecture consists of Architectural Decisions and Architectural Ele-
ments. Important Architectural Decisions are about Architecture Mecha-
nisms (Section 4.3.1.2) and Business Logic Mapping (Section 4.3.1.3);
that is how a system’s functionality is mapped to architectural elements.
Architectural Decisions aiming at flexibility are guided by general Archi-
tecture Principles (Section 4.3.1.1). Architectural Elements are grouped
into RunTime Elements representing entities in a running system, and
DevTime Elements representing entities in a software development pro-
cess (Section 4.3.1, 4.3.3.1). Modules are the most important DevTime
Elements from a flexibility perspective (Section 4.3.3.1). Architectural El-
ements are organized in RunTime Views and DevTime Views respectively
(Section 4.3.3.1). For the construction and documentation process of
flexible architectures, we introduce the distinction in Infrastructure Ele-

Figure 36: Conceptual model: architecture construction view

Architectural
Decision

Architecture

Architecture
Mechanism

Business Logic
Mapping

Infrastructure
Element

Template
Element

Business
Element

Architecture
Principle

Technology

Architectural View RunTime View

DevTime View

BLA
Representation

BLS
Representation

Architectural
Element

RunTime Element

DevTime Element

Module

*

*

manifested as

*

*
guides

*

*realizes

*

*

realizes

*

1

represented in *

*

defines

*

defines

*

*

defines

*

*

1

1
instantiates

1

*covers

*

**

*

covers

*

*

*

*1

1..*1..*

1..*1..*

 Flexibility as a Quality Attribute of Software

 101

ments, Template Elements, and Business Elements, which are Architec-
tural Elements (Section 4.3.1.3). We distinguish two levels of flexibility-
relevant architecture: Business Logic Agnostic (BLA), and Business Logic
Specific (BLS). Whereas BLA focuses on the Architecture Mechanisms on-
ly, BLS also covers the Business Logic Mapping. Technologies are im-
portant for architecture as well. They realize Architecture Mechanisms
and provide ready-to-use implementations of Infrastructure Elements
(Section 4.2.2, 4.3.3).

Architecture Implementation View

The architecture implementation view (see Figure 37) aims at describing
the relationship between architecture and implementation of a system
with a focus on flexibility.

A Software System has an Implementation as its main constituting part.
The Implementation consists of a number of Implementation Artifacts
which can be source code files, descriptors, models that are used in
model-driven technologies, etc. The Implementation Artifacts are im-
portant for flexibility, as the main effort for conducting changes typically
has to be spent on changing these artifacts (Sections 4.1.3, 4.3.1). Archi-
tecture is the level of abstraction on which to reason about the impact of
changes in complex systems. Architecture provides an abstraction of the
Implementation and on a more detailed level, DevTime Elements provide
an abstraction from Implementation Artifacts. With the help of this ab-
straction, early predictions about change impact as well as appropriate
Architectural Decisions can be made (Section 4.3.1).

Figure 37: Conceptual model: architecture implementation view

System

Architectural
Decision

Architecture Implementation

Implementation
Artifact

Architectural
Element

Dev Time Element
Source Code
Descriptor
MDD Model
...

1 abstracts from and prescribes *
*

1

1..*

1..*

*realizes1
1..*

realizes

*

1realizes1

1 abstracts from and prescribes 1

*

1

1

has

1

1

has

1

Flexibility as a Quality Attribute of Software

102

Flexibility Measurement View

The flexibility measurement view (see Figure 38) covers all aspects of the
model that are relevant for measuring flexibility according to our Flexibil-
ity Metric (Section 4.3.3.2). A key element for measuring flexibility is
Change. Change of a software system is what is described in Flexibility
Requirements (Section 4.1.1). If a system is flexible with respect to a par-
ticular Change, it allows this Change to be conducted with little effort,
which means that it has only a small Change Impact on Implementation
(Section 4.1.1). With our Flexibility Metric, we measure the Change Im-
pact that a Change has on the Implementation (Section 4.3.3.2). Alt-
hough the measurement of Change Impact is defined at the Implemen-
tation level in theory, this is in practice often impossible, due to the
complexity of the Implementation or due to the fact that the Implemen-
tation is not available yet (Section 4.3.3.2). Thus, Architecture is used as
the foundation for an approximation of the Flexibility Metric (Section
4.3.3.2). Architectural Elements that abstract from Implementation Arti-
facts are used to analyze the Change Impact of Changes. In order to
make modeling the Change Impact easier for an architect, Change Op-
erations (add, modify, delete) can be used to characterize the Change
Impact (Section 4.3.3.2, 4.3.3.3). For a more detailed calculation of the

Figure 38: Conceptual model: flexibility measurement view

Flexibility
Requirement

Change

Flexibility
Scenario

Architecture Implementation
Implementation

Artifact
Architectural

Element

Size

Dev Time View

Change Impact
View

Flexibility Metric

Change Impact

Change Operation

Impact size

Probability

1..*

1..*

has 1

has

1

has

*

requires

*

*1

1 defined on

1

1

represents

*

1

measures

*

1

used to approximate metric

1

1

originally defined on

1

has

*
realized by

*

*

impacts

*

1..* 1..*

 Flexibility as a Quality Attribute of Software

 103

Flexibility Metric, the Probability of Flexibility Requirements, the Impact
Size of Change Impacts, and the Size of Implementation Artifacts can be
included (Section 4.3.3.2). The Change Impact View is an Architectural
View, a DevTime View, which is used for graphical modeling and repre-
sentation of Change Impacts (Section 4.3.3.3).

In the introduction of Chapter 4, we referenced the following questions
about flexibility which were raised in [SHN01]. Chapter 4 addresses most
of these questions; the question about design for flexibility will be ad-
dressed in Chapter 5.

� “What is flexibility? How does a formal definition look like?”

� “Why or when is flexibility needed in system design?”

� “How can one design for flexibility? What are the design principles?”

� “What are tradeoffs associated with flexibility?”

Engineering Flexible Software Systems

104

5 Engineering Flexible Software Systems

“Information technology and business
are becoming inextricably interwoven.

I don't think anybody can talk meaningfully
about one without the talking about the other.”

Bill Gates

In Chapter 4, we elaborated a conceptual foundation for the quality at-
tribute flexibility. A focus of this foundation is the role of architecture for
flexibility and what that means in terms of architectural artifacts. In this
chapter, the focus is on how architects can work to design flexible sys-
tems. Therefore, we describe engineering activities at architectural level
which aim at achieving adequate flexibility.

Explicitly designing for flexibility means to make architectural decisions
that allow conducting anticipated changes with minimal effort. Besides
this decision making, also the evaluation of architectural decisions is crit-
ical in order to confirm that the architecture design is on the right track,
with respect to flexibility and other requirements. These two activities,
constructive guidance for decision making and continuous evaluation of
design decisions, are the key activities supported by methodical contribu-
tions of this chapter.

We start with a methodical overview on all activities involved and on
their interplay in Section 5.1. Then, the key activities are explained in de-
tail. We begin with a brief explanation of the elicitation of flexibility sce-
narios in Section 5.2. After that, the explicit guidance of architects dur-
ing architecture design is introduced in Section 5.3. Continuous measur-
ing of flexibility in the context of architecture tools is described in Section
5.4. Finally, we close the chapter with a discussion of the engineering
support for flexibility in Section 5.5.

5.1 Methodical Overview

In the context of software development, architecting plays an important
role. At the architectural level, the key design decisions for the fulfillment
of functional requirements and quality requirements like flexibility have

 Engineering Flexible Software Systems

 105

to be adequately made. It is important to get these key decisions right at
the architectural level as they are implemented afterwards in a distribut-
ed manner by different teams, which makes rework very time-
consuming and expensive.

Getting the key architectural design decisions right basically means two
things: First, decisions have to be made, which is a constructive process
of deriving solutions from the given requirements. Second, based on the
decisions made (manifested in the architecture), a prediction has to be
made whether this architecture is adequate for fulfilling the require-
ments at hand (see Sections 2.1.3 and 4.3.2). Such a prediction is typi-
cally done in an evaluation of the architecture, using different methods
depending on the quality attribute at hand and the level of accuracy
needed. This is true for any type of quality attributes, and thus also for
flexibility. If the prediction finds that the flexibility needed is not
achieved, rework of the architecture is needed. The resulting architecture
is the input for subsequent development activities.

Figure 39 shows architecting as an activity embedded between require-
ments engineering and development. The elicitation of flexibility re-
quirements and their documentation as flexibility scenarios is an im-
portant task for requirements engineering. It is briefly sketched in Sec-
tion 5.2, but the main focus of our methodical contribution is on archi-
tecting.

As described above, Designing (in the sense of making decisions) and
Analyzing (in the sense of checking adequacy of decisions) are key activi-
ties of Architecting. This is also depicted in Figure 39. Additionally, Mod-
eling is a key activity which denotes documenting the decisions made in
a form that is well usable for further needs during architecting and other
development activities. These three activities are conducted in an itera-
tive and incremental way. These highest-level activities are more or less
part of all architecture design methods. In [HKN+07], five such methods
are surveyed and compared and similar sequence of activities is de-
scribed there. There, Design and Modeling are put together. Additional-
ly, there is an initial analyzing step which in our case is part of require-
ments engineering and Design. The key point here is that our methodical

Figure 39: Architecting as activity between requirements engineering and development

Key
architecting
activities

Evaluate

Requirements
Engineering

Development

Architecting

Engineering Flexible Software Systems

106

contributions for flexibility are not tailored to a specific architecting
method, rather they are universally applicable to other methods.

In Figure 40, our methodical contributions for achieving high flexibility
are annotated to the architecting activities. First, we give guidance for
the design of architectures with a focus on flexibility (Section 5.3). The
design process is supported by intertwining the aspects of functional de-
composition and quality-driven design. Guidelines and heuristics for
making appropriate decisions for flexibility are sketched. Second, we
provide support for the evaluation of achieved flexibility (Section 5.4). It
is the goal to automate the evaluation of flexibility as much as possible in
order to give continuous feedback about the level of flexibility to the ar-
chitect. To achieve this, we add in the modeling step the explicit model-
ing of change impact, which is done in the change impact view (see Sec-
tion 4.3.3.3). Then, we can offer automated measurement of flexibility
as part of architecture modeling tools in the evaluation step, which al-
lows shortening the evaluation cycles and thus allows a faster conver-
gence to an adequate architectural solution. The methodical contribu-
tions described are mainly targeted at architects.

Our methodical support for architects can be applied with typical archi-
tecture design methods. It is not intended to replace any existing archi-
tecture method; rather it is complementary and builds on existing meth-
ods. Visually speaking, our contributions can be seen as a conceptual
PlugIn for architecture methods which handles the specific concern Flex-
ibility. We also emphasize this interpretation by the visualization in Figure
40, where we show the single contributions in a typical architecture de-
sign method. In the case of the methodical guidance, the PlugIn idea is
to be understood rather conceptually; in the case of the flexibility meas-
urement, it is really realized as a PlugIn for the architecting tool Enter-
prise Architect (called AddIn) (Section 5.4.3).

Figure 40: Contributions to the architecting activities

Methodical
contributions

Relationship
to other
architecture
methods

<optional>
Architecture

(implemented or not)
Evaluate

Requirements
(incl. flexibility
requirements)

Architecture

Functional decomposition &
quality-driven design,

design steps,
guidelines & heuristics

Explicit modeling of change
impact by architect:
Change Impact View

Automated measurement
and feedback for flexibility

in architecture tool

 Engineering Flexible Software Systems

 107

In order to achieve this goal of supporting flexibility through all architect-
ing activities, we thoroughly analyzed flexibility as a quality attribute of
software in Chapter 4. With the help of this knowledge, the guidance in
the single activities of architecting can be made more concrete than they
are when targeting at design for all types of quality attributes.

Eventually, it is the goal of architecting support that all relevant quality
attributes are covered in a similar manner. For selected quality attributes
like performance, such approaches already exist (e.g. [BKR09]). To be
most effective, these different quality attribute “PlugIns” should work on
a common architecture meta-model and in an integrated tool platform.
Then, analyses about the mutual influence of design decisions for the
one or the other quality attribute can be conducted.

Architects can apply the method for achieving flexibility in different con-
texts. The context of designing a new software system is the most obvi-
ous one. However, it can also be applied in the context of software mi-
grations or other evolution activities. As the requirements for a software
system in general change over time, this can also be true with respect to
flexibility requirements. That is, architects discover new flexibility re-
quirements, for example when similar changes occur in a recurring way
which are not supported by adequate flexibility mechanisms and which
are thus overly costly. Then, such a change project can also be used to
redesign the architecture for better flexibility. Additionally, larger evolu-
tion projects conducting massive changes to a software system can be
used to introduce new flexibility potential if needed. The change impact
view as an instrument for automated measurement of flexibility can also
be applied in other contexts than architecture design. Flexibility evalua-
tions might be necessary for different reasons like for checking how fu-
ture-proof a software system is. Such evaluations can also be supported,
which requires to model the change impacts manually in the change im-
pact view. This then allows automated analyses of flexibility considering
particular changes.

5.2 Eliciting Flexibility Scenarios

When change requests to a system arise, they should be covered by the
flexibility potential of the system; otherwise conducting the change is
effort- and cost-intensive. Achieving this coverage means not only to
make the right architectural decisions but also to anticipate the needed
flexibility requirements during system design.

This thesis strongly focuses on the architecture design for flexibility.
However, we give a brief introduction to requirements engineering for
flexibility in this section.

Contexts of
method
application

Anticipation
of flexibility
requirements

Engineering Flexible Software Systems

108

Flexibility requirements are particularly difficult to elicit as they always
deal with anticipated changes in the future which are differently likely to
happen. Further, there might be context factors changing around a
software system which were not even considered. Thus, a hundred per-
cent coverage of flexibility requirements can hardly be achieved. Howev-
er, experience of other software systems and a strong domain
knowledge help to come up with the right flexibility requirements for a
software system. The goal to be followed for flexibility requirements is to
make a sound trend analysis and to approximate future changes as well
as possible.

We do not contribute a new methodology for eliciting flexibility re-
quirements in this thesis. Rather, we rely on existing methods for re-
quirements elicitation and add information from our characterization of
flexibility to make these methods more effective. In [Doe11], the NFR
Method is described, which explicitly aims at eliciting non-functional
requirements. It deals with quality models describing quality attributes
which are used to support requirements engineers in the systematic elici-
tation of non-functional requirements. Our characterization and classifi-
cation of flexibility scenarios (see Section 4.2.2) could be used in the con-
text of this method.

Another method which can be adopted for eliciting flexibility require-
ments is PuLSE-Evo (Product Line Software Engineering – Evolution)
[VEG08]. It was originally developed to support the evolution of software
product lines. In this context, the elicitation of future needs and potential
changes is also relevant. Although in the first place the method was de-
veloped for embedded systems, it is mainly transferrable to other system
types like information systems. PuLSE-Evo has an own conceptual model
of software evolution which partially overlaps with our conceptual model
of flexibility. These models have a different focus and partially slightly
different terminology, but in general they are compatible (e.g. Impact in
the PuLSE-Evo model means the impact of a change on the context in
terms of business aspects, whereas Change Impact in the flexibility mod-
el means the impact of a certain change on architectural or implementa-
tion elements). A concrete mapping is possible, but not in the scope of
this thesis. For this mapping, again our characterization and classification
of flexibility scenarios (see Section 4.2.2) would be helpful.

After eliciting and characterizing the flexibility requirements for a system,
they should be represented as flexibility scenarios (see Section 4.2.1). It is
not always possible to anticipate flexibility requirements for a system.
This might be due to inexperienced stakeholders or to a largely new do-
main addressed. Then, it might be beneficial to define, based on experi-
ence of the architect, some “standard flexibility scenarios” which cover
more technically motivated changes that often occur.

Using exist-
ing require-
ments meth-
ods

Flexibility
scenarios

 Engineering Flexible Software Systems

 109

In the next section, we describe the enhancement of architecture design
methods with better guidance for flexibility, making appropriate deci-
sions to address the flexibility scenarios.

5.3 Architecture Design for Flexibility

In this section, we describe what we contribute to architecture design
methods in order to better support achieving flexibility. Architects get
concrete guidance for making architectural decisions related to flexibility.
This guidance is mainly given by splitting otherwise complex design as-
pects and by giving heuristics and guidelines.

We start with a definition of design goals for our methodical support
(Section 5.3.1). Then, we give an overview of the design process as sup-
ported (Section 5.3.2). Finally, we describe in detail the individual activi-
ties of the design process with heuristics (Section 5.3.3).

In Figure 40, we conceptually distinguished Design and Modeling. With
respect to flexibility measurement, the explicit Modeling activity is im-
portant. However, for all design activities in this section, design and
modeling is closely interwoven and modeling is not explicitly described.
Rather it is assumed that the resulting architectural decisions and struc-
tures are modeled as they are designed.

5.3.1 Design Goals

The foremost design goal with respect to flexibility is to achieve True
Flexibility. According to Definition 7 (see also Figure 6), this means that
flexibility requirements are appropriately covered by the built-in flexibility
potential. This bases on the assumption that the anticipated flexibility re-
quirements approximate the eventually occurring change requests ade-
quately. Additionally, not too much flexibility potential should be built in,
as flexibility potential always comes at a cost (see Section 4.3.4). Con-
structively achieving True Flexibility means to make the adequate archi-
tectural decisions.

In Section 4.3.1, we analyzed what makes an architecture flexible and
how flexibility potential can be achieved. The key means to achieve flexi-
bility is (according to the definition of flexibility) to minimize and localize
the change impact. This minimizes the effort for changes in the sense
that only a small number of implementation elements have to be
touched and the key architectural decisions stay stable.

Designing for flexibility is challenging as it involves considering many
different aspects like functional decomposition and flexibility mecha-

Key goal:
true
flexibility

Minimize
change im-
pact

Reduction of
complexity

Engineering Flexible Software Systems

110

nisms, business logic and technologies, the interplay between runtime
and development time aspects, etc. Making this inherent complexity bet-
ter manageable by explicit addressing and partial separation in the archi-
tecture design process is our leverage towards higher flexibility.

Our methodical support should address the relevant contexts, as de-
scribed in Section 5.1. That means in particular that it should be applica-
ble to architecting of new systems as well as to the evolution of existing
systems.

5.3.2 Design Process Overview

In this section, the overview on the design process is described. Accord-
ing to Figure 40, the design process covers mainly the Design activity and
implicitly the Modeling activity for the architecture. The design progress
addresses the flexibility related aspects as indicated in Figure 40. In the
overview, we describe the key ideas of the design process and of how
the single activities belong together as well as what the overall sequenc-
es of activities look like. In the next section, we describe the details of
the single activities.

The key contribution of the design process is to reduce the inherent
complexity of designing for flexibility by making activities, artifacts, and
the relationships more explicit where possible. Additionally, we support
the activities with flexibility-specific heuristics and guidelines helping the
architect to master the complexity. Where typical architecture methods
stay rather abstract in order to be able to address all kinds of require-
ments, our approach focuses on flexibility and gives the accordant guid-
ance. The key principles to realize this are the following:

� Consider functional decomposition (incl. business logic mapping) and
quality-driven design (incl. application of flexibility mechanisms):
Both, the selection of appropriate flexibility mechanisms and the ap-
propriate mapping of business logic are relevant for achieving flexibil-
ity (see Section 1.3).

� Consider business logic and technology aspects: Flexibility is often
supported by using technologies which realize certain flexibility
mechanisms. These technologies have to be appropriately combined
with the business logic of the system (see Section 4.4)

� Consider runtime aspects and devtime aspects of a system: Flexibility
is a devtime quality attribute. However, during system design there is
a close relationship to runtime quality attributes. This results from the
mutual influence of design decisions made for devtime and runtime.

� Consider top-down decomposition for new requirements and bot-
tom-up analysis of existing realizations: In case of an existing system,
the implementation cannot be changed easily in order to comply with
design decisions made for achieving flexibility. Thus, the existing de-

Context
coverage

Context

Contribution
and
principles

 Engineering Flexible Software Systems

 111

sign decisions have to be taken into account when designing for new
flexibility requirements.

Despite the more detailed guidance of the design process and its activi-
ties, architecture design is still a task requiring a good portion of experi-
ence and creativity.

The architecture design process works like typical architecture methods
on requirements as input. This covers all types of requirements like busi-
ness goals, functional requirements, quality requirements, or any type of
constraints. The key aspect for designing a flexible architecture is that
adequate flexibility requirements in form of scenarios are available. Op-
tionally, the design process can also take existing architectures into ac-
count. An architecture might be already existent when an existing sys-
tem is evolved or when a new architecture has been designed, but the
flexibility of it should be improved in another design iteration. An exist-
ing architecture might be available in a well-documented form, but it
might be also available in the source code of the existing system, requir-
ing a systematic abstraction and analysis (reverse engineering).

The architecture design process produces as output an architecture. The
architecture consists of architectural decisions and architectural ele-
ments, relationships among them, and further characterizing attributes
(see Definition 2 or [BCK03, RH06, TMD09]). An architecture is typically
represented using architectural views. The specific aspects of modeling
Change Impact Views (see Section 4.3.3.3) are covered in Section 5.4.

Figure 41 depicts the overview on the design process, with the key in-
puts and outputs, and with the key activities of the process and their
flow. These key activities are widely not new but can be partially found
in today’s architecture design processes, as for example described in
[HKN+07]. Our key contributions are as described above.

As can be seen from Figure 41, there is no strict order of activities which
would lead to the desired architecture. Rather, the sketched activities
might have to be revisited iteratively until the architecture converges to
the desired state of fulfilling the requirements. Nevertheless, there are
some typical patterns of stepping through the activities:

� Design typically starts with a coarse-grained functional decomposition

� Runtime aspects are typically addressed first, devtime aspects are typ-
ically addressed later

� The activities of functional decomposition and realizing quality attrib-
utes are intertwined in the sense that decisions are continuously re-
fined

� The realization of runtime quality attributes and devtime quality at-
tributes is dependent on each other and needs iterative refinement

Input

Output

Process
overview

Engineering Flexible Software Systems

112

� Technologies are incorporated to realize architectural mechanisms at
runtime and devtime

As sketched, the design process is highly iterative and incremental. An
appropriate unit to control the iterations are architecture scenarios in
general and flexibility scenarios in particular. Intentionally, there are no
clear artifact flows sketched between the activities. Rather, the activities
work together on the architecture model. Particular activities have a fo-
cus on specific architectural artifacts, which is described in detail in Sec-
tion 5.3.3.

Further guidance to the architecture design process can be derived from
the conceptual model for flexibility (see Section 4.4) and the Architecture
Decomposition Framework (ACES-ADF) (see Section 2.1.3). The concep-
tual model guides with more detailed information about flexibility and in
particular with the role of architecture in achieving flexibility. ACES-ADF
guides with the separation of runtime and devtime dimension, and it
guides with the separation of aspects like functions, data, processes, UI,
and technologies. Concretely, this is described for the single activities in
Section 5.3.3.

Figure 41: Architecting design process overview

Guidance of
the process

Requirements
Analysis

Architecting – Design and Modeling

<optional>
Architecture

(implemented or not)

Requirements
(incl. flexibility

scenarios)
Functional System

Decomposition

Realization of RunTime
Quality Attributes

Selection and
Application of
Technologies

Existing
Artifacts
Analysis

Architecture
Realization of DevTime

Quality Attributes

RT-DT Mapping,
Consolidation

Application of
Flexibility

Mechanisms

Business Logic
Mapping

Artifact Design
Activity Artifact

Flow
Activity

Flow

 Engineering Flexible Software Systems

 113

5.3.3 Design Process Activities

In this section, all activities of the architecture design process, as intro-
duced in the previous section, are described in detail. Each activity is
described according to the following uniform structure, always focusing
on flexibility (other aspects that are generally done or related to other
quality attributes are left out).

