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Abstract—Architectural runtime reconfiguration is a promising
means for controlling the quality of service (QoS) of distributed
software systems. Particularly self-adaptation approaches rely
on runtime reconfiguration capabilities provided by the systems
under control. For example, our online capacity management
approach SLAstic employs changing component deployments
and server allocations to control the performance and resource
efficiency of component-based (C-B) software systems at runtime.

In this context, we developed a performance simulator for
runtime configurable C-B software systems, called SLAstic.SIM.
The system architectures to be simulated are specified as in-
stances of the Palladio Component Model (PCM). The simulation
is driven by external workload traces and reconfiguration plans
which can be requested during simulation based on continuously
accessible monitoring data of the simulated systems. This paper
demonstrates SLAstic.SIM including a quantitative evaluation of
its performance.

I. INTRODUCTION

Self-adaptation approaches for software systems [1] rely on
runtime reconfiguration capabilities provided by the con-
trolled system. For example, our SLAstic [2, 3] approach
for increased resource efficiency of distributed component-
based (C-B) software architectures changes the deployment
of software components and the allocation of execution con-
tainers to control the system capacity in an elastic manner. For
systems conforming to this architectural style, we developed
the performance simulator SLAstic.SIM. SLAstic.SIM simu-
lates instances of the Palladio Component Model (PCM) [4]
and supports PCM-specific implementations of the runtime
configuration operations employed by our SLAstic approach.
Simulations can be driven by external workload traces which
may have been generated or recorded prior to the simulation.

SLAstic.SIM is used for studying the performance impact
of reconfiguration operations, as well as evaluating adaptation
strategies and tactics based on realistic workload profiles—
online and offline. This paper describes SLAstic.SIM and
provides an evaluation of its features and performance.

The remainder of this paper is structured as follows. Sec-
tions II and III describe the underlying concepts of the Palladio
Component Model and our SLAstic framework. SLAstic.SIM
is described in Section IV and its evaluation follows in
Section V. Related work is discussed in Section VI before
the conclusions are drawn in Section VII.

II. PALLADIO COMPONENT MODEL

The Palladio Component Model (PCM) [4] is a modeling
language for architecture-based performance prediction of C-B
software systems. A PCM instance consists of four comple-
mentary models providing architectural views to structural
as well as performance-relevant behavioral aspects of a C-B
software system: (1) a repository model, (2) a system model,
(3) a resource environment model, and an (4) allocation model.
Additionally, usage models allow to specify corresponding
workloads. Transformations from PCM instances to analytic
performance models and simulation models exist, allowing to
derive performance indices of interest—e.g., statistical distri-
butions of operation response times and resource utilization.
The remainder of this section describes PCM’s modeling
concepts and related terminology required to understand the
remaining parts of this paper. For further details, we refer to
the publications on PCM, e.g. [4].

Repository. A PCM repository model contains the type-
level specification of available interfaces and components. An
interface constitutes a named set of service signatures, as
known from object-oriented modeling. Components provide
or require these interfaces. Figure 1 illustrates the PCM
repository of the Bookstore application which is also used in
the evaluation section of this paper.

In order to use a PCM instance for performance prediction,
the performance-relevant behavior of each service implemen-
tation provided by the components must be specified. In this
paper, we will limit ourselves to one supported formalism—the
Resource Demanding Service Effect Specification (RDSEFF).
Similar to activity modeling employing the Unified Modeling
Language (UML) [5], an RDSEFF specifies a service im-
plementation as a control-flow of actions. PCM distinguishes
between internal actions and external call actions—the former
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Fig. 1. PCM repository diagram of the Bookstore example application
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Fig. 2. RDSEFF of the Bookstore’s searchBook service

being a quantitative specification of the hardware and software
resources used by the service; the latter denoting calls to
required services. RDSEFFs provide additional features like
probabilistic and guarded branches, loops, and operations on
variables. Figure 2 illustrates the RDSEFF of the Bookstore’s
searchBook service.