� Introduction

� Goals for flexibility

� Artifacts consumed and produced

� Guidelines and heuristics for flexibility

An architect applies these activities according to the overall process as
described in Figure 41. He incrementally steps through the activities ad-
dressing flexibility requirements and making architectural decisions until
an adequate level of flexibility is achieved. Please note that these activi-
ties typically do not aim at flexibility only. Rather, they are conducted to
fulfill all kinds of requirements of a system. Our activity description of the
activities contributes to the flexibility-related guidance and does not de-
scribe other steps typically conducted in these activities.

Activity: Requirements Analysis

Introduction

Requirements analysis is an architectural activity aiming at understanding
and processing architecturally-relevant requirements as input for the ar-
chitecture design activities.

Goals for flexibility

� Identify adequate set of flexibility scenarios to be addressed in overall
design and in single design iterations

Artifacts consumed and produced

� Consumed: Flexibility scenarios, other requirements

� Produced: Selection and grouping of flexibility scenarios

Guidelines and heuristics for flexibility

� Select a number of flexibility scenarios for addressing in the overall
design and for the next design iteration according to the prioritiza-
tion and probability of flexibility scenarios

Description
of activities

Engineering Flexible Software Systems

114

� Group flexibility scenarios according to what is changing or according
to the impacted architectural elements (see Section 4.2.2) as units of
architectural work in the design process

� Identify functional requirements that are closely related to the busi-
ness logic covered in flexibility scenarios, in order to better under-
stand the context of potential changes

Activity: Functional System Decomposition

Introduction

The functional decomposition of software systems aims at decomposing
functional requirements in a way that they can be assigned to software
elements in the broadest sense. That means, it has to be defined which
runtime elements exist and how they interact to deliver the required
functionality. Further, it has to be defined which devtime elements exist
and how they are organized for development activities.

Goals for flexibility

� Decompose the functionalities in a way that allows later-on mapping
of functionality to element types defined by flexibility mechanisms

Artifacts consumed and produced

� Consumed: Functional requirements, flexibility scenarios

� Produced: Proposed architectural elements (devtime or runtime) cov-
ering the functional requirements, proposed architectural template
elements with assigned functionality sets

Guidelines and heuristics for flexibility

� Make a top-down decomposition of the system (hierarchically)

� Identify architectural elements, their interfaces, and relationships

� Cover in the decomposition the aspects: functions, data, processes,
and UI

� For flexibility scenarios covering the change of a certain functionality,
decompose the system in a way that the change is as local as possi-
ble.

� Build abstractions for recurring architectural elements, in particular
when the level of granularity is not predetermined. Such abstractions
are marked in the architecture model as Template Elements (see Sec-
tion 4.3.1.3). Attach to a template element the functionality it ab-
stracts from. The key idea is to defer the decision about the concrete
decomposition until the point in time when the mechanisms to

 Engineering Flexible Software Systems

 115

achieve flexibility are clear. [Example: If many architectural elements
for data access are found, a template element “data access” is de-
fined and later-on, the concrete decomposition is made]

Activity: Existing Artifacts Analysis

Introduction

Architecture design activities often take place in the context of system
evolution. Thus, the architect has to consider the existing architectural
decisions and implementation artifacts of the system, as they cannot be
freely influenced. Changing a decision in architecture design might lead
to high cost for the change of the implementation. Often, the architec-
ture of existing artifacts is not explicitly known. Then, reverse engineer-
ing techniques are needed to recover architectural elements and deci-
sions from the implementation.

Goals for flexibility

� Identify realized architectural decisions in existing artifacts, which
hamper the achievement of flexibility

� Identify potential for creating flexibility without high effort and cost
for changing existing implementation artifacts

Artifacts consumed and produced

� Consumed: Architecture models of existing system artifacts, flexibility
scenarios, ideas for architectural realization of flexibility scenarios

� Produced: Judgment about feasibility of architectural ideas, alterna-
tive solutions

Guidelines and heuristics for flexibility

� Conduct a bottom-up analysis of the existing system artifacts and
their architectural decisions: Make a mapping to requirements of the
system under design

� Analyze flexibility mechanisms and business logic mapping in the ex-
isting system artifacts

� Analyze the impact of realizing drafted flexibility solutions based on
the existing system artifacts (considering functions, data, processes,
UI); identify architectural decisions that lead to high change impact

� Consider deviations from the planned concepts for flexibility, which
are closer to the flexibility mechanisms realized in the existing system
artifacts and thus allow easier realization

Engineering Flexible Software Systems

116

Activity: Realization of RunTime Quality Attributes

This activity cares about the achievement of quality attributes like per-
formance or availability. It is quite similar to the realization of devtime
quality attributes, but it deals with runtime architectural elements in-
stead of devtime architectural elements. This activity is not in the direct
scope of designing for flexibility; however it has a connection as design
decisions made for runtime quality attributes might adversely impact
flexibility. Thus, an iterative refinement between the realization of
runtime and devtime quality attributes is necessary to guarantee that all
relevant scenarios can be addressed.

Activity: Realization of DevTime Quality Attributes

This activity is the counterpart of the realization of runtime quality at-
tributes. Flexibility is a devtime quality attribute and thus has to be ad-
dressed mainly in this activity. Due to this importance of the activity for
our design process, we split this activity into three sub-activities which
are described in the following.

Activity: RunTime - DevTime Mapping and Consolidation

Introduction

Architecting means to define how a system can deliver the required
functionality at runtime and how it can be developed at devtime. The re-
spective architectural elements at both levels are not necessarily identi-
cal. As architecture design often starts at the runtime level (delivering the
functionality is the foremost goal why software is developed) it has to be
mapped at some point in time to the devtime level. This activity assumes
that a runtime decomposition and potentially also the realization of
runtime quality attributes has already been done. The key relationship
between runtime and devtime architectural elements is that runtime el-
ements are realized by devtime elements (not necessarily 1:1).

Goals for flexibility

� Map runtime architectural elements to devtime so that design for
flexibility can be applied

Artifacts consumed and produced

� Consumed: Runtime architectural views

� Produced: Initial devtime architectural views

 Engineering Flexible Software Systems

 117

Guidelines and heuristics for flexibility

� Initially, map runtime components 1:1 to devtime modules

� Initially, map runtime data elements 1:1 to devtime modules

� Initially, map runtime process elements 1:1 to devtime modules

� Initially, map runtime UI elements 1:1 to devtime modules

� Identify multiple instantiations of elements at runtime and reduce at
devtime to 1 single realizing element

� Identify common parts in resulting modules and factor out to sepa-
rate modules (avoid redundancy at devtime level)

Activity: Application of Flexibility Mechanisms

Introduction

Flexibility is achieved when change requirements can be realized with
minimal and local impact only. Flexibility mechanisms (see Section
4.3.1.2) are architectural mechanisms that support the localization of
changes. Flexibility mechanisms typically introduce some kind of indirec-
tion, which allows the local change of particular system aspects. For rea-
sons of complexity handling, we explicitly separate the Application of
Flexibility Mechanisms step from the follow Business Logic Mapping step.

Goals for flexibility

� Identify and apply flexibility mechanisms in order to achieve the flexi-
bility requirements

Artifacts consumed and produced

� Consumed: Initial functional decomposition at devtime level (pro-
duced by RT-DT Mapping or by Functional System Decomposition),
flexibility scenarios

� Produced: Architectural decisions and views covering the selection
and application of flexibility mechanisms, mainly at a business-logic-
agnostic level (BLA)

Guidelines and heuristics for flexibility

� Explicitly address architectural elements that were tagged as Tem-
plate Elements: Identify whether the application of flexibility mecha-
nisms is necessary

� Analyze flexibility scenarios to see which aspects have to be separat-
ed from each other by means of flexibility mechanisms

Engineering Flexible Software Systems

118

� Cover aspects of functions, data, processes, and UI in flexibility con-
siderations

� Select appropriate flexibility mechanisms (e.g. patterns) to be applied

� Identify the role of architectural elements in the flexibility mechanism
(e.g. a workflow engine can represent a role and declaratively de-
scribed workflows can represent another role)

� Identify whether the selected architectural mechanisms come with
new infrastructure elements. Explicitly mark them as Infrastructure El-
ement in the architecture

� Identify whether further abstractions of functional modules are
meaningful: If yes, introduce further Template Elements abstracting
from these elements

� Finish with an architecture model that is mainly business-logic-
agnostic with respect to flexibility

Activity: Business Logic Mapping

Introduction

Business Logic Mapping is the step that integrates the functional de-
composition of a system and the selection of flexibility mechanisms. Only
when appropriate flexibility mechanisms are in place and when the busi-
ness logic is appropriately distributed to architectural elements, a system
is flexible. We introduced in previous activities Template Elements, which
will now be concretely instantiated in order to have an appropriate map-
ping.

Goals for flexibility

� Identify a mapping of business logic to architectural elements defined
by flexibility mechanisms so that the flexibility requirements can be
adequately fulfilled

Artifacts consumed and produced

� Consumed: Flexibility scenarios, functional decomposition of the sys-
tem, architectural decisions about flexibility mechanisms

� Produced: Concrete mapping of business logic to architectural ele-
ment types

Guidelines and heuristics for flexibility

� Revisit all flexibility mechanisms built in and the related Template El-
ements.

 Engineering Flexible Software Systems

 119

� All template elements are instantiated with concrete instances of ar-
chitectural elements covering a certain amount of business logic (so-
called Business Elements are created) (e.g. for an abstract service
concrete instances representing the business logic are created). This is
only necessary where flexibility requirements demand the mapping
otherwise the business logic mapping can be left open to later devel-
opment activities.

� Distribute business logic over the template elements in a way that the
resulting flexibility potential matches the flexibility requirements

� Identify appropriate granularity of architectural elements and of inter-
faces

� Business logic mapping can result in splitting or merging modules,
creation of new modules, reallocation of responsibilities across mod-
ules

� Consider functions, data, processes, and UI as concrete forms of
business logic, which have to be appropriately addressed, also in their
interplay

� Finish with an architecture model that is mainly business-logic-specific
with respect to flexibility

Activity: Selection and Application of Technologies

Introduction

Technologies play an important role for the achievement of flexibility as
they often realize architectural mechanisms. Realizing an architectural
mechanism often means that the Infrastructure Elements introduced by
flexibility mechanisms are implemented by a technology, and potentially
a technical frame for the realization of Business Elements is given.

Goals for flexibility

� Identify appropriate technologies supporting flexibility

� Apply technology in a way that optimally supports flexibility

Artifacts consumed and produced

� Consumed: Flexibility scenarios, architectural decisions about flexibil-
ity mechanisms

� Produced: Architectural decisions about technologies, (alternative)
proposals about flexibility mechanisms

Engineering Flexible Software Systems

120

Guidelines and heuristics for flexibility

� For Infrastructure Elements identified during Application of Flexibility
Mechanisms, typically a realization is needed. Often, existing tech-
nologies offer such realizations (e.g. commercial workflow engines
realize architectural mechanism)

� Select technology with respect to their appropriateness to realize In-
frastructure Elements. Alternatively, these elements have to be indi-
vidually realized

� Make decisions about exact usage of technologies in the context of
realizing flexibility

� Consider aspects of functions, data, processes, and UI

� Due to the availability of technological options, alternative flexibility
mechanisms can be proposed, which can adequately replace selected
ones

The design process activities as described are integrated via the process
described in Figure 41 and the principles described in Section 5.3.2. This
integration leads to several very intensive alignments of activities, which
require iterative and incremental working towards architectural solu-
tions. These particularly intensive alignments are highlighted in Figure
42. The architect should put specific focus on aligning the activities.

Figure 42: Architecting design process overview – key integrations

Requirements
Analysis

Architecting – Design and Modeling

<optional>
Architecture

(implemented or not)

Requirements
(incl. flexibility

scenarios)
Functional System

Decomposition

Realization of RunTime
Quality Attributes

Selection and
Application of
Technologies

Existing
Artifacts
Analysis

Architecture
Realization of DevTime

Quality Attributes

RT-DT Mapping,
Consolidation

Application of
Flexibility

Mechanisms

Business Logic
Mapping

Artifact Design
Activity Artifact

Flow
Activity

Flow

 Engineering Flexible Software Systems

 121

5.4 Measuring Flexibility with Tool Support

Figure 40 presents the overview on the methodical contributions to flex-
ibility at architectural level. In the previous section, the constructive con-
tributions for the Design activity are represented in form of activities,
principles, guidelines, and heuristics. This section focuses on the analyti-
cal contributions, which are applied in the Evaluate activity.

While the evaluation of flexibility during architecture design is typically a
manual and time-consuming task, we aim at automated analysis of flexi-
bility. This facilitates the analysis of flexibility in much shorter cycles, it
makes direct feedback to the architect possible, and it allows the archi-
tect concentrating on the design tasks with intermediate revisions on in-
adequate design decisions.

First, we explain the key ideas behind automated measurement and how
it integrates into the engineering process in Section 5.4.1. Then, we out-
line the features of our tool developed for automated flexibility meas-
urement and show an exemplary application in Section 5.4.2. Finally, we
briefly describe the technical realization of the tool in Section 5.4.3.

5.4.1 Continuously Measuring Flexibility in Architecting

The key reason why to introduce automated measuring of flexibility is to
drastically increase the frequency of measurement without distracting
the architect from the design activities. While architecting as a whole
aims at avoiding rework-intensive corrections at the implementation lev-
el, continuous measurement of quality attributes can help to avoid re-
work-intensive corrections of architectural design decisions at architec-
ture level. The effectiveness of such near-real-time feedback has been
shown also in other areas, for example for the avoidance of architecture
compliance violations [Kno11].

In Section 4.3.3.2, we formalized the ideas for measuring flexibility and
introduced concepts for tool-supported measurement. The flexibility
metric results are defined on a [0, 1] scale, measuring the flexibility of an
architecture with respect to a particular flexibility scenario. 1 means
highest flexibility. In order to allow automated calculation of the flexibil-
ity metric results, we extended the architecture meta-model with addi-
tional information, captured in the Change Impact View (see Sections
4.3.3.3 and 4.4). As fully automated reasoning of change impacts for in-
formal flexibility scenarios is not possible, we let architects model their
considerations about the fulfillment of flexibility scenarios under design
as part of the architecture model. This is expressed as change impacts on
the architecture model and allows afterwards automated calculation of
flexibility results.

Flexibility
measure

Engineering Flexible Software Systems

122

Figure 43 depicts the Evaluate activity in the context of the overall design
process. This step is fully automated and based on the architecture mod-
el created before, including the change impact view. The only task left to
the architect in terms of the evaluation is the interpretation of the results
and how to react to them in further design activities. Enhancing the ar-
chitecture model with the change impact view becomes completely in-
terwoven with the Design and Model activities.

Modeling the change impact views is relatively little additional effort.
First, it captures only the information an architect has to reason about
anyway when designing for flexibility since it covers the relevant aspects
according to the definition of flexibility (and this is assumed to guide
architects even more explicitly towards adequate flexibility solutions, as
described in Chapter 7). Second, it can be done at the same point in
time when the architect designs the flexibility solution. Third, being fully
integrated in the architecture model in a tool, it can reuse existing model
elements. Later on in the design and evaluation, the persisted change
impacts can be revisited and reevaluated at any time.

In order to achieve near-real-time feedback, a close integration of the
Evaluate activity with the Design and Model activities is necessary, as de-
scribed above. Figure 41 shows the detailed activities of designing an ar-
chitecture with focus on flexibility. Giving near-real-time feedback means
that even working inside such an activity, the architect can get automat-
ed feedback on the current flexibility, as in the background the tool au-
tomatically calculates it for the current architecture model. The architect
only has to make sure that the relevant change impact views are up-to-
date. To achieve this, modeling architectural decisions and structures for
flexibility should always be directly followed by modeling the change im-
pact views.

In the following sections, we describe features, application, and realiza-
tion of the tool for automated flexibility measurement.

Evaluation
activity

Figure 43: Key contributions to flexibility measurement

Modeling
change
impact

Flexibility
Metric Results

Evaluate

Architecture
Model

(incl. change
impact view)

Explicit modeling of change
impact by architect:
Change Impact View

Automated measurement
and feedback for flexibility

in architecture tool

 Engineering Flexible Software Systems

 123

5.4.2 Features and Exemplary Application of the Tool

In order to demonstrate the feasibility of automated and continuous flex-
ibility measuring and feedback, we developed a tool extension for the
modeling tool Enterprise Architect (EA) [EA11a]. In Section 5.4.3, we de-
scribe the technical realization of the tool extension.

In this section, we focus on the functionality of our tool and demon-
strate its application in the context of the example introduced in Section
1.3. Therefore, we first give a brief overview on the features of the tool.
Then, we will revisit the example and give some further background in-
formation and assumptions. Finally, we illustrate with screenshots the
application of the flexibility tool in the context of the example.

F1: Modeling of change impact views: Change impact views are intro-
duced as a new type of architectural views in EA. In order to allow archi-
tects to easily model change impact views, the respective elements are
provided as a toolbox, like for built-in notations and view types. In par-
ticular, flexibility scenarios and the impacts-relationship are introduced
and allow graphical modeling of change impact.

F2: Representing flexibility-relevant data in the model: Change impact
views and the respective architectural elements and relationships can be
enhanced with more detailed information about the elements and the
relationships, which are introduced in our flexibility metric. This is the
prerequisite for more accurate flexibility prediction values. In particular,
the type of the impacts-relationship (add / modify / delete) and the size
of the impact (low / medium / high) can be modeled. The architectural
elements impacted by potential changes can be described with their es-
timated or measured size (in LOC). This additional data is represented as
tagged values in EA.

F3: Calculating flexibility automatically according to metrics: Having
modeled the change impact view with the flexibility-relevant data, the
flexibility tool can automatically calculate the flexibility metric for all flex-
ibility scenarios in the architecture model. Therefore, the model is
searched for all scenarios and the flexibility metrics are applied according
to all metric configurations. The resulting flexibility values are between 1
(= best flexibility) and 0 (no flexibility).

F4: Representing flexibility metrics visually for user: The flexibility metrics
results are visually represented to the user in two different ways. One is a
small window which is always visible and represents the flexibility value
for the flexibility scenario just selected in the modeling diagram. As soon
as another scenario is clicked, the flexibility metric for this scenario is au-
tomatically calculated. Additionally, there is always the overall flexibility
for all scenarios in the architecture model displayed. The other window is
a main window in EA like a diagram. It presents an overview on all flexi-
bility scenarios in the architecture model and also outlines the textual de-

Overview of
tool features

Engineering Flexible Software Systems

124

scription. For each scenario, the flexibility metric value is displayed as
well as the overall flexibility of the architecture with respect to all viewed
flexibility scenarios. All flexibility values are colored in a traffic light style:
Green depicting high flexibility, red depicting low flexibility.

F5: Configuring the flexibility metric: The calculation of the flexibility
metric can be configured with a configuration window. Thereby, the
change impact size for the predefined values can be adjusted (default:
low = 10% change / medium = 30% change / high = 50% change). Fur-
ther on, the flexibility metric can be adjusted in a way that the architect
can define until which change impact size the flexibility is still considered
to be 1 (default: less than 10 LOC impacted) and from which change
impact size the flexibility is considered to be 0 (more than 10% of sys-
tem size impacted). For details about the flexibility metric and the calcu-
lation see Chapter 4.

F6: Calibrating the flexibility model with scenario probabilities: As scenar-
ios are not equally likely and the architect might like to try out different
profiles of probabilities, flexibility scenarios can be tagged with expected
probabilities. Then, the overall flexibility of the architecture is calculated
by weighting the single flexibility scenarios’ flexibility according to the
scenario’s probabilities.

In Section 1.3, we introduced a simplified architecture of a CheckIn sys-
tem, as it could be found in the airline domain. We revisit this example
to demonstrate the flexibility tool. The following extensions to the ex-
ample have been made:

A fourth flexibility scenario was introduced:

FR4: Change the language in which the business process modeling is
done to a more popular and powerful one
This flexibility scenario is quite difficult to handle as it requires
changing the BP Engine and all business processes that are already
realized (which is only 1 in our example).

The change impact view was modeled: We introduced the change
impact diagram for the four scenarios and modeled the impacts. Addi-
tionally, the extra information about change impact was added (type and
size of changes are annotated at the graphical impacts-relationship).

Element size was added for all architectural elements (estimated as
LOC): We exemplarily estimated the figures as shown in Table 6.

Example
revisited

 Engineering Flexible Software Systems

 125

Element Size [LOC]

UI Engine 20.000

BP Engine 15.000

CheckIn (Descriptive Process) 20

Identify (Service) 3.000

Seating (Service) 3.000

Baggage (Service) 3.000

Table 6: Architecture example flexibility metrics - element sizes

In the following, we illustrate how the data is modeled with the flexibility
tool and how the features can be accessed in the user interface.

For this exemplary application, the flexibility tool is used in its default
configuration (as can be also seen from Figure 46a). For easier under-
standing of the screenshots, we fade out the areas of EA, which in the
respective screenshot are not of high relevance. For easier mapping to
the features, we always provide a link to the feature ID, as introduced
just above.

Figure 44a shows the structural architecture diagram of our example, as
already introduced in Figure 5b. It can be seen that on selection of an ar-
chitectural element, the element size can be entered as a tagged value
[Feature F2].

Figure 44b shows how the change impact view is modeled. Using the
change impact view toolbox, the relevant elements can be added: The
flexibility scenarios can be added as elements and they can also be de-
scribed in the notes field. Then, existing architectural elements can be
dragged onto the diagram from the project browser. Finally, impacts-
relationships can be drawn from flexibility scenarios to impacted archi-
tectural elements and the change impact type and change impact size
can be set (see Tagged Values window) [Features F1 and F2].

Note that the diagram shown in Figure 44b only contains FR1, FR2, and
FR3. FR4 is modeled in a different diagram. This allows easy scaling of
change impact modeling and focusing on coherent sets of flexibility sce-
narios. As already described in Section 1.3, FR1 has very little impact on
the business process description only. On the other hand, FR2 and FR3
have higher impact on several, also larger architectural elements. In par-
ticular, FR3 impacts the large infrastructure elements UI Engine and BP
Engine.

Tool
application
for example

Engineering Flexible Software Systems

126

Figure 44: a) Modeling structural views in EA b) Modeling change impact in EA

 Engineering Flexible Software Systems

 127

Figure 45 depicts the results of the flexibility metrics calculation, as pro-
vided for the architect. The smaller docking window (visible also during
modeling) on the right side presents the flexibility value for the currently
selected flexibility scenario and the overall flexibility. The larger main
window gives an overview on all flexibility scenarios and their respective
flexibility values and depicts the assumed probabilities of flexibility sce-
narios [Features F3, F4, and F6].

In our example, also the flexibility result values show that our architec-
ture is flexible with respect to FR1, and there is medium support for FR2,
whereas our architecture is not flexible with respect to FR3 and FR4. This
is expressed by both the calculated numbers and the traffic light colors.
The probability values for the flexibility scenarios express that major
changes like switching to a new programming language for business
processes are rather unlikely compared to changing steps in a concrete
business process. This is reflected in the overall flexibility of the architec-
ture which can still be quite high although some unlikely scenarios are
difficult to address. Due to the small probability values of FR3 and FR4,
an architect might decide that the flexibility as achieved is good enough.

Figure 46a presents the configuration window for the flexibility tool and
in particular the calculation of the flexibility metric values [Feature F5].

Figure 45: Flexibility evaluation results

Engineering Flexible Software Systems

128

The values as shown are the default values. Figure 46b shows a matrix
representation of the relationships between flexibility scenarios and the
architectural elements impacted. It complements the change impact view
with a more compact overview representation exposing less details.

5.4.3 Realization of the Flexibility-Tool

The flexibility tool is a prototypical implementation that was developed in
the context of this thesis in order to show the automation potential of
measuring flexibility in architecture design and to show the applicability
of change impact modeling in an industry-accepted architecture model-
ing tool. In the previous section, the features and screenshots of the flex-
ibility tool have been presented. In this section, the focus is on the tech-
nical realization of the tool.

Enterprise Architect (EA) [EA11a] is an UML modeling tool which is wide-
ly used in practice by architects and which is also the preferred tool at
Fraunhofer IESE. It can be extended via an AddIn mechanism [EA11b]
which was used to integrate the flexibility tool. On the one hand this al-
lows contributing our tool to a well-established modeling platform, on
the other hand it saves a lot of development effort due to the basic
modeling facilities already provided. Further, the flexibility tool is well-
integrated with other architecture tools of Fraunhofer IESE based on EA.

EA provides an extension API, which can be accessed via COM (Compo-
nent Object Model). The AddIn is developed in C#, which allows easy
publishing as another COM object. The AddIn is registered in the win-
dows registry as a COM object, which allows EA to integrate it as an
AddIn and provide access to it in the EA user interface.

Figure 47 depicts an overview of the architecture of the flexibility AddIn
and how it relates to the core EA. In the following, the key architectural

Figure 46: a) Flexibility tool configuration b) Matrix showing impacts-relationships

EA AddIn

Development
technology

Architectural
overview

a) b)

 Engineering Flexible Software Systems

 129

decisions and components are outlined.

The architecture is organized along a three-layer architecture with UI,
Logic, and Data. This layering holds true for both EA and the flexibility
AddIn. EA is depicted as a black-box spanning all layers from UI to data.
For the flexibility AddIn we provide the details on how it interacts with
the interfaces of EA.

The key foundation for automated measurement of flexibility in our tool
is modeling an architecture, and in particular the change impact, accord-
ing to our meta-model. We use the UML profile mechanism of EA and
extend the available modeling language by our change impact view. We
add in particular the flexibility scenario and the “impacts” relationship.
The elements that are impacted are typically already there and we do not

Figure 47: Architecture diagram for flexibility AddIn

Modeling

UI

Logic

Data

Enterprise Architect

EA API

UML Profi les

FlexibilityAddIn

FlexibilityMainTab

FlexibilityDockWindow

FlexibilityCalculator

DataAccessModel-DB EA API

SQL Query

FlexibilityModel

ConfigurationModel

UML Flexibility Profile

Component
Interface

Layer

DataElement

extend

use

use

use

use

extend

use

extend

Engineering Flexible Software Systems

130

have any restrictions on which development artifacts can be included as
targets of change. This allows also modeling of inputs for model trans-
formations as well as of descriptive artifacts like XML-based artifacts for
inclusion in change impact analysis. Our extended profile appears as a
new toolbox and allows easy modeling. Additionally, our meta-model
and the flexibility metric require some more descriptions like the change
probability, the type and impact size of change impacts, and the esti-
mated size of the impacted elements (see Chapter 4). Such data is repre-
sented as tagged values in the model.

The UI of the flexibility tool consists of mainly two UI elements: the main
tab (FlexibilityMainTab) showing an overview of flexibility results for all
scenarios and a docking window (FlexibilityDockWindows) that stays vis-
ible during modeling and exposes the flexibility of the currently selected
scenario and the resulting overall flexibility. These UI elements are real-
ized with Windows Forms technology. Further UI elements are already
built-in into EA and only instantiated for our flexibility model (toolbox,
tagged values, etc.).

The component FlexibilityCalculator contains all the calculations of the
flexibility metrics at all levels of aggregation. For the calculation, in par-
ticular the current configuration values which influence the metrics, are
taken into account.

EA comes with a relational data model that can be accessed via two
ways. First, there is an object-oriented interface, where data elements
can be searched and the object tree can be navigated. Second, there is a
SQL-based interface, which can directly query the underlying relational
data model. For our AddIn, both ways of access are used. In case of
large searches across multiple tables, SQL is used, which is typically a first
step. Then, to get the data details of single data elements, the object in-
terface is used. We define two own data types for the flexibility AddIn,
which are used in all layers. One is collecting all the relevant data about
flexibility calculations (FlexibilityModel), the other is collecting all the con-
figuration data for the metrics calculation (ConfigurationModel).

5.5 Discussion

In this section, we contributed methodical support for the definition of
flexible architectures. Our contributions enhance typical architecture
definition methods with both, constructive guidance and analytical sup-
port for flexibility. These two methodical aspects are highly integrated as
the analytical support aims at giving very quick feedback on the currently
achieved level of flexibility, which an architect can directly use to revise
his design decisions. The analytical support is realized as an AddIn for an
architecture modeling tool, Enterprise Architect. By this, the contribu-

Flexibility
AddIn UI

Flexibility
metric
calculation

Data access
and data
elements

Summary

 Engineering Flexible Software Systems

 131

tions are integrated also from a tooling perspective, since the flexibility
analysis works on the constructively created architecture model.

Our contributions do not replace existing architecture definition meth-
ods, but enhance existing ones with particularly detailed support for flex-
ibility. Thus, our methodical contributions can be seen as a conceptual
PlugIn for architecture definition methods, focusing on flexibility. The key
source for this methodical support is the conceptual foundation of flexi-
bility defined in Chapter 4. There, the characteristics of flexibility are
clearly defined, including a measurement model. These characteristics
are used to define constructive guidance and analytical measurement
support for architects.

Designing for flexibility we aim at constructing flexibility potential that
matches the flexibility requirements. This requires defining an architec-
ture that has adequate flexibility mechanisms in place and defines an
adequate mapping of business logic to architectural elements. Only then,
arriving changes can be conducted with minimal change impact. In order
to allow defining such an architecture, we explicitly describe architectural
design activities that care about design decisions supporting flexibility.
Splitting these activities reduces the complexity the architect has to cope
with and gives guidance about necessary steps and decisions. For more
concrete guidance, we describe for each design activity the concrete arti-
facts on which the activity works and give heuristics on how to process.

Although these enhancements make the design process way more con-
crete for flexibility than in typical architecture design processes, it is still
no straightforward process which could simply be automated. This is also
visible by the fact that even no generally valid order of processing the
design activities can be given. Architecture design stays a creative and
challenging task for software architects, the methodical guidance can to
some extent replace missing experience (as it makes best practices explic-
it). Additionally, adherence to this methodical support can lead to more
uniformity of architecture design in a software development organiza-
tion.

Measuring flexibility is important during architecture design in order to
check whether the flexibility potential achieved is adequate for the flexi-
bility requirements. Automated measurement of flexibility is helpful for
architects and creates minimal distraction from the design work. Howev-
er, typical descriptions of flexibility requirements and architecture models
do not allow the fully automated measurement of flexibility. Thus, we in-
troduced the change impact views as an enhancement of the architec-
ture meta-model. It is described by the architect and offers the data that
is necessary to automatically calculate flexibility. A very important effect
of the change impact view is that architects have to reason about flexi-
bility in the necessary depth, which is expected to improve the flexibility
potential.

Design for
flexibility

Measuring
flexibility

Engineering Flexible Software Systems

132

The automated measurement is realized as an AddIn into Enterprise Ar-
chitect, which allows fully integrated modeling of the architectural solu-
tion for flexibility and the change impact view. This emphasizes again
our idea of extending architecture by a conceptual plugin for flexibility:
Here it is even technically realized in that way. Tool-based support is in
particular necessary and helpful for large-scale architecture models.
Then, the model can hardly be captured mentally in all details and the
tool-support allows working on separated areas. When architecture
models are used to predict other quality attributes, too, this can be done
on the same architecture model and then the architect can even detect
tradeoffs in his analyses.

The implementation of the flexibility measurement tool is a prototype
showing the feasibility of the technical realization and the practical ap-
plicability in the design process. Although the metric calculation itself is
fully automated, there is a lot of further improvement and automation
potential around the tool.

� The construction of the change impact views could be extended with
automated proposals of change impacts, e.g. based on textual anal-
yses of the flexibility scenarios.

� When the architecture evolves, it is currently necessary to manually
adapt the change impact views. Automation support could identify
potential impacts on change impact views and guide architects to-
wards these changes.

� In the measurement tool, there could be a connection to the code
base of current implementations in order to retrieve facts like the size
of elements.

� An extension could take the cost for building in flexibility into ac-
count. That is, a metric would be defined which approximates cost of
certain flexibility mechanisms and provides an integrated view with
the achieved flexibility.

All these extension ideas provide further support for the architect and
require further approximations and heuristics. They further reduce the
manual workload for architects, but they do not lead to full automation
of flexibility measurement.

The measurement approach mainly aims at improving the architecture
design process. However, it can also be used as support in architecture
evaluations in other contexts. Then, the modeling of the architecture and
the change impact views might be additional effort, but it might pay off
as it allows detailed analyses on the architecture model and can be used
further in potential evolution activities.

 Engineering Flexible Software Systems

 133

Design for flexibility and measuring of flexibility are very closely integrat-
ed, both from a methodical and a tooling perspective. This offers archi-
tects full support for dealing with flexibility at architectural level. The
approach as described is directly applicable in the industrial context (the
tool is only a prototype and needs more robustness). The main prerequi-
sites to introduce the approach into a software development organiza-
tion is that this organization has a mature level of architecting capabili-
ties. That is, architectural requirements have to be systematically cap-
tured and architectural decisions and views have to be documented and
used. Then, the guidelines and the tool-support can be introduced and
applied. One big advantage of this introduction is that all contributions
do not require major changes of the previous processes. The tool-
support does not impact the original architecture model but only adds
the change impact views. The key advantage an organization can get is a
better awareness of flexibility and a systematic approach to deal with
flexibility which can be communicated to all stakeholders like customers,
requirements engineers, architects, and developers. The cost to adopt
the approach is relatively low as it does not require many changes. Addi-
tionally, it allows an incremental adoption, which can mean to first in-
troduce the constructive part or even the analytical part. Chapter 7
summarizes the hypotheses about benefits of the approach and first evi-
dences.

Integrated
approach in
industrial
context

Flexibility in SOA-Based Information Systems

134

6 Flexibility in SOA-Based Information Systems

"Being nonphysical, software parts can be
far more flexible than physical parts.

Therein lies the power of the medium
beyond all others."

Paul Basset

SOA-based information systems are one type of systems which are often
not as flexible as needed and expected (see Chapter 1). We formulated
as industry level goals I.G1 and I.G2 (see Section 1.3) of this thesis the
goals to support architects in building flexible SOA-based systems, using
in particular the flexibility potential of architecture mechanisms and
technologies in SOA.

In Chapters 4 and 5, we introduced SOA-independent foundations and
engineering support for achieving flexibility. In this chapter, we add
SOA-specific aspects to the previous contributions. By narrowing down
the scope of systems to the ones built according to SOA, more com-
monalities among challenges, solutions, and technologies can be found
(see Figure 15). This allows providing guidance that is more specific to
architects by describing typical challenges, solutions, and technologies
that are used as material in an engineering process.

Thus, the contribution about flexibility-specifics in SOA as described in
this chapter is a conceptual plugin for our flexibility engineering ap-
proach. The plugin comes with explicit knowledge of flexibility in SOA-
based systems. Figure 48 depicts the aspects of flexibility related to SOA
and shows how they extend our earlier contributions (in addition, the
sections where to find the contributions are annotated). Figure 48 com-
bines the representations of Figure 11 and Figure 15 in order to illustrate
the relationships of contributions in detail.

The SOA-specific flexibility contributions depicted in Figure 48 also form
the structure of this chapter. First, we detail the challenges around flexi-
bility in Section 6.1. Then, we discuss architectural solutions for flexibility
in Section 6.2 and technologies that realize these solutions in Section
6.3.

In this chapter, we consider mainly two perspectives on SOA: first, from
the perspective of organizations acting as suppliers of software systems,

Conceptual
plugin for
flexibility in
SOA

 Flexibility in SOA-Based Information Systems

 135

which follow the SOA paradigm and are integrated in an application
landscape; second, from the perspective of organizations integrating IT
landscapes for customer organizations following the SOA paradigm. We
explicitly do not consider market-place perspectives on SOA, which in-
clude more or less dynamic selection of services.

6.1 Challenges around Flexibility in SOA

Building SOA-based systems often has the goal to build highly flexible
systems. However, also for SOA-based systems it holds true that univer-
sal flexibility is not possible. Thus, detailed knowledge of what needs to
be flexible is necessary. In Section 6.1.1, we collect typical flexibility re-
quirements as a guidance for eliciting flexibility scenarios. This collection
makes the guidelines of Section 4.2 more concrete by incorporating the
knowledge about SOA-based systems in practice. Of course, these are
only typical flexibility requirements that are not intended to be complete.

Additionally, the typical settings where SOA is used come with character-
istics that make it even more challenging to achieve flexibility. Such
characteristics are described in Section 6.1.2.

Figure 48: SOA-specific contributions around flexibility

Method Tailoring

Foundations / Formalization

SOA-Specific

Architecture
Core
Competence

Flexibility
Requirements

Method Technique / Tool

Construction:
Guidance &
Heuristics

Measurement &
Feedback

Architectural
Mechanisms

Flexibility
Characteristics

Flexibility
Challenges

6.1

Flexibility
Solutions

6.2

Technologies

6.3

4.1 4.2 4.3

5.3

Flexibility in SOA-Based Information Systems

136

6.1.1 Typical Flexibility Requirements

In Section 4.2.2, we describe questions to be applied for the elicitation
of flexibility scenarios. With the knowledge of typical changes in the
domain of SOA systems we can give support for answering the question
“What has to change?”. It is important to note that the examples we
contribute in the following (collected as experience from projects with
industrial partners) are all at the business-logic-agnostic level (see Section
4.3.1.3), that is they do not refer to concrete business logic of a concrete
system. For the elicitation of concrete flexibility scenarios, it is very valua-
ble to cover business-logic-specific aspects for achieving flexibility.

We organize our typical flexibility requirements along the categories pre-
sented in Section 4.2.2 for the question “What has to change?”: Func-
tionality, Technology, External Systems. Quality we leave out as no typi-
cal flexibility requirements have been experienced.

Functionality: Functions, data, processes, UI

� Changing the computational logic of a single service

� Changing business processes (order of activities, adding or deleting
activities, consuming or producing data in different activities, …)

� Introducing new business processes to be supported

� Extension or change of data structures for delivering new or changed
data

� Changing the responsibility of services for certain data entities

� Changing the granularity of user interaction with the system (smaller
or larger activities, more or less data provided or consumed in activi-
ty)

� Usage of services in processes with different interaction schemas or
different needs in data

Technology: Integration or replacement of technologies

� Integration of service providers or service consumers using different
implementation languages

� Integration of service providers or service consumers using different
communication protocols

� Integration of service providers using different data management
technologies

� Construction of applications using new portal and UI technologies

 Flexibility in SOA-Based Information Systems

 137

External systems: Integration with new or other external systems, chang-
es due to changes in external system

� Extend the range of service consumers for new service consumers
and delivery channels

� Integrate with a new service provider that uses a different data model

� Replace the service provider and use a similar service of a different
provider

� Exchange a complete backend with one that has similar functionality
(but maybe different interaction schemas, different data models, etc.)

� Follow the changes in the data model of service providers

� Provide functionality of an existing system as services to be used in a
larger landscape or by other business processes

6.1.2 Characteristics Challenging Flexibility

SOA is a paradigm that aims at the realization and integration of large
application landscapes in enterprise organizations, in particular aligning
business and IT. From this particular context, characteristics arise that
make achieving flexibility more difficult and that are helpful to know for
architects during system design. We distinguish technical and organiza-
tional characteristics, experienced in projects with industrial customers.

Technical characteristics

� SOA is typically used in application landscapes with high inherent
complexity

� The applications and building blocks being integrated in SOA systems
are often heterogeneous with respect to implementation technolo-
gies, data management, architectural assumptions, etc.

� The applications and building blocks being integrated in SOA systems
are often legacy systems which are hard to change

� The applications and building blocks being integrated in SOA systems
often have a high complexity of data, in particular the underlying da-
ta models, assumptions about the usage of data, etc.

� The applications and building blocks being integrated in SOA systems
are often not under the development control of the integrating com-
pany and thus have to be treated as black boxes

� The applications using services are often highly interactive systems
which need strong tailoring to users’ needs

Flexibility in SOA-Based Information Systems

138

Organizational characteristics

� In large application landscapes, the overall system is typically not un-
der the control of a single development organization. Rather, differ-
ent organizations are involved, which leads to limited impact on flex-
ibility at the overall level

� Software services often have multiple users which might be even dis-
tributed over multiple organizational units or even organizations. This
situation hampers the change of software systems which might be
flexible from a technical perspective. In particular service interfaces
need stability and cannot be changed easily

For these characteristics, no generally applicable solutions exist. Howev-
er, the architect has to be aware of and recognize these characteristics in
concrete projects in order to come up with applicable and adequate flex-
ibility solutions.

6.2 Architectural Solutions for Flexibility in SOA

Although there is no universally agreed definition of SOA, a number of
architectural principles and mechanisms (see Section 4.3.1) has emerged
which are widely accepted. In this section, we describe the most im-
portant principles and mechanisms in SOA from the perspective of how
they as architectural solutions contribute to flexibility (see Figure 15). We
aim at answering the questions: “What does a SOA-based architecture
look like?” and “Which flexibility potential comes with SOA?”.

While the general definition of SOA (see Definition 8) considers business
and IT, we now focus on software architecture only. The summary of ar-
chitectural principles and mechanisms defines an architectural style
which we call the SOA style (see [GS94, BCK03, Lub07], see Section
2.2.4). Our key contribution here is to make the so-far implicit relation-
ship of the SOA style and flexibility explicit by concretely describing
which architectural principles are realized and which flexibility potential
SOA bears. In that sense, it is a guideline for architects to make better
use of the flexibility potential of SOA (see goals in Chapter 1).

Definition 17 SOA Style

The SOA style is an architectural style which describes architectural ele-
ments, their relationships and composition in SOA-based software sys-
tems. This description is formulated as a set of architectural principles
and mechanisms.

In the following sections, we first outline the architectural principles be-
hind SOA (6.2.1). Then, we describe in detail the architectural mecha-

 Flexibility in SOA-Based Information Systems

 139

nisms (6.2.2). Finally, we summarize key architectural considerations an
architect has to make to use the flexibility potential in SOA (6.2.3).

6.2.1 Architectural Principles in SOA Supporting Flexibility

The following architectural principles of SOA contribute to the flexibility
potential of SOA. They guide the architectural mechanisms described in
the next section. Thus, they are only briefly introduced here; the flexibil-
ity potential is explained in the next section. These principles sketch an
ideal solution, which in practice can often only be approximated.

� Service Properties: Services are self-contained, context-free, idempo-
tent, technology-agnostic, coarse grained [HHV06, Jos07, KBS04]
building blocks of software systems.

� Orchestration and Composition: Services can be composed to higher-
level services [KBS04, Jos07, Erl06].

� Loose Coupling: Services and their consumers are only loosely cou-
pled in terms of data aspects, technology aspects, timing aspects, etc.
[Jos07].

� Standardization: Interoperability among services and their consumers
at a technical level is supported by a standardization of description
and communication protocols, which are often based on XML.

� Descriptors: For deployment, configuration, composition of services
and service consumers, XML-based descriptors are used.

6.2.2 Architectural Mechanisms in SOA Supporting Flexibility

SOA can be described from an architectural perspective with several ar-
chitectural mechanisms, which follow the architectural principles identi-
fied before. These mechanisms describe types of architectural elements
and how they are related to each other (see Section 4.3.1). Additionally,
architectural elements are stereotyped according to the schema of Sec-
tion 4.3.1.3.

In this section, we contribute a characterization of architectural mecha-
nisms of SOA with a focus on flexibility. We use a uniform description
template which explains the key principles and decisions behind a mech-
anism, the architectural elements involved (see also Figure 17) and their
relationships (illustrated with architectural views), and the contribution to
the flexibility potential of a software system.

The Template elements are instantiated with concrete business logic
mappings; the Infrastructure elements are either realized by means of
available technologies (see Section 6.3) or else individually developed.

Flexibility in SOA-Based Information Systems

140

Mechanism Service Concept

Key Principles
& Decisions

Services are designed to follow standard service properties (self-contained, con-
text-free, technology-agnostic, coarse grained

Services make an interface public and hide their implementation

Services can have multiple implementations, which provide different quality of
service

Interfaces can be differently defined: Interface vs. payload semantics; Interface
semantics means that a service offers dedicated methods while payload seman-
tics means that the service takes a document as input in which all actions and
parameters are encoded

Architectural
Elements

Contribution
to Flexibility
Potential

Internal realizations of services can be locally changed (algorithms, etc.)

Internal data models are not exposed and can be changed locally

New implementations of a service can be added without affecting consumers

Internal technologies of services can be locally changed

With payload semantics, the interface can be extended without affecting all
service consumers

Self-contained services encapsulate a certain amount of business-logic which
can be changed locally in the service

Table 7: SOA architectural mechanism: Service concept

«Template»
Serv ice

«Template»
Interface

«Template»
Implementation

has

has

 Flexibility in SOA-Based Information Systems

 141

Mechanism Basic Service Communication

Key Principles
& Decisions

Loose coupling: Service consumers and services are loosely coupled in the sense
that a service consumer might not need to know concrete service providers
implementing a service interface. Rather, concrete services can be identified via
lookup in a service repository

Loose coupling: Services can offer synchronous or asynchronous communica-
tion. With asynchronous service requests, the service consumer does not have to
wait for the results. This only works when business logic is designed in a way
that does not require immediate service results

Standardization: For the communication among services, XML-based protocols
exist in the Web Service technology environment. For example, WSDL is used to
uniformly describe service interfaces and SOAP is used as a communication
protocol for Web Services

Services are available for service consumers in a distributed computing fashion

Architectural
Elements

Contribution
to Flexibility
Potential

New implementations and even service providers of a service can be added
without affecting consumers

Internal technologies of services can be locally changed

External systems can be integrated via exposing their functionality as services

Integration of services using different implementation languages

Table 8: SOA architectural mechanism: Basic service communication

«Template»
Serv ice

«Template»
Serv ice Consumer

«Infrastructure»
Serv ice Repository

bind

find publish

<UDDI>
<WSDL>

<SOAP>

Flexibility in SOA-Based Information Systems

142

Mechanism Service Typing

Key Principles
& Decisions

Orchestration and composition: Services can be orchestrated or composed,
which means that a service realizes its functionality by consuming other services.
This composition can be done hierarchically. Services that orchestrate other
services are called molecular services, in contrast to atomic services [ANT+11].

Introduction of different types of services: For separation of concerns, services
can be typed in order to have clearer responsibilities for certain system aspects
(data, functions) [HHV06]. Further aspects that might be encapsulated and sepa-
rated are processes and UIs which we discuss in the next mechanism. Data as-
pects can be further separated, in data access and data transformation services.

Service types can be organized in layers, which can be used to impose rules on
access among different service types (e.g. function layer and data layer)

Architectural
Elements

Contribution
to Flexibility
Potential

Orchestration of services allows hierarchically defining services at granularity
levels that localize changes

Separating function and data services allows changing of data persistency with-
out impact on the processing functionality

Data transformation services can help to localize changes of data structures in
external systems

Data transformation services can help to integrate new external systems with
different data representations that have an impact on function services

Table 9: SOA architectural mechanism: Service typing

Data
Layer

Function
Layer

«Template»
Data Access Serv ice

«Template»
Data Transformation

Serv ice

«Template»
Function Serv ice

 Flexibility in SOA-Based Information Systems

 143

Mechanism Separation of Services, Process Logic, UIs

Key Principles
& Decisions

Loose coupling: The functionality encapsulated in function services and data
services is clearly decoupled from process logic using these services [HHV06].
Process logic, functionality and data are expected to have different change
cycles.