System. A PCM system model provides a deployment-
independent component-connector view of the system assem-
bly. Components defined in the repository can be (potentially
multiply) instantiated as so-called assembly contexts and inter-
connected using so-called assembly connectors—constrained
by the interface providing/requiring specification. The services
provided and required by the system are delegated to/from
the implementing assembly contexts. Figure 3 illustrates the
Bookstore’s system model.
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bookstore <Bookstore>

crm <CRM> catalog <Catalog>

Fig. 3. PCM system diagram of the Bookstore application

Resource Environment. A PCM resource environment
model specifies the available resource infrastructure and
its performance-relevant characteristics. Resource containers,
e.g., physical servers, are inter-connected by linking resources,
e.g., network links. Each resource container is associated with
the contained processing resources (e.g., CPU and HDD)
which can be demanded in the RDSEFFs. For each resource,
the resource environment model contains a specification of the
performance-relevant properties of the resources—e.g., capac-
ity, processing rates, throughput, and scheduling disciplines.

Allocation. A PCM allocation model specifies the deploy-
ment of the system’s assembly contexts to resource containers.
Each of these mappings is modeled as an allocation context.

Usage model. A PCM usage model allows to specify closed
and open workloads. Probabilistic user behavior is described
in an RDSEFF-like formalism including branches, loops, and
calls to system-provided services. Closed workloads include
the definition of population size and think time; open work-
loads include the definition of inter-arrival times.

III. SLASTIC APPROACH

As a measure of a system’s resource usage economy, resource
efficiency is an important quality attribute of software systems.
The capacity of software systems is often managed in a
static and pessimistic way, causing temporarily underutilized
resources, e.g., application servers, during medium or low
workload periods.

Our SLAstic [2, 3] self-adaptation approach for online
capacity management aims to increase the resource efficiency
of distributed C-B software systems employing architectural
runtime reconfiguration. Architectural models specify the sys-
tem assembly, deployment, instrumentation, reconfiguration
capabilities, performance properties, etc. At runtime, these
models are continuously updated and used for online quality-
of-service evaluation, e.g., workload forecasting and perfor-
mance prediction, in order to determine required adaptations
and to select appropriate reconfiguration plans. Architectural
system modeling in SLAstic is based on the hierarchical
modeling approach from PCM, as described in the previous
Section II—with a slightly different terminology. For this
paper, we assume that assembly components are equivalent to
to the assembly contexts from PCM; deployment components
to allocation contexts; and execution containers to resource
containers. The following Sections III-A and III-B describe
the considered architectural reconfiguration operations and the
framework architecture.

A. Architectural Reconfiguration Operations

In principle, the SLAstic framework, which will be described
in Section III-B, allows arbitrary reconfiguration operations
which are defined based on the architectural entities from the
SLAstic meta-model. In this paper, we focus on the following
five runtime reconfiguration operations that allow to control a
system’s performance and efficiency properties at runtime in
an elastic way. Figure 4 on the following page illustrates these
operations.

1./2. Replication & de-replication of software components.
The replication operation creates an additional instance of
a deployment component on another allocated execution
container. Future requests to the services provided by the
corresponding assembly component are distributed be-
tween the available deployment components. The inverse
de-replication operation removes an existing deployment
component; newly incoming requests are no longer dis-
patched to this deployment component instance.

3. Migration of software components. The migration op-
eration removes a deployment component instance and
creates a new instance of the same assembly component
on another allocated execution container.

4./5. De-allocation & allocation of execution containers.
The allocation operation makes an execution container
available for component deployment. The reverse de-
allocation operation removes an execution container from
the set of allocated containers.
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Fig. 4. SLAstic reconfiguration operations

The replication and migration operations both allow to increase
system capacity by deploying components to allocated but
underutilized execution containers. The de-replication and
migration operation can be used to shrink the system capacity
by (re)moving deployment components. Operating costs—
e.g., caused by power consumption or usage fees in cloud
environments—can be saved by de-allocating execution con-
tainers.

B. Framework Architecture

Figure 5 depicts how the concurrently executing SLAstic
components for monitoring (SLAstic.Monitoring), recon-
figuration (SLAstic.Reconfiguration), and adaptation con-
trol (SLAstic.Control) are integrated and how they interact
with the monitored software system.

The software system is instrumented with monitoring probes
which continuously collect measurement data from the run-
ning system. The SLAstic.Monitoring component provides the
monitoring infrastructure and passes the monitoring data to
the SLAstic.Control component. The SLAstic.Control com-
ponent analyzes the current architectural configuration with
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Fig. 5. SLAstic self-adaptation framework overview

respect to the monitoring data and, if required, determines
an adaptation plan consisting of a sequence of reconfigura-
tion operations. The adaptation plan is communicated to the
SLAstic.Reconfiguration component which is responsible for
executing the actual reconfiguration operations.

Notice, that the SLAstic.Control component has an archi-
tectural, technology-independent view on the software sys-
tem. The SLAstic.Monitoring and SLAstic.Control compo-
nents translate between architecture and technology. Thus, the
SLAstic runtime reconfiguration operations described in the
previous Section III-A are defined on the architectural entities.
In Section IV-B, we present a PCM-specific implementation
of these operations.

IV. SLASTIC.SIM

Section IV-A gives an overview of SLAstic.SIM’s architecture
and its integration into the SLAstic framework described in
the previous Section III. In Section IV-B, we describe how
the SLAstic reconfiguration operations (Section III-A) are
implemented within SLAstic.SIM using PCM. The execution
of the simulation model is described in Section IV-C. Further
details on the aspects presented in this section can be found
in [6].

A. SLAstic.SIM Architecture & Framework Integration

SLAstic.SIM’s conceptual architecture and its integration into
the SLAstic framework are depicted in Figure 6. For the
SLAstic.Control component, SLAstic.SIM emulates a real
software system with runtime reconfiguration capabilities. The
SimulationController is responsible for the simulation life-cycle
and for handling external events. Initially, the input PCM
instance is transformed into an internal representation used
during simulation and maintained by the ModelManager. The
ModelManager includes a ReconfigurationController and a con-
troller for each PCM model, e.g., an AllocationController. The
SimulationCore executes the simulation including the generation
and execution of internal simulation events. SLAstic.SIM
employs the Java-based discrete-event simulation framework
Desmo-J1 [7]. Communication with SLAstic.SIM is possible
via the workload, monitoring, and reconfiguration ports. These

1Desmo-J: http://desmoj.sourceforge.net/
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allow to 1) input the workload driving the simulation, 2) re-
ceive the performance data generated during simulation, and
3) request reconfigurations to be executed by the simulator,
as detailed below. Our monitoring and analysis framework
Kieker2 [8] is used for reading the workload traces and
monitoring the simulation data.

1) Workload: Workload is received from a Kieker.
LogReplayer component which reads workload traces from
a monitoring log and passes them to registered plug-ins
which implement the IMonitoringRecordReceiver interface—in
this case SLAstic.SIM. As these logs typically contain com-
plete control-flow traces and not just the top-level entry
calls, the SimulationController filters the incoming workload and
delegates it to the SimulationCore.

2) Monitoring: Currently, SLAstic.SIM includes probes for
collecting the following information during simulation:

• Executions. Each simulated execution of external calls is
monitored with the associated information on the service
and assembly context, the resource container, the entry
and exit times, as well as the control flow information.

• CPU utilization. For each CPU of allocated resource
containers, the utilization is measured in intervals of
0.5 simulated time units.

• Active users. If a call from outside of the system occurs
we increment the user count and write a monitoring
record. Upon the return of a call the user count is
decremented again and another record is written.

In each case, we defined a Kieker monitoring record type
which allows to monitor, analyze, and visualize this data.
The monitoring records are passed to the SLAstic.Monitoring
component via Kieker’s MonitoringController. The monitoring
probes are injected using the Google Guice3 dependency
injection framework. This gives the possibility to enable or
disable probes between different simulation runs by simply
replacing a class’s implementation. It is also possible to disable
each of these probes separately or to add additional ones.