Loose coupling: UI interaction components are another layer of separation.
Application frontends can be used to control business processes, but they can
also directly access functionality or data via services.

Architectural
Elements

Contribution
to Flexibility
Potential

New business processes can be introduced with local change effort

Business processes can be changed independently of function and data services
(e.g. order of activities, adding or deleting activities)

Changing the granularity of user interaction with the system (smaller or larger
activities, more or less data provided or consumed in activity)

Usage of services in processes with different interaction schemas

Table 10: SOA architectural mechanism: Separation of services, process logic, UIs

UI
Layer

Process
Layer

«Template»
Business Process

«Template»
UI Interaction

«Template»
Function Serv ice

«Template»
Data Serv ice

Data
Layer

Function
Layer

Flexibility in SOA-Based Information Systems

144

Mechanism Descriptive Process Logic

Key Principles
& Decisions

Descriptors: Business processes are often not hard coded, but descriptively pro-
grammed in a business process or workflow language, e.g. in a language like
BPEL or BPMN. A business process engine interprets the process description and
executes it at runtime.

Standardization: Business process languages are increasingly standardized, most-
ly with XML-based languages like BPEL.

Architectural
Elements

Contribution
to Flexibility
Potential

New business processes can be introduced with local change effort

Business processes can be changed independently of function and data services
(e.g. order of activities, adding or deleting activities)

Table 11: SOA architectural mechanism: Descriptive process logic

«Template»
Business Process

«Infrastructure»
Business Process

Engine

execute

 Flexibility in SOA-Based Information Systems

 145

Mechanism Enterprise Service Bus

Key Principles
& Decisions

Loose coupling: ESBs decouple service consumers from services in different
aspects. First, ESBs can take over the responsibility of a service repository (see
Table 8). Second, ESBs can realize full location transparency. Third, ESBs can
execute complex data transformations and protocol transformations, so that
service consumers do not have to care about harmonization.

Orchestration and composition: ESBs can realize the communication about all
types of service consumers and services. Service consumers can be other ser-
vices, application frontends, or business process engines, etc.

Descriptors: ESBs often work with descriptors for the representation of data
transformations and protocol transformations.

Architectural
Elements

Contribution
to Flexibility
Potential

New implementations and even service providers of a service can be added
without affecting consumers

Internal technologies of services can be locally changed

External systems can be integrated via exposing their functionality as services

Integration of services and service consumers using different implementation
languages

Integration of service providers or service consumers using different communica-
tion protocols

Integration of service providers using different data management technologies

Provide functionality of an existing system as services to be used in a larger
landscape or by other business processes

Integration with a new service provider that uses a different data model

Extend the range of service consumers by new service consumers and delivery
channels

Table 12: SOA architectural mechanism: Enterprise Service Bus

The described architectural mechanisms in SOA are widely orthogonal to
each other and can thus be combined for the design of a system archi-
tecture. We sketched for the mechanisms what they can contribute to
the flexibility potential of a software system (landscape). This flexibility
potential widely corresponds to the flexibility requirements sketched in
Section 6.1.1. An architect can use this description of the flexibility po-
tential in order to better align his architectural decisions with the flexibil-
ity requirements identified. However, as described in Sections 1.3 and
4.3.1.3, flexibility is only achieved if an appropriate business logic map-
ping is made. We discuss related aspects of importance in the next sec-
tion.

«Template»
Serv ice

«Template»
Serv ice Consumer

«Infrastructure»
ESB

«Template»
Data

Transformation

«Template»
Protocol

Transformation

Flexibility in SOA-Based Information Systems

146

6.2.3 Key Architectural Considerations for Flexibility in SOA

Despite the strong focus on Services in SOA, there are far more architec-
tural decisions that have to be made in order to construct adequate sys-
tems with flexibility. As elaborated for architecture in general (see Sec-
tion 4.3.1.3), the appropriate combination of architectural mechanisms
and business logic mapping is the key to flexibility. Thus, an architect has
to consider all the mechanisms described in the previous section and also
how he can map the concrete business logic of the system under design.

In line with the architectural mechanisms, we sketched important as-
pects for business logic mapping and on which types of elements they
are typically mapped. Functions, data, processes, and UI together form
the business logic of a software system and have to be adequately de-
composed to architectural elements. Data is an aspect of particular im-
portance as it has to be considered when dealing with all the other as-
pects. UIs represent data and interact with users on data. Processes
manage how data is retrieved, used, or stored. Functions work on data
and process it. Another important aspect of data related to BLM is data
consistency which is realized with technical concepts like transactions.

Flexibility requirements typically found (Section 6.1.1) are related to all
these aspects of business logic. Thus, design for flexibility has to consider
all of them, and in particular their interrelationships. Service design and
in particular service granularity have to be brought in line with the other
aspects.

The contributions of this thesis support an architect in making these
architectural decisions with respect to flexibility. First, guidance is given
for the elicitation of precise flexibility requirements (Sections 5.2, 6.1)
with a specialization on SOA. Then, architects can apply the enhanced
architecture design process (Section 5.3) with guidelines and heuristics
aiming at flexibility. In particular the steps Application of Flexibility
Mechanisms, Business Logic Mapping, and Selection and Application of
Technologies (see Figure 41) are enhanced with the SOA-specific know-
how, which is described in Sections 6.2 and 6.3. For the step Business
Logic Mapping, available guidelines for service design [HHV06, Erl06,
AGA+08] can be used for more detailed heuristics on service design.

6.3 Technologies Supporting Flexibility in SOA

SOA is a paradigm for the construction of software systems which offers
many technologies to architects. These technologies typically realize ar-
chitectural mechanisms and can be used as infrastructure components
(see Figure 15). In this section, we sketch an overview of SOA technolo-
gies and map them to the architectural mechanisms explained in the

Business
logic map-
ping in SOA

Applying the
contributions

 Flexibility in SOA-Based Information Systems

 147

previous section. By that, our overview also supports architects in analyz-
ing the flexibility potential of SOA technologies.

Figure 49 depicts the mapping of SOA architecture mechanisms to avail-
able SOA technologies and protocols. Typically, different technology al-
ternatives are available to realize an architecture mechanism; often tech-
nologies realize only partial aspects of an architecture mechanism. Fur-
ther, technologies often contribute to several architecture mechanisms.
We do not consider individual products or brands in our overview; rather
we depict classes of technologies or de-facto standards.

A noteworthy observation is that the architecture mechanisms Service
Typing and Separation of Services, Processes, UIs are rarely covered by
technologies. It is the responsibility of architects to come up with suita-
ble architectural solutions in these areas, as they are mainly concerned
with business logic mapping aspects.

Figure 49: SOA architecture mechanisms mapped to SOA technologies

Service
concept

Basic service
communication

Service
typing

Separation
of services,
process, UIs

Descriptive
process

logic

Enterprise
Service Bus

Windows Workflow
Foundation

Web Services

SCA

Service Container

SOAP

Message-Oriented
Middleware

BPEL

REST

ESB

OSGI

CORBA

XPDL

WSDL

WCF

BPMN

Service Repository

Process engine

UDDI

Validation

148

7 Validation

“Change alone is eternal, perpetual, immortal”
Arthur Schopenhauer

This section describes the validation activities and results of this thesis.
Therefore, we start with a description of validation objectives and the
derived hypotheses in Section 7.1. Then, we describe in Section 7.2 a
controlled experiment we conducted in order to show which effects the
explicit modeling of change impact views during architecture design has
on the resulting flexibility of the architecture. Besides this core contribu-
tion of our validation, we describe in Section 7.3 observations of apply-
ing parts of our method in industrial contexts.

7.1 Objectives and Hypotheses

We formulate the main goal of validation for our contributions in the
GQM-goal representation [BD88].

Analyze the flexibility method enhancements for the purpose of evalua-
tion with a focus on effectiveness, efficiency, and applicability from the
perspective of a software architect in the context of software architec-
ture design.

Our methodical contributions cover several aspects, derived from the re-
search directions (R.D1-4) and research ideas (R.I1-4). Thus, also the vali-
dation has to cover the contributions in the respective areas. First, there
is the conceptual model as the foundation for all methodical aspects, in-
cluding the characterization and measurement of flexibility. Second,
there is the constructive guidance towards flexibility in the architecture
definition process. Third, there is the analytical part measuring flexibility
and giving instant feedback to the architect, facilitated by tool support.
Forth, there is the contribution with respect to SOA, making it easier to
exploit the flexibility potential of SOA architectural mechanisms. For
these areas of contributions, we derive hypotheses which are summa-
rized in Table 13. These hypotheses are always in line with the goals and
intentions of the contributions of this thesis. Our hypotheses cover the
aspects Validity, Effectiveness, Efficiency, and Applicability.

 Validation

 149

Table 13: Hypotheses for the areas of contributions

The hypotheses with respect to effectiveness and efficiency are compara-
tively formulated. We compare our contributions to typical architecture
design methods, which do not include the contributions of this thesis.
For reasons of clarity, we do not repeat in each hypothesis “… com-
pared to …”.

In Table 13, a full spectrum of hypotheses is listed, from purely internal
character (H1, H2) to purely external character (H14, H15). For the valida-
tion of these hypotheses, we conducted a controlled experiment and
applied parts of the contributions in projects with industrial customers.
We came up with both quantitative and qualitative results. For an in-
depth validation contribution, we focus on one of the most fundamental
hypotheses of our methodical contribution: the effectiveness of explicitly
modeling change impacts during architecture design (H8, highlighted in
Table 13). We conducted a controlled experiment to evaluate this hy-
pothesis and came up with quantitative data supporting H8 with statisti-
cal significance (see Section 7.2). Additionally, we collected qualitative
results indicating support for our hypotheses in projects with industrial
customers (H3, H4, H5, and H6, see Section 7.3) and the experiment (H11,
see Section 7.2.4).

R.I1: Conceptual Model R.I2: Design R.I3: Evaluate R.I4: SOA

H1: VValidity : The conceptual
model is valid in describing the
relationships between
requirements, architecture, and
implementation with respect to
flexibility

H4: EEffectiveness : Supported
by the enhanced architecture
method, architects define more
flexible architectures

H8: EEffectiveness : By explicitly
describing how a flexibility
solution for a particular
scenario works, architects
produce more flexible
architectures

H13: EEffectiveness: For the
paradigm SOA, a description of
architectural mechanisms and
their flexibility potential lead
to better exploitation of the
flexibility potential (more
flexible architectures)

H2: VValidity : The provided
measure for flexibility
corresponds with intuition
about flexibility

H5: EEffectiveness : Supported
by the guidelines for flexibility
requirements, a better
coverage of flexibility
requirements can be achieved

H9: EEffectiveness : By getting
continuous feedback on their
architecture solutions,
architects produce more
flexible architectures

H3: EEffectiveness : The
conceptual model helps
stakeholders in software
development to better
understand flexibility as a
quality attribute

H6: EEfficiency : The additional
cost for designing architectures
according to the method is
minimal compared to the cost
of changes, which might be
avoided

H10: EEfficiency : The cost for
explicitly describing
architectural solutions for
flexibility is minimal compared
to the cost of changes, which
might be avoided

H7: AApplicability : Practitioners
can design architectural
solutions for flexibility in the
way proposed

H11: AApplicability :
Practitioners can describe
architectural solutions for
flexibility in the way proposed

H12: EEffectiveness: Architects
can judge flexibility of
architectural solutions better
when they explicitly model
change impact

H14: EEffectiveness : The introduced approach for flexibility extends existing architecture definition
methods in a way that systems built with this method are more flexible and change requests can be,
on average, conducted with less effort

H15: EEffectiveness : The introduced approach for flexibility, together with the explicit descriptions of flexibility mechanisms in SOA,
leads to SOA-based systems that are more flexible and change requests can be, on average, conducted with less effort

Qualitative ResultsQuantitative Results Source of Results

Project
Experiences

Controlled
Experiment

Validation

150

The scope of our hypotheses ends with H14 and H15, where the effort of
change requests, as expressed in the definition of flexibility, is consid-
ered. H14 and H15 contain basically two aspects: From an architect’s per-
spective, the effectiveness in the sense that a flexible architecture is
achieved. From a developer’s perspective, the efficiency in the sense that
incoming changes can be conducted with little effort. In our motivation
and problem description (see Chapter 1), the scope was even broader:
We discussed business opportunities resulting from the possibility to
conduct software changes quickly, meaning to have adequate flexibility.
To achieve this, many other prerequisites are necessary so that we do
not include such effects in our hypotheses for the method.

7.2 Controlled Experiment

For the validation of Hypothesis H8 “By explicitly describing how a flexi-
bility solution for a particular scenario works, architects produce more
flexible architectures”, we conducted a controlled experiment.

In the following, we describe context (Section 7.2.1), setup (Section
7.2.2), and analysis results (Section 7.2.3) of the experiment. Then, we
discuss the results (Section 7.2.4) and threats to validity (Section 7.2.5).

7.2.1 Context of the Experiment

The experiment took place in a practical course for master students at
the Technical University of Kaiserslautern (TU KL). The practical course
was supervised in cooperation with Fraunhofer IESE in winter semester
2011/2012.

The practical course was a so-called Capstone Project with a real cus-
tomer from industry, John Deere. That is, John Deere cooperates in the
course and provides requirements for a smaller product and the students
apply software engineering activities (requirements engineering, user-
interface design, architecting, implementation, quality assurance, and
project management) in order to realize the requested product. The stu-
dents are assigned to specific roles like project manager, architect, or de-
veloper. In total, 17 master students participated in the course. Fraunho-
fer IESE researchers supported the students with tutorials on the meth-
ods to be applied and continuous feedback on the results produced.

The system under development is a tool supporting the agile develop-
ment approach at John Deere. It is a dashboard aggregating develop-
ment information like the current status of agile development projects
(user stories, burn-down charts, etc.) on a screen for distributed devel-
opment teams.

Practical
course:
TU KL, IESE

Capstone:
John Deere

Development
support
system

 Validation

 151

This system was developed with an iterative development approach split-
ting the overall development into three iterations. Each iteration was
supposed to produce a running system demonstrating a certain amount
of functionality.

All the participants of the practical course were included in the experi-
ment and it bases on the system under development. The main reason
for this is that the students are already familiar with the system domain
and have a precise idea about the architecture of the system. Due to the
incremental approach, an architecture document of sufficient quality
was available from iteration 1. Thus, our experiment could start without
detailed explanation about the system and so it could focus on the ex-
perimental tasks.

In the following, we explain in detail how the experiment was set up.

7.2.2 Setup of the Experiment

In order to explain the setup of the experiment, we will first start with
the formulation of scientific hypotheses and with how they are opera-
tionalized. Then, more information on the participants, the experimental
design, procedures, tasks, and materials is provided.

7.2.2.1 Scientific Hypotheses

The hypothesis to be tested in the experiment is: “By explicitly describing
how a flexibility solution for a particular scenario works, architects pro-
duce more flexible architectures”. The comparison is against architecture
design following typical design approaches without modeling change
impact views.

The major idea behind the experiment is to compare two groups, A and
B, designing architectures for flexibility, one with the technique explicitly
describing flexibility solutions (group B, the treatment group) (see Sec-
tion 5.4.1) and one without (group A, the control group). The detailed
description of the experimental design can be found in Section 7.2.2.2.
In the experiment, all participants acted in the role of an architect, inde-
pendent of the role in the overall course.

As a basis for the comparison of solutions, we need a clear metric for
flexibility which can be calculated for the experiment results produced by
the participants. We use the flexibility metric defined in Chapter 4 which
defines flexibility on a [0, 1] range with an interval scale.

Derived from our hypothesis stated above, we define the scientific null
hypothesis and the corresponding alternative hypothesis. We formulate

Iterative
development

Experiment:
Build on
project
architecture

Validation

152

our hypotheses in a directed way. μA and μB denote the arithmetic mean
of the flexibility achieved in group A and group B.

H8, 0: μA ≥ μB

H8, 1: μA < μB

Our hypotheses are tested at a confidence level of α = 0.05.

Besides expecting a statistically significant difference, we expect a differ-
ence of more than 0.1 on the flexibility scale [0, 1], which should be cal-
culated by means of the effect size d (Cohen’s d).

We set up our experiment with a concrete architecture definition task, in
which the participants are asked to change the input architecture in a
way that it offers best flexibility for three provided flexibility scenarios.
The details on the tasks are described in Section 7.2.2.5.

In the following section, the experimental design will be described in de-
tail.

7.2.2.2 Experimental Design

According to the idea described in the previous section, we designed an
experiment with two groups. Group A conducts architectural design
without explicitly modeling the change impact of flexibility solutions,
group B parallelizes the activities of designing architectural solutions and
the explicit modeling of their change impact. The idea of explicitly mod-
eling change impact in the architecture model was not known to the
participants before. Working with change impact views is expected to
lead to strong learn effects. Thus, we decided not to follow a cross-
design for the experiment.

Figure 50 graphically depicts the experiment design. Input for both
groups was an architecture (in version vi) and a flexibility scenario. Then
the task was to change the architecture in a way that it was flexible with
respect to the flexibility scenario. As an additional input, the architectural
modeling notation was explained. Group B also got the task to model
change impact and got guidance by a description of the notation.

In order to be able to compare the results of both groups A and B, group
A was asked, after finishing architectural design, to estimate the change
impact and to also document it. For this, group A got as input the de-
scription of the change impact notation after finishing the architecture
design. Thus, we had the same result artifacts from both groups, but
they were created according to different procedures: an updated version
of the architecture (vi+1) and a diagram depicting the change impact (see

Groups
A & B

Differences

 Validation

 153

Figure 50). The results were created independently for three flexibility
scenarios.

The participants were randomly assigned to groups A (8 participants)
and B (9 participants) and none of the participants was known to the
experiment supervisor before. The participants did not know about the
differences among the groups.

7.2.2.3 Participants

The participants of the experiment were 17 master students of computer
science (10), software engineering (6), and telecommunications (1). The
students were largely in their third semester of the master studies and
aged between 23 to 30 (�=25.3; σ=1.9). They participated in a practical
course of the Technical University of Kaiserslautern (TU KL) which was
mainly supervised by Fraunhofer IESE. All participated on a voluntary ba-
sis and received no compensation.

14 out of 17 students had participated in architecture lectures at univer-
sity before. In the practical course, they acted as requirements engineers
(4), UI designers (3), architects (4), developers (2), testers (2), and project
managers (2).

In a prebriefing questionnaire (see Appendix B), we asked the students

Group
assignment

Figure 50: Experimental design

Flexibility
Scenario

(Material 2)

Architecture vi
(Material 1)

Architecture vi+1
(Results)

Arch. Modeling
Notation
(Material 3)

Change Impact
Notation
(Material 4)

Change Impact
Diagram
(Results)

Design &
Document

Architecture

Estimate &
Document

Change Impact G
ro

u
p

 A
(C

o
n

tr
o

lG
ro

u
p

)
G

ro
u

p
 B

(T
re

at
m

en
t

G
ro

u
p

)

Flexibility
Scenario

(Material 2)

Architecture vi
(Material 1)

Architecture vi+1
(Results)

Arch. Modeling
Notation
(Material 3)

Change Impact
Notation
(Material 4)

Change Impact
Diagram
(Results)

Design & Document Architecture
Estimate & Document Change Impact

Validation

154

about their background and previous experience in relevant areas: Expe-
rience in development projects, reading and using UML, and architect-
ing. The answers of participants in group A and B were quite similar.
Thus, a similar influence of the background on the experiment results
can be expected.

7.2.2.4 Experimental Procedures

Nearly all participants conducted the experiment in one afternoon, in a
allocated time slot of 90 minutes. Three participants conducted the ex-
periment on the next morning. Thus, the overall experiment was con-
ducted with all participants in two subsequent days. All participants of
one experiment run started at the same time. In the beginning, the set-
ting was described by the supervisor; the detailed procedure was printed
in the distributed material.

The experiment started with a preparation phase which mainly consisted
of reading and understanding the material. In particular, definitions on
the background of flexibility and what it means to design for flexibility
were given. Additionally, the role of the experiment in the practical
course and the role of the participant in the experiment were clarified.
Then, a briefing questionnaire was filled in by the participants, asking for
information like their age or background knowledge.

In the execution phase, the participants worked on the tasks given (see
Section 7.2.2.5) and produced an updated architecture and a diagram
showing the change impact for three flexibility scenarios. The execution
phase is also depicted in Figure 50. For group A, the task to model
change impact and the respective notation guidelines were distributed
after the architecture model had already been finished.

In the finalization phase, the participants filled in a debriefing question-
naire, asking for example for the perceived difficulty of tasks and the
perception of change impact views (see Appendix B).

The maximum execution time for the overall experiment was limited to
90 minutes. Participants of group A on average needed 71 minutes,
participants of group B needed 65 minutes.

7.2.2.5 Experimental Task

In the experiment, the participants acted in the role of a software archi-
tect and had to conduct architecture design tasks. The main task they
were asked to perform was to extend the existing architecture of the
system (as resulting from the first iteration of the course) in a way so
that it is flexible with respect to three given flexibility requirements.
These flexibility requirements were specified as flexibility scenarios (as

Preparation

Execution

Finalization

Time
constraints

Design for
flexibility

 Validation

 155

described in Chapter 4). For reasons of simplicity, the participants had to
design three independent solutions for the three flexibility scenarios.

The architecture design process was not prescribed to the participants.
They got an introduction to architecture design in a tutorial at the be-
ginning of the course; additionally most of them had attended lectures
on software architecture before.

For the architectural results to be produced, a simple notation with ex-
amples was given. The participants had to produce two artifact types
(according to the experiment design shown in Figure 50). The first was a
description of the resulting system following a structural component no-
tation. The second was a description of change impact according to the
notation introduced in this thesis. Although the flexibility metric and the
change impact notation are originally defined for development time arti-
facts, we used the component notation that the students also used in
their documents. This is a simplification of architecture modeling, which
means a unification of runtime and development time elements. This
was mainly done to allow the students to stick to their notations previ-
ously used. Even in industrial practice, this is a simplification that is often
fully valid when runtime components are one-to-one implemented as
development time elements.

The original task description is included in Appendix B. The material be-
ing processed in the task is described in the next section.

7.2.2.6 Materials

All necessary information was given in the form of experiment prepara-
tion and execution material. The architecture to be worked on was de-
veloped by the students in the course before and thus familiar to all the
students. Besides this, they were also allowed to look into the architec-
ture documentation of the system under development during the exper-
iment if needed.

The following material was given to the participants in the experiment
for conducting the tasks (see also Appendix B for the original material).

� Architecture Documentation Input (Material 1): The input architecture
which had to be changed for making it more flexible. The input archi-
tecture was completely based on the architecture defined by the stu-
dents in the course. It was reduced to one view, following the nota-
tion also described in Material 3.

� Architecture Flexibility Requirements (Material 2): Three flexibility sce-
narios describing the flexibility requirements, for which the architec-
ture had to be made flexible. The flexibility requirements are not giv-
en by the customer, but they are invented by the experiment design-
er based on his knowledge of similar systems.

Architecture
process

Architecture
results

Validation

156

� Architecture Modeling Notation & Example (Material 3): The explana-
tion of the simple modeling notation needed for the experiment. Ma-
terial 3 focused on the component diagrams. The notation was inten-
tionally kept simple and close to the notation the students had used.

� Architecture Change Impact Notation & Example (Material 4): The
explanation of the simple modeling notation for change impact, as
introduced in this thesis.

� Original architecture document: The participants were allowed to
have a look into the architecture document of the system under de-
velopment. This allowed us to keep the input documents brief and
clear as the students were able to check all questions in the original
document.