3) Reconfiguration: The IReconfigurationPlanReceiver inter-
face makes it possible to send reconfiguration plans (see Fig-
ure 7) to the simulator. The plans will be received and checked
by the SimulationController and then sent to the ModelManager,
which translates them into reconfiguration events. These events
will then be simulated by the SimulationCore. A reconfigura-
tion plan consists of one or more reconfiguration operations.
These operations are successively applied to the simulation

2Kieker: http://kieker.sourceforge.net/
3Google Guice: http://code.google.com/p/google-guice/

model by the ReconfigurationController. Every operation of a
reconfiguration plan is transformed into one or more events,
which are scheduled and executed consecutively. If an event
fails to execute, the current plan is aborted. The following
Section IV-B details the PCM-specific implementation and
execution of the runtime reconfiguration operations.

B. PCM-Specific Runtime Reconfiguration Operations

Figure 7 shows the meta-model including the PCM-specific
reconfiguration plan and operations.

1. Component replication. For the given assembly context,
a new allocation context located on the destination con-
tainer is created and added to the model. The destination
container must be allocated prior to the call and must not
contain an allocation context for this assembly context.

2. Component de-replication. The existing allocation con-
text is blocked, which means that no new calls are
dispatched to this instance. As soon as all running
transactions handled by the component are finished, the
allocation context is removed from the model. Prior to
the request, at least two allocation contexts must exist for
the assembly context. The activity diagram in Figure 8
depicts the execution of a de-replication operation within
SLAstic.SIM.

3. Component migration. The migration is implemented
by executing a replication followed by a de-replication
operation. Hence, the new allocation context immediately
handles new calls while the old allocation context exists
until all executing calls are finished.

4. Container de-allocation. The container is marked unavail-
able which means that it cannot be the target of migration

ReplicationController

blockAndRemove
Instance

notifyFailure

AllocationController

[else]

[else]

[numberOfInstances > 1]

[allocationContextExists]

component
: AllocationContext

blockAndRemove
Instance

noUsersLeft

blockInstance

remove
AllocationContext

Fig. 8. Activity diagram for the component de-replication operation
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or replication operations until it is allocated again. Prior
to the request, the resource container to be de-allocated
must be allocated and empty—i.e., it must not contain
any allocation context.

5. Container allocation. The container is marked available
which means that it can be the target of migration or
replication operations. The operation can be executed if
the resource container exists in the simulation model and
is not allocated at that time. Upon completion, compo-
nents can be replicated or migrated to it. Initially, exactly
those resource containers from the resource environment
being associated with at least one deployment context are
marked as allocated.

C. Simulation

Desmo-J offers two styles of modeling [7]: process-based and
event-based. We chose to use the event-based model as all
our state changes in the simulation model are instantaneous
and there would be no real life-cycle. The following Sec-
tions IV-C1 and IV-C2 give a brief overview of the generation
and execution of control-flows.

1) Control-Flow Generation: On each external call from
the input workload, the complete control-flow chain is gen-
erated. This is done by traversing and evaluating the corre-
sponding RDSEFF. Call enter and return events are generated
for each ExternalCallAction4. For each InternalAction, an internal
action event is produced, containing the resource demands of
the input InternalAction. BranchActions are evaluated by deciding
which transition to take and traversing the transition’s body.
LoopActions are evaluated similarly by determining the itera-
tions and then traversing the body for each iteration. The result
is a list of Desmo-J events which are scheduled consecutively.

2) Execution of Control-Flow Chains: On occurrence of
an external call, the allocation contexts for the corresponding
assembly contexts are determined and one of these is selected
based on the uniform probability distribution. The resource
demands of internal actions are mapped to the corresponding
resources of the current resource container. Each of these
resources has a scheduler. Currently, we support hard drives
scheduled by a first-come/first-served strategy and CPU usage
by processor sharing. These components are also replaceable
by implementing the corresponding interface.