Besides this key task materials, there was the explanation of the experi-
ment procedures (as described in Section 7.2.2.4), the questionnaires,
and the task description.

After describing the setup of the experiment, the next section presents
the analysis and results of the experiment.

7.2.3 Analysis and Results

We analyzed the experiment results in detail and describe in this section
the procedure for data analysis, the basic data achieved, and statistical
testing for our scientific hypotheses (see Section 7.2.2.1). Finally, we
provide information on the results of the debriefing questionnaire.

7.2.3.1 Data Analysis Procedure

The main independent variable in the experiment is the assignment to
group A or group B, which means to design architecture either accord-
ing to a standard design method or else with the additional usage of

Variables

Figure 51: Measuring flexibility in the experimental results

Flexibility metric [0, 1]Experiment evaluation [1, 5]

1

0

5

1

4

3

2

0,5

 Validation

 157

change impact views. The key dependent variable in the experiment is
the resulting flexibility of the participants’ architectural solutions for the
three scenarios given as input for design.

Thus, the most important step in the data analysis is to evaluate the
participants’ results and to derive for each addressed scenario a flexibility
result in the [0, 1] scale as defined in Section 4. Initially, there was the
plan to fully calculate the flexibility metric according to the participants
output. Thus, the notation was given in a detailed way, covering also the
relative size of touched elements and the impact on them. However, it
turned out that the participants quite often did not fill in all data accord-
ing to the notation. Thus, we had to slightly adapt the evaluation of the
architecture results to a more expert-based procedure. In order to keep
the expert estimation manageable, we introduced a five-point Likert
scale [1, 5], and mapped it to the [0, 1] flexibility scale in the way depict-
ed in Figure 51:

The Likert scale was introduced as it provides a manageable number of
discrete choices among which an expert can decide. The [1, 5] scale was
selected in order to ensure consistency with all the other scales in the
evaluation.

As we expected that not all participants would provide adequate archi-
tectural results, we also introduced a filter mechanism. Each architectural
result (per participant per scenario) was first rated for meaningfulness of
the architectural solution. This is intentionally completely independent of
the adequacy for flexibility scenarios. Rather it judges whether the archi-
tecture as such is understandable and shows that the participant under-
stood the task to be solved. We rated the architectural solution in the
component diagram and the change impact view independently of each
other on a five-point Likert scale (1=completely inappropriate /
5=completely appropriate). Only if for both checks a value of at least 3
was achieved, this solution was taken into account for estimating the
flexibility.

The method owner carried out the evaluation of flexibility by determin-
ing metric values. In order to minimize the risk of a single evaluation, we
conducted two checks: First, we conducted the evaluation again after
four weeks; second, we conducted an evaluation where we did not
check the resulting flexibility, but the relative improvement of flexibility
with respect to the input architecture. Both checks did not reveal signifi-
cant divergences.

In the following sections we will first describe the basic results and then
describe the statistical test for our scientific hypotheses.

Measuring

Filtering

Validation

158

7.2.3.2 Basic Results

For both the groups A and B, the ratio of valid (not filtered) solutions
was quite similar, but in both cases below 50%. For each group we got
11 valid solutions. The number of valid solutions for each scenario is de-
picted in Table 14. We can observe a nearly equal distribution of valid re-
sults, which indicates that there was not a single overly complicated sce-
nario.

 Scenario 1 Scenario 2 Scenario 3

Group A (n=11) 2 5 4

Group B (n=11) 4 4 3

Table 14: Number of valid results per scenario and group

The main reasons for invalid solutions were architecture descriptions
(component views) which were not appropriate in any way for the flexi-
bility scenario, or which were seriously incomplete. Although the partici-
pants did not always exactly follow the notation for the change impact
view (missing data), the change impact views in general were much
more appropriate. Nearly no result was filtered out due to inappropriate
change impact views. This indicates that the participants got used to it
quickly.

There is a correlation that participants who produced valid results did
this consistently for all scenarios. This is not true for all cases but there is
a strong tendency.

As the number of valid results per scenario group is rather small, we
merged all results for group A and group B respectively. The individual
results for flexibility values are listed for group A and group B in Table
15.

 Flexibility Values

Group A (n=11) 0.50| 0.75| 0.50| 0.50| 0.50| 0.50| 0.50| 0.75| 0.50| 0.25| 0.50

Group B (n=11) 0.75| 1.00| 1.00| 1.00| 0.75| 0.75| 0.50| 0.50| 0.75| 1.00| 0.75

Table 15: Flexibility values achieved (valid ones only) per group

7.2.3.3 Testing Hypothesis H8

The statistical testing of hypothesis H8 was done using the Mann-
Whitney-U test (one-tailed). It is appropriate for small data sets like in
our experiment and it does not require a normal distribution of the data

Mann-
Whitney-
U-Test

 Validation

 159

(we do not have a normal distribution). As introduced in Section 7.2.2.1,
we formulated a directed null hypothesis. Our confidence level for reject-
ing the null hypothesis is 95% (α = 0.05).

H8: “By explicitly describing how a flexibility solution for a par-
ticular scenario works, architects produce more flexible ar-
chitectures”

Test input: Individual flexibility result values for architecture design
tasks, organized in group A and group B (see Table 15)

H8, 1: μA < μB

H8, 0: μA ≥ μB

Test type: Mann-Whitney U test (one-tailed)

Test result: p = 0.0021| U = 104 | z = 2.86

Thus, the null hypothesis is rejected at a confidence level of 95% and
our experiment provides evidence suggesting that H8 is valid. Additional-
ly, we calculate the effect size according to Cohen’s d [Coh92].

Effect size: d = 1.67

According to the definition of Cohen’s d, values of d > 0.8 indicate a
strong effect size. That is, we can observe a strong effect among the
groups of our experiment.

7.2.3.4 Debriefing Questionnaire

In the debriefing questionnaire, we asked questions in two categories.
First, there were questions about the tasks:

� How well did you understand the tasks?

� How difficult did you perceive the tasks?

� How do you estimate the quality of your results (high flexibility)?

Second, there were questions about modeling for flexibility. They target-
ed at observing cases in which participants recognized missing flexibility
or changed their design for better flexibility.

� During architecture design, I changed my solutions when I recognized
that the flexibility is insufficient (group A and group B)

� After modeling the change impact, I would have liked to change my
architecture solutions as I recognized better possibilities (group A) /

Accept H8,1

Strong effect

Validation

160

After reasoning about / modeling the change impact, I changed my
architecture solutions as I recognized better possibilities (group B)

� Modeling the change impact during architecture design would have
helped me to come up with a better solution (group A) / Modeling
the change impact during architecture design helped me to come up
with a better solution (group B)

All questions were to be answered on a five-point Likert scale (1=Not
Good / Easy / Low Quality / Fully Disagree .. 5=Good / Difficult / High
Quality / Fully Agree). The original questionnaires can be found in Ap-
pendix B.

 How well did you
understand the

tasks?

(5 = good)

How difficult did
you perceive the

tasks?

(5 = difficult)

How do you esti-
mate the quality of
your results (high

flexibility)?
(5 = high)

Group A (n=8) �=3.50; σ=1.20 �=2.75; σ=1.04 �=3.00; σ=0,76

Group B (n=9) �=3.56; σ=0.73 �=2.89; σ=0.93 �=3.33; σ=0.50

Table 16: Debriefing questionnaire: Results on task-related questions

Table 16 depicts the average results of the task-related questions per
group. We can observe the following aspects:

� There is nearly no difference in answers between groups A and B;
that is they did not have a different perception of difficulty of tasks
resulting from the experiment design. Additionally, participants of
groups A and B come to a similar estimation of their quality of re-
sults, with a slightly higher value for group B.

� Participants indicate that they understood the tasks quite well
(�=3.53; σ=0.94).

� Participants indicate that they did not perceive the tasks to be too dif-
ficult (�=2.82; σ=0.95).

� Participants estimate that they produced quite good results (�=3.18;
σ =0.64).

 Validation

 161

 During architecture
design, I changed

my solutions when I
recognized that the
flexibility is insuffi-

cient

(5 = Fully Agree)

After reasoning
about / modeling

the change impact,
I (would have liked

to) changed my
architecture solu-
tions as I recog-

nized better possi-
bilities

(5 = Fully Agree)

Modeling the
change impact

during architecture
design (would have)
helped me to come

up with a better
solution

(5 = Fully Agree)

Group A (n=8) �=3.38; σ=1.30 �=2.75; σ=1.16 �=4.00; σ=0.76

Group B (n=9) �=2.56; σ=1.24 �=2.11; σ=1.27 �=3.11; σ=1.27

Table 17: Debriefing questionnaire: Results on flexibility-related questions

Table 17 depicts the average results of the flexibility-related questions
per group. We can observe the following aspects:

� For all questions there is a visible difference between group A and
group B.

� In particular the last two questions are interesting. Group A indicated
that they would have liked to change the architecture after modeling
change impact more strongly than group B indicated that they did
change after modeling change impact. Additionally, group A strongly
indicated that modeling the change impact during architecture de-
sign would have helped them whereas there was weaker indication
that group B perceived it as helpful.

7.2.4 Observations and Discussion

In this section, we describe observations on the experiment’s conduction
and results and on feedback from the participants. Further we discuss
the potential practical benefits of the results shown.

Flexibility as a quality attribute is not easy to understand. It always comes
with indirections and in particular in the experiment the participants had
to change the architecture in order to be well prepared for further
changes. This led to the situation that some participants did not separate
these levels and already described the final system, which was not help-
ful for the evaluation. One more observation about the participants is
that they sometimes do not have enough knowledge about architecting
and software development in general. They produced architectural dia-
grams, which made clear that they did not know what they abstracted
from.

Observations
about
participants

Validation

162

Nearly all participants were able to use the change impact notation alt-
hough it was new to them and they produced quite good results. Addi-
tionally, they mentioned in the debriefing questionnaire that the tasks
were not too difficult, including the drawing of the change impact
views. This supports our hypothesis H11 (claiming the applicability that
practitioners can describe flexibility solutions with change impact views).
Even students with limited experience in architecting were able to use
the change impact view notation. This makes us confident that it is also
easy to use for experienced practitioners in architecting.

In general, there was not much feedback on the experiment in the
comment section or also verbally. Interesting feedback was that some
participants were influenced by knowing the architecture under design
very well. As they knew all the rationales for design decisions, they tried
to preserve the qualities of the system as demanded before. This, how-
ever, was not explicitly required in the task and might have led them to
come up with less flexibility than would have been possible. Another
feedback was that some students saw particular architectural aspects not
as architectural but rather on the design level. However, as it was neces-
sary to achieve a credible solution, such aspects had to be considered as
architecturally important.

The experiment covered only one contribution of this thesis which is
expected to improve flexibility, namely the explicit modeling of change
impact. The other main contributions are explicit support in designing for
flexibility and tool-supported feedback on the currently achieved flexibil-
ity. It can be expected that even better results can be achieved if the dif-
ferent contributions of the thesis are combined.

Finally, we describe a simple model based on our experiment results
which, with the help of some assumptions, calculates potential benefits
of improved flexibility in practice. We assume a similar difference of flex-
ibility between when using explicit change impact modeling (μB) and
when not using it (μA) as observed in the experiment.

In Section 7.2.2.1, we stated that, beyond the statistical significance, a
difference of more than 0.1 on the flexibility scale [0, 1] is expected.
With the observed difference of 0.27, our expectation is even exceeded.

Assumptions:

� System with 1.000.000 LOC

� Flexibility of 0 defined for changing more than 10% of LOC

Conservatively, we assume that in such a large system with other com-
peting quality requirements we achieve an improvement of 0.1 on the
flexibility scale, which means we have to touch 1% less lines of code for

Feedback
from
participants

Potential of
the method

Model for
calculating
benefits

 Validation

 163

a specific change, which might mean to change 10.000 lines of code less
in case of change when using the explicit change impact modeling.

7.2.5 Threats to Validity

In this section, we describe threats to validity of the experimental results
and derived conclusions as well as which actions we applied to keep the
threats small. We organize the threats in the following categories: Con-
struct Validity, Internal Validity, External Validity, Conclusion Validity (see
[WRH+00]).

7.2.5.1 Construct Validity

Construct validity is the degree to which the settings of the experiment
in terms of the dependent and independent variables reflect the goal of
the experiment. The following potential threats were identified:

Construction of the experiment:

� The input architecture to be changed in the experiment tasks was not
deliberately designed to be best suited to test architecture design
methods. Rather, it was taken as the students had designed it in their
practical course. The current status after iteration 1 was taken in or-
der to minimize description input and the time for understanding the
architecture.

� The participants had to change an existing architecture. This might
have reduced the perceived degree of freedom for architecture de-
sign as participants had to explicitly change existing design decisions
instead of making them on the green field. In particular, the partici-
pants knew the design decisions and the rationales behind quite well
and might not have changed certain aspects due to the knowledge
of resulting tradeoffs or violations of other important aspects.

� The input architecture might also have some impact in the sense that
it is not so far from being flexible for one or two of the scenarios.
That is, the participants might have recognized this and seen this lev-
el of flexibility as sufficient, not improving the flexibility any more as it
would have been possible.

� The experiment focused the tasks fully on the improvement of one
quality attribute (namely flexibility), without considering the effect on
other quality attributes. This might lead to different interpretations of
the importance of tradeoffs for the participants.

� The selection of the flexibility scenarios was explicitly constructed to
be well achievable with the input architecture. The flexibility scenarios
are not designed for coverage of certain types of scenarios as intro-
duced in this thesis. However, all the scenarios are representative of

Validation

164

practice and adapted from scenarios found in other projects with in-
dustry.

Construction of the measurement:

� The mathematical derivation of flexibility results from the partici-
pants’ results requires complete adherence to the notation and esti-
mation of size numbers by the participants. As nearly all participants
did not deliver the complete data, the evaluation was approximated
with an expert estimation.

� The expert estimation was done via one indirection: Judging the flex-
ibility on a 5-point Likert scale, which was aligned with our flexibility
metric. However, this Likert scale is a discrete scale which is rather
coarse-grained. For a single estimation, it might lead to a deviation,
but an expert cannot make a more precise estimation based on the
degree of precision of architecture results provided by the students.

� The measurement of flexibility requires interpretation of the ideas of
the participants of how to achieve flexibility. However, the evaluating
person is an experienced architect with knowledge about all typical
flexibility concepts as used by the students and also knowledge about
the consequences on the implementation.

� The measurement of flexibility required filtering out inappropriate ar-
chitectural solutions, which could not be used as a basis for flexibility
measuring (independent of the achieved flexibility, the solutions were
generally not appropriate). This required an additional step of esti-
mating appropriateness, which is another potential source of wrong
expert estimations.

� The flexibility results for the three scenarios were mixed for evalua-
tion, in a pool for group A and group B respectively. This leads to a
comparison that does not exactly compare the same scenarios for
group A and group B directly. The individual result sets were too
small for statistical testing.

� The flexibility measurement and the estimations were done by the
method owner who had also designed the experiment. To mitigate
the risk of wrong estimations, the actions as described in Section
7.2.3.1 were taken.

7.2.5.2 Internal Validity

Internal validity is the degree to which independent variables have an
impact on dependent variables. The following threats to internal validity
have been identified:

� Assignment of participants to the experiment groups can lead to se-
lection effects. As the number of participants is quite low, such an ef-
fect can have larger effects than in big studies. The assignment of our

 Validation

 165

participants to groups A and B was done randomly. With the help of
the briefing questionnaire we checked with their experience and did
not find a significant difference.

� We did not conduct a cross-design experiment in order to mitigate
influence of skills: The learning effect after having conducted the
tasks with explicit change impact modeling is expected so strong that
such an experiment design does not appear feasible.

� A further selection effect could be based on the different degree of
knowledge of the architecture to be changed. The students acting as
architects in the course could be expected to know it better. Howev-
er, we checked this and found that on the one hand three architects
were assigned to group B and only one to group A. Nevertheless, al-
so two of the architects in group B did not produce appropriate ar-
chitectural solutions and so their solutions could not be evaluated
completely.

� The participants did not all spend the same time on conducting the
tasks. No participant exceeded the allotted time, but some did it in
roughly half the time.

7.2.5.3 External Validity

External validity is the degree to which the results of the experiment can
be transferred to other people and to changed environmental settings.
The generalizability of the results is limited due to the following facts:

� The system, in the context of which the experiment was conducted,
is still quite small and does not reach the size of typical information
systems in industry.

� The participants in the experiment are all students at the end of their
studies of computer science / software engineering. That is, they are
no experienced developers and in particular no software architects
with a history of practical experience.

� The tasks to optimize the architecture of a software system only with
respect to a single quality attribute, in our case flexibility, is not repre-
sentative. In practice, there are always competing requirements and
the architect has to find appropriate solutions and tradeoffs. Howev-
er, the task to optimize flexibility and the input scenarios are highly
realistic and the scenarios are slightly adapted ones from other indus-
trial projects.

7.2.5.4 Conclusion Validity

Conclusion validity is the degree to which the concluded results of the
experiment reflect the measured effects and are not corrupted by inap-
propriate or insufficient statistical methods.

Validation

166

� The resulting flexibility values for groups A and B are not normally
distributed. Thus, we selected the Mann-Whitney-U test instead of a
t-test, which is a bit less conservative.

� The sample size of the flexibility values in both groups A and B is
quite small. However, the sample sizes are similar and our statistical
test shows a significant difference.

7.3 Project Experiences

In Section 7.2, we described the isolated evaluation of the effect of
change impact views during architecture design in an experiment. Addi-
tionally, we applied parts of our method in several projects with industri-
al customers of Fraunhofer IESE. Selected aspects of the contributions of
this thesis were applied in order to address the respective project goals
of the customer. While in our experiment the validation focus is on the
measurement of flexibility (R.I3), we mainly applied the conceptual mod-
el (R.I1) and the constructive guidance (R.I2) in the projects with industri-
al customers.

As described in Figure 2, we used earlier projects for the identification
and confirmation of the problems addressed in this thesis. Later on, we
applied first versions of the contributions in projects and refined the con-
tributions based on the experiences we made. In this section, we report
on three recent projects in which our contributions were partially ap-
plied. Due to the confidentiality and non-disclosure agreements with the
customers, we report anonymously on these projects and call them pro-
ject A, project B, and project C. The projects are described following a
uniform structure: First, we describe the context and the goals of the re-
spective project. Then, we list the contributions of this thesis which were
applied in the project. Finally, we report on the results and lessons
learned in the project with respect to the contributions of this thesis.

Although we applied only parts of the approach in the projects, we per-
ceive that the approach strongly supports more systematic working with
the quality attribute flexibility. In addition, the stakeholders on customer
side, both management stakeholders and architects, confirmed the use-
fulness of conceptual and method parts of our approach. This in particu-
lar supports our hypothesis H3 which claims that the conceptual model
supports stakeholders in understanding the quality attribute flexibility.

Additionally, we experienced the separation of business-logic-agnostic
and business-logic-specific architecture in a positive way. It turned out to
be a strong enabler for understanding flexibility and for designing for it.
This supports our hypothesis H4 which claims the effectiveness of our de-
sign support resulting in better flexibility.

Summary of
experiences,
support for
hypotheses

 Validation

 167

Further, we experienced collecting flexibility requirements, supported by
our characterization of flexibility, in a positive way. In particular the ex-
plicit guidance towards typical changes and the questions to characterize
potential changes in detail helped. This supports our hypothesis H5 which
claims that our guidelines improve the elicitation of flexibility require-
ments.

Finally, we also learned about the effort to be spent on flexibility-specific
design activities. There we found that typically architects could make
well-founded decisions without spending much additional effort. In par-
ticular compared to expensive later changes, the investments into a flex-
ible architecture should pay off, which supports our hypothesis H6 claim-
ing efficiency in the sense that the additional investments into design for
flexibility are low compared to the avoided costs for changing an inflexi-
ble system.

Validation

168

7.3.1 Project A

Project context and goals

� SOA-based information system, existing system

� Goal: need for integration with completely different backend system

� Many new flexibility scenarios to be addressed, but also other quality
attributes

� Flexibility scenarios mainly with focus on integration with external
systems and the change of business processes in a data-intensive ap-
plication

� Goal: architecture redesign to match new requirements and subse-
quent implementation

� Setting: Coaching of customer organization architects with respect to
architecture design methods; customer organization architects ap-
plied the methods

Contributions of this thesis applied

� Guidelines for the elicitation of flexibility requirements

� Separation of BLA and BLS aspects

� Guidelines and heuristics for architecture design addressing flexibility
scenarios, in particular the separation of Infrastructure, Template,
Business elements and their usage in design

Results and lessons learned

� Detailed specification and characterization of flexibility requirements

� Elicitation of flexibility requirements was guided by the experience of
historical change requests to the system

� Classification of flexibility requirements according to:

o What has to change?
o What is impacted by the change from an architecture perspec-

tive?

o Which concrete business logic aspects are related to the
change?

� Guidelines considerably helped architects to come up with flexibility
requirements and ask the right questions to stakeholders

� Heuristics and guidelines for design with separated Infrastructure,
Template, Business elements were reported to be very helpful by the
architects

� Applying the approach does not lead to much additional effort

 Validation

 169

7.3.2 Project B

Project context and goals

� SOA-based information system, system’s implementation nearly fin-
ished

� Goal: Evaluate whether the built-in configuration mechanisms are
appropriate in terms of expressiveness and flexibility or whether the
usage of a commercial rule engine would be better

� Fraunhofer IESE as independent reviewer for customer, project con-
ducted by method owner of flexibility engineering approach

Contributions of this thesis applied

� Guidelines for the elicitation of flexibility requirements

� Conceptual model showing the relationship of flexibility to require-
ments, architecture, and implementation

� Separation of BLA and BLS aspects

� Change impact views for the visualization of expected change im-
pacts: used for comparison of change impacts between individual
configuration framework and a rule engine solution

Results and lessons learned

� Flexibility conceptual model and in particular BLA / BLS are applicable
to business rule systems where it had not been applied before (defin-
ing business rules for higher flexibility also means to get the mapping
of business logic to rules right)

� BLS-level is necessary to be able to really check whether flexibility is
given

� Change impact views (slightly simplified) perceived very positively also
by business stakeholders who understood the differences between
the two compared solution approaches

� Results about expected flexibility of both solution approaches: very
similar, the difference is more in the external support of business rule
management systems (usability, testing of rules)

Validation

170

7.3.3 Project C

Project context and goals

� Information system; existing system, which can be only delivered as a
monolithic block containing all functionality although it might not be
completely needed

� Goal: Modularize the system in order to provide more independent
services which can be used in external systems and business process-
es. The business rationale is to increase the market (smaller custom-
ers, partnering) and to be able to compose new products

� Project conducted as consulting project of Fraunhofer IESE, mainly
aiming at the identification of modularization opportunities and at
the definition of a new target architecture with more flexibility

Contributions of this thesis applied

� Guidelines for the elicitation of flexibility requirements

� Conceptual model showing the relationship of flexibility to require-
ments, architecture, and implementation

� Separation of BLA and BLS aspects

� Enhanced architecture design process for flexibility, with a focus on
Existing Artifacts Analysis

Results and lessons learned

� Guidelines for elicitation of flexibility requirements applicable and
helpful: 9 key flexibility scenarios elicited in 6 hours with key stake-
holders of the system

� New, project-specific classification for flexibility requirements intro-
duced: Who conducts the changes? (company itself, partnering com-
panies, outsourcing companies)

� BLS-level is critical for formulating adequate flexibility scenarios

� Integrated analysis of functionality, processes, and data have to be
considered for flexibility improvement

 Summary and Outlook

 171

8 Summary and Outlook

“It is not our duty to predict the future,
but to be prepared for it.”