V. EVALUATION

Employing an example application, the evaluation in this
section demonstrates SLAstic.SIM’s performance and fea-
tures by comparing the duration of simulation runs with
the PCM simulator SimuCom, as well as by two additional
scenarios under varying workload intensity with and without
the execution of reconfigurations. Section V-A describes the
evaluation methodology. The evaluation scenarios follow in
Sections V-B–V-D. Details on SimuCom can be found in
Section VI.

4ExternalCallAction, InternalAction, BranchActions, and LoopAction are
classes in the PCM meta-model.
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Fig. 9. Reconstructed sequence diagram of Bookstore trace

A. Methodology

The following Sections V-A1–V-A3 describe the example
system, the workload trace generation, and the hardware and
software setup.

1) Example System: The Bookstore application, used in
all evaluation scenarios, provides a single searchBook service
which allows to search for books in a catalog. The appli-
cation consists of three software components—a front-end
(Bookstore), a catalog (Catalog), and a customer-relationship
management (CRM) component. A call to the searchBook
service results in a single deterministic trace shown in the
sequence diagram in Figure 9. The diagram was created
employing Kieker based on monitoring data from a simulation
run. We created a PCM instance for the Bookstore application
with the following models:

1. Repository. The PCM repository model of the Bookstore
and the RDSEFF describing the searchBook have been
shown in Figures 1 and 2 already. For each of the
three components, we defined a corresponding interface
in the repository. The RDSEFF of searchBook consists
of external calls to the getBook and getOffers services,
followed by a resource demand of 50 CPU units. The
service getOffers consists of an external call to getBook,
followed by a resource demand of 20 CPU units. The
service getBook simply contains a resource demand of
15 CPU units. The resource demands have been chosen
to yield a response time of 100 time units for a call to
searchBook without resource contention.

2. System. The Bookstore system consists of three assembly
contexts (see Figure 3)—one for each repository com-
ponent. The only externally provided interface is the
IBookstore interface. So the only service that is visible
to users is searchBook.

3. Resource environment. The resource environment consists
of two resource containers: Server1 and Server2. Each
of them has a single CPU. The CPU’s processing rate
varies between the evaluation scenarios, as detailed in
the respective sections.

4. Allocation. Initially, each assembly context is mapped to
resource container Server 2. Server 1 is empty.
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2) Generation of Workload Traces: For the scenarios, it
was required to generate workload traces with constant and
varying workload:

• Constant Workload. Constant workload was generated
by a script writing Kieker monitoring logs in comma-
separated value (CSV) file format based on a constant
inter-arrival time.

• Varying Workload. Varying workload was generated using
Apache JMeter5. We implemented a timer6 that takes a
function of time as its input. This allows to modulate
inter-arrival times. The data was written to a CSV file and
converted into a Kieker monitoring log in CSV format.

3) Hardware and Software Setup: The simulations were
executed in the hardware and software environment listed in
Table I.

CPU Intel Core i5, hyper-threading enabled
RAM 4 GB
OS Ubuntu Generic Linux kernel 2.6.32-22 SMP
Java Sun Java Version 1.6.0 20
Heap space 1GB for SLAstic.SIM, 2GB for SimuCom 3.0

TABLE I
HARDWARE AND SOFTWARE SETUP USED TO RUN THE EVALUATION

B. Scenario 1: Constant Workload Intensity

This scenario compares the duration of simulation runs exe-
cuted with SLAstic.SIM and SimuCom.

1) Setting: The input workload for SimuCom was specified
using the PCM workload specification. It was modeled as an
open workload with an inter-arrival time of 0.1 units. The
maximum simulation time was set to 1000 time units. The
aim was to provide a workload which would not overload
the system with an increasing number of running transactions.
In order to produce a reasonable CPU utilization, the CPUs’
processing rate was set to 1000 ticks per simulated time unit.