Pericles

This section concludes the thesis. First, we summarize the results and
contributions of the thesis in Section 8.1. Then, we discuss limitations,
and sketch future activities beyond the thesis in Section 8.2. Finally, we
close with some concluding remarks in Section 8.3.

8.1 Results and Contributions

This thesis originates in the discovery of flexibility problems in SOA-based
information systems. Although SOA is widely known for its flexibility
potential and many practitioners even expect inherent flexibility, SOA-
based systems in practice are often not flexible enough. We set the goal
to support architects in building flexible SOA-systems by systematically
exploiting the flexibility potential of SOA architecture mechanisms.

We discovered that a key reason for missing flexibility is the lack of
alignment of SOA architecture mechanisms with business logic mapping
to these architecture mechanisms. Thus, we define the term True Flexibil-
ity, which denotes that architecture mechanisms and business logic
mapping are aligned in a way that the resulting flexibility potential
matches the flexibility requirements.

Analyzing related work around flexibility and architecting shows that
even for information systems in general (without a focus on SOA) there
is a lack of constructive support for designing flexible architectures.
While there are several methods for analyzing architectures with respect
to flexibility or maintainability, the constructive support is restricted to
the provision of architectural mechanisms that can help to achieve flexi-
bility.

Consequently, we split our contributions in a general part, which sup-
ports architects of any kind of software system, and a SOA-specific part.
In order to focus our research activities, we first defined research direc-

Thesis goals

True
flexibility

Constructive
support
missing

General and
SOA-specific
contributions

Summary and Outlook

172

tions which were considered to contribute to the achievement of our
goals. With the help of analyzing related work, we came up with con-
crete research challenges in the areas of all the research directions. In the
following, we summarize the key contributions of this thesis.

Conceptual Model

The underlying foundation of the methodical contributions is a detailed
characterization of flexibility as a quality attribute of software systems.
We depict what flexibility means in terms of building in flexibility during
system design and exploiting it in later life-cycle phases of the systems
when changes have to be made. We characterize and define flexibility in
a way spanning software engineering disciplines, from flexibility re-
quirements over the role of architecture to the role of implementation.
At architectural level, we elaborate how flexibility can be achieved and
which information in architecture meta-models is flexibility-relevant. We
define a metric for flexibility which measures the expected change im-
pact with respect to flexibility scenarios and which can be aggregated to
the overall architecture level and multiple flexibility scenarios. These
characterizations of flexibility are summarized in a conceptual model,
which is represented in four views. It can serve architects and other
stakeholders in software development as a map of guidance for the un-
derstanding of flexibility as a quality attribute.

Methodical Contribution

A key goal of this thesis is to support architects in constructively achiev-
ing flexibility. Our approach is to enhance existing architecture design
methods. We provide a conceptual plugin into architecture design
methods which builds on flexibility-specifics and uses these to give archi-
tects more guidance. It consists of mainly two parts: 1) guidelines and
heuristics for architecture decision making and 2) continuous measuring
of flexibility during architecture design with direct feedback for archi-
tects.

For the constructive part, we outline a design process for flexibility,
extending activities of existing architecture design methods. For the indi-
vidual activities, we give flexibility-specific guidelines and heuristics, in
particular with respect to the intertwining of selecting architecture
mechanisms and defining business logic mappings.

A further contribution for architects in designing flexible architectures is
that we introduce a possibility to continuously measure flexibility and
give near-real-time feedback to architects. While the evaluation of
achieved flexibility is typically a manual task which, if at all, is done after
architecture design we automate the measurement of flexibility. The key

Characteriza-
tion of flexi-
bility

Architecture
decisions for
flexibility

Continuous
flexibility
measure-
ment

 Summary and Outlook

 173

idea behind this is that architects can immediately see the impact of their
architecture decisions on flexibility, allowing quick revisions of subopti-
mal design decisions. The typical way of documenting software architec-
ture and requirements does not allow for this measurement. Thus, we
introduce an extension to the architecture model, the so called change
impact view. This view is modeled in a lightweight way by the software
architect when he designs the architecture. This does not add much
overhead as architects should make the considerations they make persis-
tent in the model anyway. Then, flexibility can be automatically meas-
ured according to our metric and the results can be provided to the ar-
chitect.

Tool Support for automated measurement

The computation and representation of flexibility metrics is inte-
grated as a proof-of-concept in a widely-used architecture modeling
tool, Enterprise Architect. With this contribution, we allow architects to
model their architectures with optimal support of the flexibility-specific
enhancements. The underlying architecture meta-model is realized in the
tool and the architect can very easily model change impact views. Graph-
ical representations give in-detail and overview information on the flexi-
bility metrics currently achieved.

SOA-specific Support for Flexibility

In addition to these generally applicable contributions, we also make a
contribution specific to flexibility in SOA-based systems. We collect
typical flexibility requirements in SOA-based software systems as
guidance for the elicitation of flexibility requirements. Additionally, we
analyze and package architectural mechanisms used in SOA with re-
spect to their support for flexibility. We elaborate these architectural
mechanisms in a uniform way with their typical architectural principles
and design decisions. Further, we sketch which architectural elements
are typically found, how they are related to each other, and how this
contributes to flexibility. A specific focus is on making the relationship of
architecture mechanisms and business logic mapping explicit. Finally, we
give an overview of how SOA-technologies realize the architecture
mechanisms and thus can support architects in achieving flexibility. The
contribution is an explicit description of architectural aspects around flex-
ibility in SOA which guides architects during architecture design tasks.
This contribution leads us back to our initial starting point of the thesis,
namely supporting architects in building flexible SOA-based software sys-
tems.

Enterprise
Architect
AddIn

SOA chal-
lenges, solu-
tions, and
technologies

Summary and Outlook

174

Validation

We validated parts of our contributions in a controlled experiment and
had first experiences with the method in projects with customers from
industry.

In a controlled experiment in the context of a practical course at TU
Kaiserslautern, we analyzed how the explicit modeling of change
impact views during architecture design impacts the flexibility of the re-
sulting system. We found that the modeling of change impact views
alone, even without tool-supported automated measurement, leads to a
strong improvement of flexibility compared to a control group. The
measured effect was statistically significant and had a strong effect size.
This experiment gives evidence that architects, supported by our me-
thodical enhancement, can design architectures that are more flexible;
thus less effort for changes has to be spent.

8.2 Limitations and Future Work

This section sketches limitations of the approach and validation contrib-
uted in this thesis and proposes research directions for future work. We
align this section with the areas of contributions of this thesis and elabo-
rate additional research directions in terms of practical applicability.

Enhanced conceptual model and flexibility metrics

Our conceptual model and flexibility metrics concentrate on the effort
for changing the implementation only. The flexibility metrics could be
extended towards covering other software engineering activities neces-
sary in line with software changes, like build and deployment.

In the flexibility metric, only the size of the impacted implementation is
considered, but not other properties like the readability of the source
code. Such properties, e.g. expressed by metrics like code complexity,
could be combined with the flexibility metric in order to give a holistic
picture on the expected change effort.

Our flexibility metric covers only the effort for conducting anticipated
changes, but it does not take into account how much the building in of
this flexibility really costs. By extending the metric and finding a good
way of measuring this cost, the return on investment into flexibility can
be formalized and calculated.

Controlled
experiment

Cover other
activities

Combination
with other
metrics

Formal ROI
model for
flexibility

 Summary and Outlook

 175

Constructively guiding all stakeholders towards flexibility

So far, the approach of this thesis mainly supports architects and to
some extent requirements engineers. However, the guidance for re-
quirements engineers is not integrated with requirements engineering
approaches but rather describes relevant questions and areas of re-
quirements elicitation. More integration of the overall approach with
requirements engineering is desirable. This would also involve a concept
for traceability among requirements that are realized and requirements
that concern flexibility and only prepare future changes. This could help
to identify change impacts and serve as a first automated approximation
of change impact views, assumed that full traceability of requirements to
realizing architectural elements exists.

Our approach covers only the construction of flexibility, but not how to
conduct concrete change requests. More support for architects and in
particular developers is desirable for making best use of the flexibility
potential built into a software system. Only then, flexibility is supported
over the full lifecycle of a software system.

Tool support

Currently, modeling and maintaining change impact views is a complete-
ly manual task for architects. By the means of formalized heuristics, tool-
supported creation of change impact views could be possible. With the
help of name-based heuristics, requirements traceability, or knowledge
about relationships between template and business elements in the ar-
chitecture model, likely change impacts could be identified and suggest-
ed to the architect.

The constructive process of making architectural decisions towards a
flexible architecture is not tool-supported at the moment. An interesting
research direction would be to find out how business logic mapping to
architectural mechanisms could be tool-supported with adequate heuris-
tics.

In practice, architects are often concerned with existing systems and
have to change them in order to have more flexibility in the future. Then,
far more concrete information on existing implementation artifacts is
available and can be used to make the calculations of flexibility more
precise. In particular, the implementation size could be automatically
extracted and integrated into the architecture model.

Better inte-
gration with
requirements
engineering

Exploitation
of flexibility

Support for
modeling
change im-
pact views

Support for
architectural
decisions

Automated
extraction of
facts about
existing im-
plementation

Summary and Outlook

176

SOA and other development paradigms

In this thesis, we analyzed the architectural mechanisms of SOA with
respect to their contribution to flexibility. Looking at architectural mech-
anisms like patterns in general reveals that there are too many to analyze
all of them with respect to flexibility. However, there are other interest-
ing paradigms like business rules or event-driven architecture which also
promise strong support for flexibility. They should be analyzed in more
depth to give architects more guidance about their flexibility potential.

Validation

In this thesis, we outline several hypotheses which could not be evaluat-
ed in the context of the thesis. Thus, more empirical work around the
approach is desirable.

Although our flexibility metric is comprehensively constructed in a way
that directly covers the size of impacted implementation, there should be
more evidence that a better flexibility value measured on the architecture
also leads to lower implementation effort (H2). Thus, an experiment
should be conducted, which also covers the realization of change re-
quests, for which the architecture was made flexible. This experiment
could be set up in a way that different architectural solutions are provid-
ed. Then, first a measurement of flexibility according to our metric could
be conducted and second an implementation of the changes could be
done, observing the effort spent and the real change impact.

Our approach builds on the usage of flexibility scenarios as a basis for
measuring flexibility since an architecture cannot be flexible with respect
to all changes. A very interesting and challenging research question is
how big, on average, the gap is between explicit design for concrete
flexibility scenarios on the one hand and following the principles of good
design on the other hand (see Section 4.1.4).

So far, we have not included the tool-support in evaluation activities.
However, in particular the hypotheses H8 and H9 are closely related to
each other. Thus, it should be evaluated which effects on flexibility occur
when the tool support is used. Particularly in large architecture models
we expect that tool-support helps to control the complexity and thus
might get stronger influence.

Practical applicability and situations in projects

In order to fully apply our approach in practice, organizations need a
certain maturity in architecting. At least architecture models in a model-
ing tool are necessary in order to apply automated measurement of

Business
rules and
event-driven
architecture

Flexibility
metric

Design for
flexibility
requirements
vs. “good
design”

Impact of
tool support

Transfer to
industry

 Summary and Outlook

 177

flexibility. The guidelines for construction of flexibility can also be applied
in rather informal settings. For sustainable transfer of the approach into
industrial organizations, an introduction concept should be elaborated.

Not all software projects are in a situation that building in flexibility is
desired by all organizations involved. Often, there is the situation that a
company develops a software system but is not involved in the mainte-
nance. Then, flexibility is mainly a cost driver but does not provide im-
mediate benefit for the developing company. As flexibility is hard to
measure by the customer, it is then often neglected. There are more sit-
uations like this and thus it would be worthwhile to characterize the dif-
ferent constellations of organizations and their stakes in flexibility during
the lifecycle of a software system. This characterization could serve as a
guideline for companies involved to become aware of their responsibili-
ties and opportunities with respect to flexibility.

8.3 Concluding Remarks

The research conducted in this thesis follows the principles of applied re-
search. In projects with industrial customers we identified the problem
that SOA-based information systems are not flexible enough and not as
flexible as expected. Then, we analyzed the reasons for the missing flexi-
bility and reviewed the state-of-the-art in the identified research direc-
tions. We separated our contributions into SOA-specific and general ar-
chitecture contributions and came up with the key idea to support archi-
tects with both, constructive guidelines and tool-supported near-real-
time analytics of flexibility. We elaborated the different solution compo-
nents and implemented a tool prototype. Finally, we evaluated parts of
our approach in an experiment and in industrial projects.

With our contributions, we showed how to holistically cover a quality at-
tribute, in our case flexibility. We provide a conceptual model, guidance
for the elicitation of the concrete flexibility requirements, constructive
and analytical guidance during architecture design, and tool-support. In
future research, other quality attributes should be covered in a similar
way. Then, integration on the same architecture model becomes possible
and brings us closer to the vision of architecture-centric engineering,
with all individual and tradeoff analyses being possible at the architec-
ture level.

We will further apply our approach in projects with industrial customers
and collect more experience, which will help to focus our future im-
provements of the approach. We are confident that we can improve the
flexibility of large information systems and help companies to realize crit-
ical changes faster, resulting in lower costs for software maintenance
and in higher competitiveness.

Project con-
stellations
and impact
on flexibility

 References

 179

References

[AA06] Ali Arsanjani, Abdul Allam. Service-Oriented Modeling and Architecture
for Realization of an SOA. in Proceedings of the IEEE International Confer-
ence on Services Computing: IEEE Computer Society, pp. 521, 2006.

[ABB+02] Colin Atkinson, Joachim Bayer, Christian Bunse, Erik Kamsties, Oliver Lait-
enberger, Roland Laqua, Dirk Muthig, Barbara Paech, Jürgen Wüst, Jörg
Zettel. Component-based product line engineering with UML. Addison-
Wesley Longman Publishing Co., Inc., 2002.

[ABK10] Pekka Abrahamsson, Muhammad Ali Babar, Philippe Kruchten. Agility and
Architecture: Can They Coexist?. IEEE Software 27(2): 16-22, 2010.

[ADE+09] Sebastian Adam, Jörg Dörr, Michael Eisenbarth, Anne Gross. Using Task-
oriented Requirements Engineering in Different Domains – Experiences
with Application in Research and Industry. Proceedings of the IEEE Interna-
tional Requirements Engineering Conference. IEEE Computer Society,
2009.

[AFL+05] Bettina Anders, Jörg Fellmann, Mikael Lindvall, Ioana Rus. Experimenting
with Software Architecture Flexibility Using an Implementation of the Tac-
tical Separation Assisted Flight Environment. SEW 2005: 275-284, 2005.

[AGA+08] A. Arsanjani, S. Ghosh, A. Allam, T. Abdollah, S. Gariapathy, and K. Hol-
ley. SOMA: a method for developing service-oriented solutions. IBM Syst.
J., 47(3):377-396, 2008.

[AH06] Ali Arsanjani, Kerrie Holley. The Service Integration Maturity Model:
Achieving Flexibility in the Transformation to SOA. Proceedings of the IEEE
International Conference on Services Computing (SCC06), 2006.

[Ama11] Amadeus. Airline IT Solutions – Full Altea Suite.
http://www.amadeus.com/airlineIT/solutions/sol_1altea_1suite_1full.html
- last visited 18.12.2011 -

[ANT10] Sebastian Adam, Matthias Naab, Marcus Trapp. A Service-Oriented View
on Business Processes and Supporting Applications. Enterprise, Business-
Process and Information Systems Modeling - 11th International Workshop,
BPMDS, 2010.

[ANT+11] Sebastian Adam, Matthias Naab, Marcus Trapp, Steffen Olbrich. Concep-
tual Model for Service Oriented Architecture (SOA) and Service Oriented
Engineering (SOE). IESE-Report 020.11/E.

[AZE+07a] Ali Arsanjani, Liang-Jie Zhang, Michael Ellis, Abdul Allam, Kishore Chan-
nabasavaiah. S3: A Service-Oriented Reference Architecture. IEEE IT Pro-
fessional. May/June 2007 (vol. 9 no. 3), 2007.

[AZE+07b] Ali Arsanjani, Liang-Jie Zhang, Michael Ellis, Abdul Allam, Kishore Chan-
nabasavaiah. Design an SOA solution using a reference architecture.
http://www.ibm.com/developerworks/library/ar-archtemp/
- last visited 31.10.2011 –

[BAA10] Hans Christian Benestad, Bente Anda, Erik Arisholm. Understanding cost
drivers of software evolution: a quantitative and qualitative investigation
of change effort in two evolving software systems. Empirical Software En-
gineering 15(2):166-203, 2010.

References

180

[Bah05] Rami K. Bahsoon. Evaluating Architectural Stability with Real Options The-
ory, PhD Thesis, University of London, 2005.

[Bal09] Sebastian Ballhausen. Erfolgsfaktoren für eine business- & wertorientierte
IT.
http://www.boydak.biz/cms/fileadmin/Webmaster/pdfFiles/Artikel_2009/20
09-02-16-automotive-it.pdf
- last visited 03.08.2011 –

[Bar03] Barbacci, M. Software Quality Attributes and Architecture Tradeoffs.
Software Engineering Institute, Carnegie Mellon University. Pittsburgh, PA,
2003

[BB99] PerOlof Bengtsson, Jan Bosch. Architecture Level Prediction of Software
Maintenance. CSMR 1999: 139-147, 1999.

[BB00] PerOlof Bengtsson, Jan Bosch. An experiment on creating scenario profiles
for software change. Ann. Software Eng. 9: 59-78, 2000.

[BB01] Jan Bosch, PerOlof Bengtsson. Assessing Optimal Software Architecture
Maintainability. Proceedings of the Fifth European Conference on Soft-
ware Maintenance and Reengineering (CSMR). IEEE Computer Society,
2001.

[BBN07] Felix Bachmann, Len Bass, Robert Nord. Modifiability Tactics. CMU/SEI-
2007-TR-002, 2007.

[BC10] Hongyu Pei Breivold, Ivica Crnkovic: A Systematic Review on Architecting
for Software Evolvability. Australian Software Engineering Conference
2010: 13-22, 2010.

[BCE08] Hongyu Pei Breivold, Ivica Crnkovic, Peter J. Eriksson. Analyzing Software
Evolvability. COMPSAC 2008: 327-330, 2008.

[BCK03] Len Bass, Paul Clements, Rick Kazmann. Software Architecture in Practice,
2nd Edition. Addison-Wesley Longman, 2003.

[BD88] V. R. Basili, H. D. Rombach: The TAME project. Towards improvement-
oriented software environments. In: IEEE Transactions on Software Engi-
neering. Bd. 14, Nr. 6, S. 758–773, 1988.

[BDP06] Manfred Broy, Florian Deissenböck, Markus Pizka. Demystifying Maintain-
ability. Proceedings of the 2006 International workshop on Software quali-
ty (WoSQ 06), 2006.

[BE03] Rami Bahsoon, Wolfgang Emmerich. Evaluating Software Architectures:
Development Stability and Evolution. Proceedings of the ACS/IEEE Interna-
tional Conference on Computer Systems and Applications, Tunis, Tunisia.
(pp. 47 - 56), 2003.

[BE04] Rami Bahsoon, Wolfgang Emmerich. Evaluating Architectural Stability with
Real Options Theory. ICSM 2004: 443-447, 2004.

[BE06] Rami Bahsoon, Wolfgang Emmerich. Requirements for Evaluating Archi-
tectural Stability. International Conference on Computer Systems and Ap-
plications 2006: 1143-1146, 2006.

[Ben02] PerOlof Bentsson. Architecture-Level Modifiability Analysis. Dissertation,
Department of Software Engineering and Computer Science, Blekinge In-
stitute of Technology, Sweden, 2002.

[BHS+08] Hans-Jörg Beyer, Dirk Hein, Clemens Schitter, Jens Knodel, Dirk Muthig,
Matthias Naab. Introducing Architecture-Centric Reuse into a Small Devel-
opment Organization. International Conference on Software Reengineer-
ing (ICSR), 2008.

 References

 181

[BKL+95] Mario Barbacci, Mark Klein, Thomas Longstaff, and Charles Weinstock.
Quality Attributes. Technical Report CMU/SEI-95-TR-021 ESC-TR-95-021..
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA.
1995.

[BKR07] Steffen Becker, Heiko Koziolek, Ralf Reussner. Model-Based performance
prediction with the palladio component model. WOSP 2007: 54-65, 2007.

[BKR09] Steffen Becker, Heiko Koziolek, Ralf Reussner. The Palladio component
model for model-driven performance prediction. Journal of Systems and
Software 82(1): 3-22, 2009.

[Bla01] Sue Black. Computing ripple effect for software maintenance. J. Softw.
Maint. Evol.: Res. Pract. 2001; 13:263–279, 2001.

[BLB+00] PerOlof Bengtsson, Nico H. Lassing, Jan Bosch, Hans van Vliet. Analyzing
Software Architectures for Modifiability. 2000.

[BLB+04] PerOlof Bengtsson, Nico H. Lassing, Jan Bosch, Hans van Vliet. Architec-
ture-level modifiability analysis (ALMA). Journal of Systems and Software
69(1-2): 129-147, 2004.

[BLM+11] Philip Bianco, Grace A. Lewis, Paulo Merson, Soumya Simanta. Architect-
ing Service-Oriented Systems. SEI Technical Note, CMU/SEI-2011-TN-008,
2011.

[BMR97] Frank Buschmann, Renie Meunier, Hans Rohnert, Peter Sommerlad, Mi-
chael Stal. Pattern-Oriented Software Architecture Volume 1: A System of
Patterns. Wiley, 1997.

[Boo06] Grady Booch. On Architecture. IEEE Software 23(2): 16-18, 2006

[Boo07] Grady Booch. The Economics of Architecture-First. IEEE Software 24(5):
18-20, 2007.

[Bos00] Jan Bosch. Design and Use of Software Architectures: Adopting and Evolv-
ing a Product-Line Approach. Addison-Wesley Longman, 2000.

[Bos10] Jan Bosch. Architecture in the Age of Compositionality. Keynote at Euro-
pean Conference on Software Architecture (ECSA) 2010, 2010,.

[BPEL] OASIS. Web Services Business Process Execution Language (WSBPEL).
www.oasis-open.org/committees/wsbpel
- last visited 19.12.2011 -

[BS09] Caroline Buck, Markus Schärtel. Architekturkonzepte mit Business Rules.
JavaSPEKTRUM 05/2009.

[CAL+94] Don Coleman, Dan Ash, Bruce Lowther, Paul Oman. Using Metrics to
Evaluate Software System Maintainability. IEEE Computer, 27(8), pp. 44-
49, 1994.

[Car12] Ralf Carbon. Architecture-Centric Producibility Analysis. PhD-Thesis,
Fraunhofer IRB-Verlag, 2012.

[CBB10] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed
Little, Paulo Merson, Robert Nord. Documenting Software Architectures:
Views and Beyond, 2nd revised edition. Addison Wesley, 2010.

[Cha04] David Chappell. Enterprise Service Bus. O'Reilly Media, 2004.

[Che08] Betty H. Cheng et al. Software Engineering for Self-Adaptive Systems: A
Research Roadmap. In Software Engineering for Self-Adaptive Systems.
Lecture Notes In Computer Science, Vol. 5525. Springer-Verlag, 2008.

References

182

[CJM+08] Ralf Carbon, Gregor Johann, Dirk Muthig, Matthias Naab. A Method for
Collaborative Development of Systems of Systems in the Office Domain.
EDOC, 2008.

[CKK01] Paul Clements, Rick Kazman, Mark Klein. Evaluating Software Architec-
tures: Methods and Case Studies. Addison Wesley, 2001.

[CK06] Patricia Costa, Thorsten Keuler. Architectural Flexibility for Devices in the
Virtual Office of the Future. IESE-Report No. 016.06/E, 2006.

[Cle10] Paul C. Clements: Certified Software Architects. IEEE Software 27(6): 6-8,
2010.

[CN07] Paul Clements, Linda M. Northrop. Software Product Lines : Practices and
Patterns. Addison Wesley, 2007.

[CN10] Ralf Carbon, Matthias Naab. Facilitating Evolution by Architectural Design
for Flexibility and Buildability. 2nd Workshop of GI Working Group „Long-
living Software Systems (L2S2): Design for Future. Bad Honnef, Germany,
2010.

[Coh92] Jacob Cohen. A power primer. Psychological Bulletin 112: 155–159, 1992.

[CS09] Paul C. Clements, Mary Shaw. “The Golden Age of Software Architecture"
Revisited. IEEE Software 26(4): 70-72, 2009.

[Doe11] Jörg Dörr. Elicitation of a Complete Set of Non-Functional Requirements.
PhD Thesis, Fraunhofer IRB Verlag, 2011.

[Dij82] Edsger W. Dijkstra. On the role of scientific thought. In Dijkstra, Edsger
W.. Selected writings on Computing: A Personal Perspective. New York,
NY, USA: Springer-Verlag New York, Inc.. pp. 60–66, 1982.

[DWP+07] Florian Deissenboeck, Stefan Wagner, Markus Pizka, Stefan Teuchert,
Jean-Francois Girard. An Activity-Based Quality Model for Maintainability.
ICSM 2007: 184-193, 2007.

[EA11a] Sparx Systems. Enterprise Architect: UML tools for Software Development
and Modeling.
- last visited 11.12.2011 -

[EA11b] Sparx Systems. Enterprise Architect: Automation and Scripts.
- last visited 11.12.2011 -

[EHH08] Gregor Engels, Andreas Hess, Bernhard Humm, Oliver Juwig, Marc Loh-
mann, Jan-Peter Richter, Markus Voß, Johannes Willkomm. Quasar Enter-
prise – Anwendungslandschaften service-orientiert gestalten.
dpunkt.verlag, 2008.

[EKK+10] Michael Eisenbarth, Thorsten Keuler, Jens Knodel, Matthias Naab, Dominik
Rost. Fraunhofer DSSA. IESE-Report No. 035.10/E, 2010.

[EM06] Amnon H. Eden, Tom Mens. Measuring Software Flexibility. IEEE Software,
Vol. 153, No. 3 (Jun. 2006), pp. 113–126. London, UK: The Institution of
Engineering and Technology, 2006.

[End04] Rainer Endl. Regelbasierte Entwicklung betrieblicher Informationssysteme -
Gestaltung flexibler Informationssysteme durch explizite Modellierung der
Geschäftslogik. Dissertation, Bern, 2004.

[ENS07] Stefan Eicker, Anett Nagel, Peter M. Schuler. Flexibilität im Geschäftspro-
zesspmanagement-Kreislauf. ICB-Research Report No.21, 2007.

[ER03] Albert Endres, H. Dieter Rombach. A Handbook of Software and Systems
Engineering - Empirical Observations, Laws and Theories. Addison-Wesley,
2003

 References

 183

[Erl06] Thomas Erl. Service-Oriented Architecture – Concepts, Technology, and
Design. Prentice Hall, 2006.

[EPIC] Electronic Privacy Information Center (EPIC). EU-US Airline Passenger Data
Disclosure.
http://epic.org/privacy/intl/passenger_data.html
- last visited 18.12.2011 -

[Fai10] George Fairbanks. Just Enough Software Architecture – A Risk-Driven Ap-
proach. Marshall & Brainerd, 2010.

[Fow03] Martin Fowler. Patterns of Enterprise Application Architecture. Addison-
Wesley Professional, 2003.

[Fri09] Uwe Friedrichsen. Der Mythos Wiederverwendung: „Design für Wartung“
als eigentliches Ziel. ObjektSpekturm 04/2009.

[GAO09] David Garlan, Robert Allen, John Ockerbloom. Architectural Mismatch:
Why Reuse Is Still So Hard. IEEE Software, Volume 26 Issue 4, July 2009.

[GBD08] Vish Ganapathy, Melody Badgett, Jay DiMare. Rethinking retailing with
SOA - New levels of flexibility, agility and cost-efficiency. IBM Institute for
Business Value, 2008.

[GBS01] Jilles van Gurp, Jan Bosch, Mikael Svahnberg. On the Notion of Variability
in Software Product Lines. Working Conference on Software Architecture
(WICSA) 2001: 45-54, 2001.

[GBS+09] David Garlan, Jeffrey M. Barnes, Bradley R. Schmerl, Orieta Celiku. Evolu-
tion styles: Foundations and tool support for software architecture evolu-
tion. WICSA/ECSA 2009: 131-140, 2009.

[Geb11] Michael Gebhart. Qualitätsorientierter Entwurf von Anwendungsdiensten.
Dissertation, KIT Scientific Publishing, 2011.

[GHJ94] Erich Gamma, Richard Helm, Raph. E. Johnson, John Vlissides. Design Pat-
terns. Elements of Reusable Object-Oriented Software. Addison-Wesley
Longman, Amsterdam, 1994.

[GL05] Judith Gebauer, Fei Lee. Towards an "Optimal" Level of Information Sys-
tem Flexibility - A Conceptual Model. ECIS 2005: 373-380, 2005.

[GL08] Judith Gebauer, Fei Lee. Enterprise System Flexibility and Implementation
Strategies: Aligning Theory with Evidence from a Case Study. IS Manage-
ment 25(1): 71-82, 2008.

[Gor06] Ian Gorton. Essential Software Architecture. Springer, 2006.

[GS94] David Garlan, Mary Shaw. An Introduction to Software Architecture. Ad-
vances in Software Engineering and Knowledge Engineering, Volume 1:
World Scientific Publishing Company, 1994.

[GS06] Judith Gebauer, Franz Schober. Information System Flexibility and the Cost
Efficiency of Business Processes. Journal of the Association for Information
Systems 7(3), 2006.

[GS09] David Garlan, Bradley R. Schmerl. Ævol: A tool for defining and planning
architecture evolution. ICSE 2009: 591-594, 2009.

[HHV06] Andreas Hess, Bernhard Humm, Markus Voß. Regeln für serviceorientierte
Architekturen hoher Qualität. Informatik-Spektrum Vol. 29, Springer-
Verlag, 2006.

References

184

[HKN+07] Christine Hofmeister, Philippe Kruchten, Robert L. Nord, Henk, Alexander
Ran, Pierre America. A general model of software architecture design de-
rived from five industrial approaches. Journal of Systems and Software,
Vol. 80, No. 1., pp. 106-126, 2007.

[HNS99] Christine Hofmeister, Robert Nord, Dilip Soni. Applied Software Architec-
ture: A Practical Guide for Software Designers. Addision-Wesley Longman,
1999.

[IATA] International Air Transport Association (IATA).
www.iata.org
- last visited 18.12.2011 -

[IBM06] IBM. Service Oriented Architecture: Flexibility for Business. Executive Brief.
2006.
ftp://ftp.software.ibm.com/common/ssi/pm/xb/n/sme00235usen/SME0023
5USEN.PDF
- last visited 23.12.2011 -

[IBM11] IBM. Maximize efficiency and flexibility with Cloud computing.
http://www-935.ibm.com/services/be/reducecosts/cloud
- last visited 19.12.2011 -

[IEEE90] IEEE. Std 610.12-1990: IEEE Standard Glossary of Software Engineering
Terminology. 1990.

[IEEE00] ANSI/IEEE 1471-2000. Recommended Practice for Architecture Description
of Software-Intensive Systems. 2000.

[ISO1926] ISO/IEC. International Standard ISO/IEC 9126:2001, 2001.

[Jaz02] Mehdi Jazayeri. On Architectural Stability and Evolution. Ada-Europe
2002: 13-23, 2002.

[JEE] Oracle. Java Platform, Enterprise Edition (Java EE) Technical Documenta-
tion.
http://docs.oracle.com/javaee/
- last visited 18.12.2011 -

[Jen02] Scott Jenson. The Simplicity Shift: Innovative Design Tactics in a Corporate
World. Cambridge University Press, 2002.

[JLR00] Mehdi Jazayeri, Alexander Ran, Frank van der Linden. Software Architec-
ture for Product Families: Principles and Practice. Addison Wesley, 2000.

[Jos07] Nicolai M. Josuttis. SOA in Practice. The Art of Distributed System Design.
O’Reilly. 2007.

[KAB96] Rick Kazman, Gregory D. Abowd, Leonard J. Bass, Paul C. Clements: Sce-
nario-Based Analysis of Software Architecture. IEEE Software 13(6): 47-55
1996.

[Kan09] Udo Kannengiesser. Process Flexibility: A Design View and Specification
Schema. EMISA 2009: 111-124, 2009.

[Kan10] Udo Kannengiesser. Towards a Methodology for Flexible Process Specifica-
tion. Enterprise Modelling and Information Systems Architectures 5(3): 44-
63, 2010.

[KBS04] Dirk Krafzig, Karl Banke, Dirk Slama. Enterprise SOA: Service Oriented Ar-
chitecture Best Practices. Prentice Hall, 2004.

 References

 185

[KKN11] Thorsten Keuler, Jens Knodel, Matthias Naab. Whitepaper – Architecture-
Centric Software and Systems Engineering. Fraunhofer ACES. IESE-Report
No. 079.11/E, 2011.
http://publica.fraunhofer.de/eprints/urn:nbn:de:0011-n-1863619.pdf
- last visited 16.12.2011 -

[KL10] Ronny Kolb, Frank van der Linden: Point/Counterpoint. IEEE Software
27(3): 56-59, 2010.

[KMN06] Jens Knodel, Dirk Muthig, Matthias Naab. Understanding Software Archi-
tectures by Visualization - An Experiment with Graphical Elements. 13th
Working Conference on Reverse Engineering (WCRE), 2006.

[KMN+06] Jens Knodel, Dirk Muthig, Matthias Naab, Mikael Lindvall. Static Evalua-
tion of Software Architectures. 10th European Conference on Software
Maintenance and Reengineering (CSMR), 2006.

[KMN08] Jens Knodel, Dirk Muthig, Matthias Naab. An experiment on the role of
graphical elements in architecture visualization. Journal of Empirical Soft-
ware Engineering, 13(6): 693-726, 2008.

[Kno11] Jens Knodel. Sustainable Structures in Software Implementations by Live
Compliance Checking. Fraunhofer Verlag, 2011.

[Kru95] Philippe Kruchten. Architectural Blueprints – The “4+1” View Model of
Software Architecture. IEEE Software 12(6), November 1995, pp. 42-50.

[Kru03] Philippe Kruchten. The Rational Unified Process: An Introduction, Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.

[Kru10] Philippe Kruchten. Software architecture and agile software development:
a clash of two cultures? ICSE (2) 2010: 497-498, 2010.

[Lag07] Robert Lagerström. Analyzing System Maintainability using Enterprise Ar-
chitecture Models. In Journal of Enterprise Architecture, vol. 3, no. 4, pp.
33-41, Nov. 2007.

[LBV+02] Nico H. Lassing, PerOlof Bengtsson, Hans van Vliet, Jan Bosch. Experiences
with ALMA: Architecture-Level Modifiability Analysis. Journal of Systems
and Software 61(1): 47-57, 2002.

[Len11] Stefan Lenz. Business Architektur - Transparenz für das Business/IT-
Alignment.
http://www.stefan-lenz.ch/bit_glossar/89.html
- last visited 03.08.2011 –

[LFJ+09] Robert Lagerström, Ulrik Franke, Pontus Johnson, and Johan Ullberg. A
Method for Creating Enterprise Architecture Metamodels – Applied to Sys-
tems Modifiability Analysis. In International Journal of Computer Science &
Applications, vol. 6, no. 5, pp. 89-120, Dec. 2009.

[Lin00] David S. Linthicum. Enterprise Application Integration. Addison-Wesley
Longman Ltd. Essex, UK, 2000.

[LJE10] Robert Lagerström, Pontus Johnson, and Mathias Ekstedt. Architecture
Analysis of Enterprise Systems Modifiability – A Metamodel for Software
Change Cost Estimation. Software Quality Journal, vol.18, pp. 437-468,
2010.

[LJH10] Robert Lagerström, Pontus Johnson, and David Höök. Architecture Analy-
sis of Enterprise Systems Modifiability – Models, Analysis, and Validation.
Journal of Systems and Software, vol. 83, no. 8, pp. 1387-1403, 2010.

References

186

[LMN10] Jaejoon Lee, Dirk Muthig, Matthias Naab. A feature-oriented approach for
developing reusable product line assets of service-based systems. Journal
of Systems and Software 83(7). pp. 1123-1136, 2010.

[LMN08] Jaejoon Lee, Dirk Muthig, Matthias Naab. An Approach for Developing
Service Oriented Product Lines. 12th International Conference on Software
Product Lines (SPLC), 2008.

[LMS+07] Grace A. Lewis, Edwin Morris, Soumya Simanta, Lutz Wrage. Common
Misconceptions about Service-Oriented Architecture. Proceedings of the
Sixth International IEEE Conference on Commercial-off-the-Shelf (COTS)-
Based Software Systems, 2007.

[LRV99a] Nico H. Lassing, Daan B. B. Rijsenbrij, Hans van Vliet: Towards a Broader
View on Software Architecture Analysis of Flexibility. APSEC 1999: 238-
245, 1999.

[LRV99b] Nico Lassing, Daan Rijsenbrij, Hans van Vliet. The Goal of Software Archi-
tecture Analysis: Confidence Building or Risk Assessment. In:Proceedings
of the First BeNeLux conference on Software Architecture. 1999.

[LRV99c] Nico Lassing, Daan Rijsenbrij, Hans van Vliet. Flexibility of the ComBAD Ar-
chitecture. 1st International Working Conference on Software Architecture
(WICSA), 1999.

[LRV01] Nico H. Lassing, Daan B. B. Rijsenbrij, Johannes C. van Vliet. Viewpoints on
Modifiability. International Journal of Software Engineering and
Knowledge Engineering 11(4): 453-478, 2001.

[LRV03] Nico H. Lassing, Daan B. B. Rijsenbrij, Hans van Vliet. How well can we
predict changes at architecture design time? Journal of Systems and Soft-
ware 65(2): 141-153, 2003.

[LSK07] Grace A. Lewis, Dennis B. Smith, Kostas Kontogiannis, Scott R. Tilley, Mira
Kajko-Mattsson, Ned Chapin: A Research Agenda for Maintenance & Evo-
lution of SOA-Based Systems. ICSM 2007: 481-484, 2007.

[LSR07] Frank J. van der Linden, Klaus Schmid, Eelco Rommes. Software Product
Lines in Action: The Best Industrial Practice in Product Line Engineering.
Springer, 2007.

[LSY11a] Lufthansa Systems. Passenger Airline Solutions. 2011.
http://www.lhsystems.com/solutions/airline-solutions/passenger-airline-
solutions/index.htm
- last visited 18.12.2011 -

[LSY11b] Lufthansa Systems. GroundSolutions/Kiosk. 2011
http://www.lhsystems.com/solutions/airline-solutions/passenger-airline-
solutions/ground-solutions-kiosk.htm
- last visited 18.12.2011 -

[Lub07] Boris Lublinsky. Defining SOA as an architectural style. IBM Devel-
operWorks.
http://www.ibm.com/developerworks/architecture/library/ar-soastyle
- last visited 20.12.2011 -

[Man09] Anne Thomas Manes. SOA is Dead; Long Live Services. 2009.
http://apsblog.burtongroup.com/2009/01/soa-is-dead-long-live-
services.html
- last visited 31.10.2011 -

[Mas07] Dieter Masak. SOA?: Serviceorientierung in Business und Software.
Springer, 2007.

 References

 187

[MER10] Wolfgang Martin, Julian Eckert, Nicolas Repp. SOA Check 2010.
http://www.soa-check.eu
- last visited 04.08.2011 –

[MG09] Peter Mell, Tim Grance. The NIST Definition of Cloud Computing. National
Institute of Standards and Technology. Volume: 53, Issue: 6. 2009.

[MM98] Tom Mens, Kim Mens: Assessing the Evolvability of Software
Architectures. ECOOP Workshops 1998: 54-55, 1998.

[Moo08] Leon Moonen. Dealing with Crosscutting Concerns in Existing Software.
Frontiers of Software Maintenance, 2008. FoSM 2008.

[Naa08] Matthias Naab. SOA in Practice – The Most Popular Misconceptions.
Software Technology Initiative: Annual Event, Kaiserslautern, 2008.

[Naa09] Matthias Naab. Achieving True Flexibility of SOA-Based Information
Systems by Adopting Practices from Product Line Engineering. Doctoral
Symposium of 13th International Conference on Software Product Lines
(SPLC), 2009.

[Naa11] Matthias Naab. Enhancing Architecture Design Methods for Improved
Flexibility in Long-Living Information Systems. 5th European Conference on
Software Architecture (ECSA). Essen, Germany, 2011.

[NAB11] Elisa Yumi Nakagawa, Pablo Oliveira Antonino, Martin Becker. Reference
Architecture and Product Line Architecture: A Subtle But Critical
Difference. ECSA 2011: 207-211, 2011.

[NHJ05] Roshanak Nilchiani, Daniel Hastings, Carole Joppin. Calculations of
Flexibility in Space Systems. INCOSE 15th International Symposium
Rochester NY (2005) Issue: 617, Publisher: MIT, Pages: 1-19, 2005.

[Nil05] Roshanak Nilchiani. Measuring the Value of Space Systems Flexibility: A
Comprehensive Six-element Framework. PhD Thesis, Massachusetts
Institute of Technology, 2005.

[NM10] Matthias Naab, Dirk Muthig. Designing Flexible Architectures for Product
Lines Dominated by Open Variability. IESE-Report No. 062.10/E, 2010.

[NP07] Yefim V. Natis, Massimo Pezzini. Twelve Common SOA Mistakes and How
to Avoid Them. Gartner Research. ID Number: G00152446, 2007.

[OAS06] OASIS. Reference Model for Service Oriented Architecture 1.0. 2006,
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf
- last visited on 31.10.2011 –

[OAS09] OASIS. Reference Architecture Foundation for Service Oriented
Architecture 1.0. 2009,
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra-cd-02.pdf
- last visited on 31.10.2011 –

[OKK07a] Ipek Ozkaya, Rick Kazman, Mark Klein. Quality-Attribute Based Economic
Valuation of Architectural Patterns. 29th International Conference on
Software Engineering Workshops(ICSEW'07), 2007.

[OKK07b] Ipek Ozkaya, Rick Kazman, Mark Klein. Quality-Attribute Based Economic
Valuation of Architectural Patterns. SEI Technical Report: CMU/SEI-2007-
TR-003, 2007

[OMG09] Object Management Group (OMG). Service oriented architecture
Modeling Language (SoaML) Beta1, Specification for the UML Profile and
Metamodel for Services (UPMS), 2009.
http://www.omg.org/spec/SoaML/1.0/Beta1

References

188

[OS03] Andreas Oberweis, Wolffried Stucky. Flexibilität in betrieblichen
Informationssystemen. Informationswirtschaft: Ein Sektor mit Zukunft:
333-345, 2003.

[Palladio] Palladio. The Quality Software People. Software Architecture Simulator.
http://www.palladio-simulator.com
- last visited 02.01.2012 -

[Par72] David Parnas. On the Criteria To Be Used in Decomposing Systems into
Modules. Commun. ACM 15(12): 1053-1058, 1972.

[Par79] David Parnas. Designing Software for Ease of Extension and Contraction.
IEEE Trans. Software Eng. 5(2): 128-138, 1979.

[Par94] David Parnas. Software Aging. International Conference on Software
Engineering (ICSE) 1994: 279-287, 1994.

[PK04] Barbara Paech, Kirstin Kohler. Task-driven Requirements in Object-oriented
Development. Perspectives on Software Engineering. Kluwer Academic
Publishers, 2004.

[PLN+07] Pontus Johnson, Robert Lagerström, Per Närman, Mårten Simonsson,
Enterprise Architecture Analysis with Extended Influence Diagrams. In
Information Systems Frontiers, vol. 9, no. 2, pp. 163-180, May 2007.

[Pro11] Progress Software. SOA Misconceptions. 2011.
http://web.progress.com/en/soa-misconceptions.html
- last visited on 31.10.2011 -

[PW92] Dewayne E. Perry, Alexander L. Wolf. Foundations for the study of
software architecture (Vol. 17, pp. 40-52): ACM, 1992.

[RBB+11] Ralf Reussner, Steffen Becker, Erik Burger, Jens Happe, Michael Hauck,
Anne Koziolek, Heiko Koziolek, Klaus Krogmann, Michael Kuperberg. The
Palladio Component Model. Karlsruhe Reports in Informatics 2011,14,
2011.

[RG08] Banani Roy, T.C. Nicholas Graham. Methods for Evaluating Software
Architecture: A Survey. Technical Report No. 2008-545, School of
Computing, Queen's University at Kingston, Ontario, Canada, 2008.

[RH06] Ralf Reussner, Wilhelm Hasselbring. Handbuch der Software-Architektur.
Dpunkt Verlag, 2006.

[RRH08] Adam M. Ross, A., Donna H. Rhodes, and Daniel E. Hastings. Defining
Changeability: Reconciling Flexibility, Adaptability, Scalability, Modifiability,
and Robustness for Maintaining Life Cycle Value. Systems Engineering,
Vol. 11, No. 3, pp.246-262, 2008.

[RSS06] Gil Regev, Pnina Soffer, Rainer Schmidt. Taxonomy of Flexibility in Business
Processes. BPMDS, 2006.

[RW05] Nick Rozanski, Eoin Woods. Software Systems Architecture: Working with
Stakeholders Using Viewpoints and Perspectives. Addision Wesley
Longman, 2005.

[RWC+03] Palani Rajan, Michael Van Wie, Matthew I. Campbell, Kristin L. Wood,
Kevin N. Otto. Design for Flexibility - Measures and Guidelines.
International Conference on Engineering Design, Stockholm, Sweden,
2003.

[RWC+05] Palani Rajan, Michael Van Wie, Matthew I. Campbell, Kristin L. Wood,
Kevin N. Otto. An empirical foundation for product flexibility. Elsevier,
2005.

 References

 189

[Sal02] Joseph Homer Saleh. Weaving time into system architecture : new
perspectives on flexibility, spacecraft design lifetime, and on-orbit
servicing. PhD Thesis, Massachusetts Institute of Technology, 2002.

[SB01] Ken Schwaber, Mike Beedle. Agile Software Development with Scrum.
Prentice Hall, 2001.

[Sch02] Klaus Schmid. A comprehensive product line scoping approach and its
validation. International Conference on Software Engineering (ICSE) 2002:
593-603, 2002.

[Sch04] Michael Schrage. The Struggle to Define Agility. www.cio.com, 2004.

[Sel03] Bran Selic. The pragmatics of model-driven development. IEEE software,
20(5):19-25, 2003.

[SG96] Mary Shaw, David Garlan. Software architecture: perspectives on an
emerging discipline. Prentice-Hall, Inc., 1996.

[SG11] Franz Schober, Judith Gebauer. How much to spend on flexibility?
Determining the value of information system flexibility. Decision Support
Systems 51(3): 638-647, 2011.

[SHN01] Joseph H. Saleh, Daniel E. Hastings, Dava J. Newman. Extracting The
Essence Of Flexibility In System Design. Proc. IEEE NASA/DoD Workshop
on Evolvable Hardware, 2001.

[SHN03] Joseph H Saleh, Daniel E Hastings, Dava J Newman. Flexibility in system
design and implications for aerospace systems. Acta Astronautica, Volume
53, Issue 12, December 2003, Pages 927-944, 2003.

[Sie04] Johannes Siedersleben. Moderne Software-Architektur: Umsichtig planen,
robust bauen mit Quasar. dpunkt.verlag, 2004.

[SMC74] W.P. Stevens, G.J. Myers, L.L. Constantine. Structured Design. IBM
Systems Journal 13, 2, Pages 115-139, 1974.

[Smi08] Kevin T. Smith. Flexibility by Design – Adapting to changes at Runtime in
SOA Implementations, SOAInstitute, 2008.
http://www.soainstitute.org/white-papers/white-paper/article/flexibility-by-
design-adapting-to-changes-at-run-time-in-soa-implementations-1.html
- last visited 17.12.2011 -

[SMR+08] Helen Schonenberg, Ronny Mans, Nick Russell, Nataliya Mulyar, Wil M. P.
van der Aalst. Towards a Taxonomy of Process Flexibility. CAiSE Forum
2008: 81-84, 2008.

[SN96] Roy W. Schulte, Yefim V. Natis. “Service Oriented” Architectures , Part 1.
Gartner Research Note SPA-401-068, 1996.

[Sne95] Harry M. Sneed. Estimating the costs of software maintenance tasks. ICSM
1995: 168-181, 1995.

[Som07] Ian Sommerville. Software Engineering. Pearson Studium, 2007.

[Spr05] David Sprott. Business Flexibility Through SOA. CBDI Report, 2005.
ftp://ftp.software.ibm.com/software/soa/pdf/CBDIWhitepaperBusinessFlexi
bilityThroughSOA.pdf
- last visited 17.12.2011 -

[SR09] Johannes Stammel, Ralf Reussner. KAMP: Karlsruhe Architectural
Maintainability Prediction. Proceedings des 1. Workshop des GI-
Arbeitskreises Langlebige Softwaresysteme (L2S2): "Design for Future -
Langlebige Softwaresysteme", Karlsruhe, Germany, 2009.

[Suh05] Eun Suk Suh. Flexible Product Platforms. PhD Thesis, Massachusetts
Institute of Technology, 2005.

References

190

[SWV+08] Nirav B. Shah, Jennifer Wilds, Lauren Viscito, Adam M. Ross, Daniel E. Has-
tings. Quantifying Flexibility for Architecting Changeable Systems, Confer-
ence on Systems Engineering Research 2008, Los Angeles, CA, 2008.

[Til08] Stefan Tilkov. Von 0 auf SOA in 10 Schritten, W-JAX 2008,
http://www.innoq.com/blog/st/presentations/2008/2008-11-03-SOA10--
WJAX.pdf
- last visited 31.10.2011-

[TMD09] Richard. N. Taylor, Nenad. Medvidovic, and Eric. M. Dashofy. Software
Architecture: Foundations, Theory, and Practice. Wiley, January 2009.

[TSW09] Andrew H. Tilstra, Carolyn C. Seepersad, Kristin L. Wood. Analysis of
Product Flexibility for Future Evolution Based on Design Guidelines and a
High-Definition Design Structure Matrix. Proceedings of the ASME 2009
International Design Engineering Technical Conferences & Computers and
Information in Engineering Conference, IDETC/CIE 2009, August 30 - Sep-
tember 2, 2009, San Diego, California, USA, 2009.

[VDG08] Karina Villela, Jörg Dörr, Anne Gross. Proactively Managing the Evolution
of Embedded System Requirements. RE 2008: 13-22, 2008.

[VEG08] Karina Barreto Villela, Michael Eisenbarth, Anne Gross. Supporting Soft-
ware Evolution in the Context of Product Lines. IESE-Report No. 015.08/E,
2008.

[W3C] World Wide Web Consortium (W3C).
http://www.w3.org
- last visited 19.12.2011 -

[WDF08] Stefan Wagner, Florian Deißenböck, Martin Feilkas, Elmar Jürgens. Soft-
ware-Qualitätsmodelle in der Praxis: Erfahrungen mit aktiviätenbasierten
Modellen. Workshop Software-Qualitätsmodellierung und -bewertung
(SQMB '08), 2008.

[Wes07] Matthias Weske. Business Process Management: Concepts, Languages,
Architectures. Springer, 2007.

[Wit07] Christoph Witte. IT denkt Business.
http://www.computerwoche.de/cio-des-jahres/2007/1848346/
- last visited 03.08.2011 –

[WRH+00] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Bjöorn Reg-
nell, Anders Wesslen. Experimentation in software engineering: an Intro-
duction. Kluwer Academic Publishers, 2000.

[Zim09] Olaf Zimmermann. An Architectural Decision Modeling Framework for
Service-Oriented Architecture Design. Dissertation, dissertation.de, 2009.

[ZYX+02] Jianjun Zhao, Hongji Yang, Liming Xiang, Baowen Xu. Change impact
analysis to support architectural evolution. Journal of Software Mainte-
nance and Evolution: Research and Practice - Special Issue: Separation of
Concerns for Software Evolution. Volume 14, Issue 5, pages 317–333,
September/October 2002, 2002.

 List of Abbreviations

 191

Appendix A List of Abbreviations

ACES Architecture-Centric Engineering Solutions

ALMA Architecture-Level Modifiability Analysis

BAM Business Activity Monitoring

BPEL Business Process Execution Language

BLA Business-Logic-Agnostic

BLM Business Logic Mapping

BLS Business-Logic-Specific

BPEL Business Process Execution Language

BPM Business Process Management

BPMN Business Process Modeling Notation

BRM Business Rule Management

CORBA Common Object Request Broker Architecture

EA Enterprise Architect

EAM Enterprise Architecture Management

EDA Event-Driven Architecture

ESB Enterprise Service Bus

GQM Goal-Question-Metric

IT Information Technology

IESE Institute for Experimental Software Engineering

LOC Lines of Code

OASIS Organization for the Advancement of
Structured Information Standards

OMG Object Management Group

List of Abbreviations

192

OSGi Open Services Gateway initiative

PLE Product Line Engineering

REST Representational State Transfer

SCA Service Component Architecture

SEI Software Engineering Institute

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

SOE Service-Oriented Engineering

UDDI Universal Description, Discovery and Integration

UI User Interface

UML Unified Modeling Language

WCF Windows Communication Foundation

WSDL Web Service Description Language

XPDL XML Process Definition Language

XML eXtensible Markup Language

 193

Appendix B Experiment Material

In the following, we provide the experiment material that was given to
the experiment participants in the experiment described in Section 7.

Please note that the material provided here contains the entirety of ma-
terial sheets. Depending on the groups A and B, the respective material
was handed out according to the experiment design described in Section
7.2.2.2.

The differences between material for groups A and B are the following:

� Different Task Descriptions (pages 4(A) and 4(B))

� Different Debriefing Questionnaires (pages 5(A) and 5(B))

� Material 4 handed out at different points in time (group A got it after
conducting the described tasks, group B received it directly, accord-
ing to the experimental design)

Experiment Material

194

 195

Experiment Material

196

 197

Experiment Material

198

 199

Experiment Material

200

 201

Experiment Material

202

 203

Experiment Material

204

 205

Experiment Raw Data

206

Appendix C Experiment Raw Data

In the following, we provide the raw data of the experiment. This is
mainly the answers to questionnaires and evaluation of flexibility meas-
urement results.

The data analysis procedure is described in detail in Section 7.2.3.1. The
results are grouped by the experiment groups A and B; each participant
is identified by a number in their group.

On the following pages, we always contrast groups A and B on one
page. The results are organized in the following groups, each on one
page:

� Briefing questionnaire and time needed

� Debriefing questionnaire

� Flexibility measurement results

 207

Pr
ep

ar
at

io
n

Ti
m

e

Ex
ec

ut
io

n
Ti

m
e

A
ge

M
aj

or
 s

ub
je

ct

Se
m

es
te

r
(in

 M
as

te
r

st
ud

ie
s)

A
rc

hi
te

ct
ur

e
le

ct
ur

es
?

Ro
le

 in
 c

ou
rs

e

W
or

ki
ng

 in
 d

ev
 p

r o
-

je
ct

s

Re
ad

in
g

an
d

us
in

g
U

M
L

A
rc

hi
te

ct
in

g

A1 10 70 24 CS 2 Y Tester 3 3 2

A2 7 82 25 SE 2 Y UI 4 1 2

A3 20 75 23 CS 3 Y UI 2 4 1

A4 13 65 27 CS 3 Y RE 3 3 2

A5 5 78 26 TC 3 Y Project Manager 1 1 1

A6 5 60 30 SE 3 Y Tester 4 3 3

A7 12 78 23 CS 2 Y RE 3 3 2

A8 10 62 24 SE 3 Y Architect 4 3 3

Avg. 10,25 71,25 25,25 2,63 3,00 2,63 2,00

Table 18: Experiment raw data: Group A – Briefing Questionnaire

Pr
ep

ar
at

io
n

Ti
m

e

Ex
ec

ut
io

n
Ti

m
e

A
ge

M
aj

or
 s

ub
je

ct

Se
m

es
te

r
(in

 M
as

te
r

st
ud

ie
s)

A
rc

hi
te

ct
ur

e
le

ct
ur

es
?

Ro
le

 in
 c

ou
rs

e

W
or

ki
ng

 in
 d

ev
 p

ro
je

ct
s

Re
ad

in
g

an
d

us
in

g
U

M
L

A
rc

hi
te

ct
in

g

B1 20 77 24 SE 3 N UI 2 1 1

B2 3 29 25 SE 3 Y RE 5 5 1

B3 14 78 26 CS 5 N RE 3 3 2

B4 4 83 24 CS 3 Y Architect 3 4 3

B5 4 69 25 CS 4 Y Architect 1 2 1

B6 6 63 23 CS 3 Y Developer 4 3 2

B7 5 71 27 CS 3 N Project Manager 4 1 1

B8 20 70 27 CS 3 Y Architect 4 4 4

B9 4 41 27 SE 3 Y Developer 4 4 4

Avg. 8,89 64,56 25,33 3,33 3,33 3,00 2,11

Table 19: Experiment raw data: Group B – Briefing Questionnaire

Experiment Raw Data

208

H
ow

 w
el

l d
id

 y
ou

un

de
rs

ta
nd

 t
he

 t
as

ks
?

H
ow

 d
iff

ic
ul

t
di

d
yo

u
pe

rc
ei

ve
 t

he
 t

as
ks

?

H
ow

 d
o

yo
u

es
tim

at
e

th
e

qu
al

ity
 o

f
yo

ur

re
su

lts
?

C
ha

ng
ed

 m
y

so
lu

tio
ns

w

he
n

re
co

gn
iz

ed

in
su

ff
ic

ie
nt

 f
le

xi
bi

lit
y

A
ft

er
 m

od
el

in
g

ch
an

ge

im
pa

ct
 I

w
ou

ld
 h

av
e

lik
ed

 t
o

ch
an

ge
 a

rc
hi

-
te

ct
ur

e

M
od

el
in

g
ch

an
ge

im

pa
ct

 (w
ou

ld
 h

av
e)

he

lp
ed

 m
e

A1 5 4 3 4 4 5

A2 4 3 3 4 3 4

A3 3 3 2 3 3 4

A4 1 4 2 4 4 4

A5 4 2 4 1 1 3

A6 4 2 3 5 1 4

A7 4 1 4 2 3 3

A8 3 3 3 4 3 5

Avg. 3,50 2,75 3,00 3,38 2,75 4,00

Table 20: Experiment raw data: Group A – Debriefing Questionnaire

H
ow

 w
el

l d
id

 y
ou

un

de
rs

ta
nd

 t
he

 t
as

ks
?

H
ow

 d
iff

ic
ul

t
di

d
yo

u
pe

rc
ei

ve
 t

he
 t

as
ks

?

H
ow

 d
o

yo
u

es
tim

at
e

th
e

qu
al

ity
 o

f
yo

ur

re
su

lts
?

C
ha

ng
ed

 m
y

so
lu

tio
ns

w

he
n

re
co

gn
iz

ed

in
su

ff
ic

ie
nt

 f
le

xi
bi

lit
y

A
ft

er
 m

od
el

in
g

ch
an

ge

im
pa

ct
 I

w
ou

ld
 h

av
e

lik
ed

 t
o

ch
an

ge
 a

rc
hi

-
te

ct
ur

e

M
od

el
in

g
ch

an
ge

im

pa
ct

 (w
ou

ld
 h

av
e)

he

lp
ed

 m
e

B1 3 4 3 4 4 4

B2 5 1 4 1 1 1

B3 3 3 3 2 4 3

B4 4 3 4 3 1 4

B5 3 4 3 4 1 4

B6 4 2 4 1 1 1

B7 3 3 3 2 2 3

B8 4 3 3 4 3 4

B9 3 3 3 2 2 4

Avg. 3,56 2,89 3,33 2,56 2,11 3,11

Table 21: Experiment raw data: Group B – Debriefing Questionnaire

 209

 1:
 A

de
qu

ac
y

in
de

pe
nd

-
en

t
of

 f
le

xi
bi

lit
y

(C
om

-
po

ne
nt

s)

1:
 A

de
qu

ac
y

in
de

pe
nd

-
en

t
of

 f
le

xi
bi

lit
y

(c
ha

ng
e

im
pa

ct
)

1:
 F

le
xi

bi
lit

y

2:
 A

de
qu

ac
y

in
de

pe
nd

-
en

t
of

 f
le

xi
bi

lit
y

(C
om

-
po

ne
nt

s)

2:
 A

de
qu

ac
y

in
de

pe
nd

-
en

t
of

 f
le

xi
bi

lit
y

(c
ha

ng
e

im
pa

ct
)

2:
 F

le
xi

bi
lit

y

3:
 A

de
qu

ac
y

in
de

pe
nd

-
en

t
of

 f
le

xi
bi

lit
y

(C
om

-
po

ne
nt

s)

3:
 A

de
qu

ac
y

in
de

pe
nd

-
en

t
of

 f
le

xi
bi

lit
y

(c
ha

ng
e

im
pa

ct
)

3:
 F

le
xi

bi
lit

y

A1 2 5 5 3 3 1 3

A2 2 5 1 1 2 3

A3 1 2 1 1 3 3 4

A4 3 3 3 3 3 3 3 3 3

A5 1 5 1 5 3 5 2

A6 3 3 4 3 3 3 3 2

A7 1 3 3 3 3 1 3

A8 1 5 3 5 3 3 4 3

Avg. 1,75 3,88 3,50 2,50 3,00 3,00 2,38 3,25 3,00

Table 22: Experiment raw data: Group A – Flexibility Results

 1:
 A

de
qu

ac
y

in
de

pe
nd

-
en

t
of

 f
le

xi
bi

lit
y

(C
om

-
po

ne
nt

s)

1:
 A

de
qu

ac
y

in
de

pe
nd

-
en

t
of

 f
le

xi
bi

lit
y

(c
ha

ng
e

im
pa

ct
)

1:
 F

le
xi

bi
lit

y

2:
 A

de
qu

ac
y

in
de

pe
nd

-
en

t
of

 f
le

xi
bi

lit
y

(C
om

-
po

ne
nt

s)

2:
 A

de
qu

ac
y

in
de

pe
nd

-
en

t
of

 f
le

xi
bi

lit
y

(c
ha

ng
e

im
pa

ct
)

2:
 F

le
xi

bi
lit

y

3:
 A

de
qu

ac
y

in
de

pe
nd

-
en

t
of

 f
le

xi
bi

lit
y

(C
om

-
po

ne
nt

s)

3:
 A

de
qu

ac
y

in
de

pe
nd

-
en

t
of

 f
le

xi
bi

lit
y

(c
ha

ng
e

im
pa

ct
)

3:
 F

le
xi

bi
lit

y

B1 2 3 1 2 2 2

B2 3 3 4 5 5 4 3 5 4

B3 2 4 2 3 2 4

B4 5 5 5 4 5 4 5 5 5

B5 2 4 4 5 3 3 3 4

B6 5 3 5 5 2 1 2

B7 2 3 1 4 1 3

B8 2 3 2 4 2 4

B9 5 5 5 5 5 3 2 3

Avg. 3,11 3,67 4,75 3,22 3,89 3,50 2,33 3,44 4,33

Table 23: Experiment raw data: Group B – Flexibility Results

 211

Lebenslauf

Persönliche Daten

 Name Matthias Naab

 Anschrift Zollamtstraße 64
 67663 Kaiserslautern

 Geburtsdatum und -ort 25.07.1979 in Dahn

 Familienstand verheiratet, 1 Kind

Werdegang

 1986 - 1990 Grundschule Dahn

 1990 - 1999 Otfried-von-Weißenburg-Gymnasium, Dahn

(Abitur)

 1999 - 2000 Zivildienst, Jugendherberge Dahn

 2000 - 2005 Studium der Informatik, Universität Kaiserslautern

(Diplom)

 seit 2005 Wissenschaftlicher Mitarbeiter am Fraunhofer Institut

für Experimentelles Software Engineering (IESE),
Kaiserslautern

Kaiserslautern, den 02.10.2012

PhD Theses in Experimental Software Engineering

Volume 1 Oliver Laitenberger (2000), Cost-Effective Detection of Software Defects
Through Perspective-based Inspections

Volume 2 Christian Bunse (2000), Pattern-Based Refinement and Translation of
Object-Oriented Models to Code

Volume 3 Andreas Birk (2000), A Knowledge Management Infrastructure for
Systematic Improvement in Software Engineering

Volume 4 Carsten Tautz (2000), Customizing Software Engineering Experience
Management Systems to Organizational Needs

Volume 5 Erik Kamsties (2001), Surfacing Ambiguity in Natural Language
Requirements

Volume 6 Christiane Differding (2001), Adaptive Measurement Plans for Software
Development

Volume 7 Isabella Wieczorek (2001), Improved Software Cost Estimation
A Robust and Interpretable Modeling Method and a Comprehensive
Empirical Investigation

Volume 8 Dietmar Pfahl (2001), An Integrated Approach to Simulation-Based
Learning in Support of Strategic and Project Management in Software
Organisations

Volume 9 Antje von Knethen (2001), Change-Oriented Requirements Traceability
Support for Evolution of Embedded Systems

Volume 10 Jürgen Münch (2001), Muster-basierte Erstellung von Software-
Projektplänen

Volume 11 Dirk Muthig (2002), A Light-weight Approach Facilitating an Evolutionary
Transition Towards Software Product Lines

Volume 12 Klaus Schmid (2003), Planning Software Reuse – A Disciplined Scoping
Approach for Software Product Lines

Volume 13 Jörg Zettel (2003), Anpassbare Methodenassistenz in CASE-Werkzeugen

Volume 14 Ulrike Becker-Kornstaedt (2004), Prospect: a Method for Systematic
Elicitation of Software Processes

Volume 15 Joachim Bayer (2004), View-Based Software Documentation

Volume 16 Markus Nick (2005), Experience Maintenance through Closed-Loop
Feedback

Volume 17 Jean-François Girard (2005), ADORE-AR: Software Architecture
Reconstruction with Partitioning and Clustering

Volume 18 Ramin Tavakoli Kolagari (2006), Requirements Engineering für Software-
Produktlinien eingebetteter, technischer Systeme

Volume 19 Dirk Hamann (2006), Towards an Integrated Approach for Software
Process Improvement: Combining Software Process Assessment and
Software Process Modeling

Volume 20 Bernd Freimut (2006), MAGIC: A Hybrid Modeling Approach for
Optimizing Inspection Cost-Effectiveness

Volume 21 Mark Müller (2006), Analyzing Software Quality Assurance Strategies
through Simulation. Development and Empirical Validation of a Simulation
Model in an Industrial Software Product Line Organization

Volume 22 Holger Diekmann (2008), Software Resource Consumption Engineering for
Mass Produced Embedded System Families

Volume 23 Adam Trendowicz (2008), Software Effort Estimation with Well-Founded
Causal Models

Volume 24 Jens Heidrich (2008), Goal-oriented Quantitative Software Project Control

Volume 25 Alexis Ocampo (2008), The REMIS Approach to Rationale-based Support
for Process Model Evolution

Volume 26 Marcus Trapp (2008), Generating User Interfaces for Ambient Intelligence
Systems; Introducing Client Types as Adaptation Factor

Volume 27 Christian Denger (2009), SafeSpection – A Framework for Systematization
and Customization of Software Hazard Identification by Applying Inspection
Concepts

Volume 28 Andreas Jedlitschka (2009), An Empirical Model of Software Managers’
Information Needs for Software Engineering Technology Selection
A Framework to Support Experimentally-based Software Engineering
Technology Selection

Volume 29 Eric Ras (2009), Learning Spaces: Automatic Context-Aware Enrichment of
Software Engineering Experience

Volume 30 Isabel John (2009), Pattern-based Documentation Analysis for Software
Product Lines

Volume 31 Martín Soto (2009), The DeltaProcess Approach to Systematic Software
Process Change Management

Volume 32 Ove Armbrust (2010), The SCOPE Approach for Scoping Software
Processes

Volume 33 Thorsten Keuler (2010), An Aspect-Oriented Approach for Improving
Architecture Design Efficiency

Volume 34 Jörg Dörr (2010), Elicitation of a Complete Set of Non-Functional
Requirements

Volume 35 Jens Knodel (2010), Sustainable Structures in Software Implementations by
Live Compliance Checking

Volume 36 Thomas Patzke (2011), Sustainable Evolution of Product Line Infrastructure
Code

Volume 37 Ansgar Lamersdorf (2011), Model-based Decision Support of Task
Allocation in Global Software Development

Volume 38 Ralf Carbon (2011), Architecture-Centric Software Producibility Analysis

Volume 39 Florian Schmidt (2012), Funktionale Absicherung kamerabasierter Aktiver
Fahrerassistenzsysteme durch Hardware-in the-Loop-Tests

Volume 40 Frank Elberzhager (2012), A Systematic Integration of Inspection and
Testing Processes for Focusing Testing Activities

Volume 41 Matthias Naab (2012), Enhancing Architecture Design Methods for
Improved Flexibility in Long-Living Information Systems

�

#��$������!�������!�����
����������������%����������&�����
#�������������������'�������������(�)�����"����������*��+�����"���
'�������������,����&�����#���������&��������������������������
-��������� ��� �.&���������� #��$���� ��!�������!� /-�#�0� ������� ���
��������������
����
�����������+��&���������&��.����$�����&�
&���������
���������!�������!�&�����&�����1������2�������"���������
&�������������������!��!���&��.��"(������������������2����
����������!�&����������&������2�����"(����������
��������������
������������!��������������!��"�����
���+����1����������������
&�������������������������������������!���(��.&����������������

��������������2���������+������2��������+���+��������������&�+��
������1��������������$������!�������!���������(�$��������
�������
�����.&�����������������3��&�����!�(������������������,�.&����������
#��$������!�������!,��
-�������������(�$��&�
����������������������������������-������������
�.&����������#��$������!�������!�/-�#�0�������������#��$�������
!�������!����������)��&����������&�����#���������&�����������
����*��+�����"���'���������������������������������!����������$�����
����
����������(��������&����
"��������������������

����������������������������������
���
�.�����+����������������������-�#������4����������5)#��)��&�
��������&�����#���������&�������(�*��+�����"���'�������������

�����������������
������������������� �!!����"��
#������3����������������������-�#������4����������5)���)��&�
��������&�����#���������&�������(�*��+�����"���'�������������

�����������������
��������������������������
��&��"���������������������-�#�������������������&������
#����������������&������������!�������!(�*��+�����"���5&&������
#�������(�'�������������

�
��������
	���������� &�
�
�'
�
��
��
��

�	
��
��
��
�

��
��$
�
��
(
��
��
	

�
�

��
��

�

ISBN 978-3-8396-0477-9

9 7 8 3 8 3 9 6 0 4 7 7 9