We only measured the duration of the simulation. Particu-
larly, for SimuCom we excluded the time required for code

5Apache JMeter: http://jakarta.apache.org/jmeter/
6JMeter Function Timer: http://code.google.com/p/delayfunction/

generation and compilation, and for SLAstic.SIM we omitted
the static initialization overhead.

2) Results: As expected, the simulated response time of the
system was 0.1 for both, SLAstic.SIM and SimuCom.

Table II lists statistics for the duration in (milliseconds) of
50 simulation runs executed with SimuCom and SLAstic.SIM.
Given this PCM instance, we can see that SLAstic.SIM and
SimuCom are comparable regarding the overall duration of the
simulation (SLAstic.SIM being slightly faster).

Min. Median Mean Max. Dev.
SimuCom 6434 7179 7199 7873 287.24
SLAstic.SIM 4864 5325 5333 5833 161.25

TABLE II
STATISTICS FOR THE DURATION (MS) OF 50 SIMULATION RUNS

C. Scenario 2: Varying Workload w/o Reconfiguration

This scenario demonstrates the performance simulation driven
by a trace of varying workload intensity without executing
runtime reconfigurations.

1) Setting: The input workload function for this scenario
was modeled to resemble one week of workload—with a
peak intensity on the weekend. Such workload patterns can
be observed in many real-world web-based systems. The
function was sampled over 360 seconds by 90 JMeter threads,
producing 68,653 calls. Figure 10 shows the inter-arrival time
function (and the corresponding arrival rates) used as input.
Opposed to the previous scenario we set the CPUs’ processing
rate to 100,000 ticks per simulated time unit.

2) Results: The simulated system behaved as expected.
A plot of the simulation results is given in Figure 11(a)
on the following page. During periods with low workload
intensity, the CPU utilization is between five and ten percent,
and the response times are below 0.002 simulated time units.
Increasing the CPU load also increases the response times
of the service requests. A peak was reached at a simulation
time of approximately 270 with a CPU load of 70% and a
response time of nearly 0.018 time units. The average duration
of 10 simulation runs was 18.6 seconds.

D. Scenario 3: Varying Workload w/ Reconfiguration

This scenario demonstrates the performance simulation driven
by a trace of varying workload intensity including runtime
reconfigurations.

1) Setting: We used the varying workload trace from Sce-
nario 2 (see Section V-C1). During the time period with high
workload intensity, we requested runtime reconfigurations in
order to increase system capacity and improve responsiveness.
We implemented SLAstic.Control components that requested
the following two runtime reconfiguration plans at fixed sim-
ulation times:

1. The reconfiguration plan requested after 200 time units
consists of: An allocation of Server1 followed by a
subsequent replication and migration of the components
CRM and Catalog respectively. Both the replication and
migration have the newly allocated resource container
Server1 as its destination.

http://jakarta.apache.org/jmeter/
http://code.google.com/p/delayfunction/
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2. The inverse reconfiguration plan requested after 300 time
units consists of the migration of component Catalog back
to Server2, the de-replication of component CRM, and the
subsequent de-allocation of Server1.

The SLAstic.Control component maintains a runtime model of
the PCM instance during the simulation run which is updated
according to the executed system reconfigurations.

2) Results: A plot of the response times and CPU utiliza-
tions is shown in Figure 11(b). We can see that due to the
reconfiguration both, response times and CPU utilizations, can
be reduced on the simulated weekend. The dependency graph
in Figure 12, which was generated from the monitoring data
collected during the complete simulation run, shows that the
calls are distributed among the two resource containers. The
average duration of 10 simulation runs was 18.1 seconds.

<<execution container>>

Server1

<<deployment component>>

catalog <Catalog>
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Fig. 12. Operation dependency graph with calling frequencies (Scenario 3)

VI. RELATED WORK

Performance evaluation of computer systems is a a classical
and well-studied domain for simulation, e.g., based on queue-
ing (network) models [7, 9, 10]. For example, Java Modeling
Tools (JMT) [11] is a tool suite for modeling and analyzing
extended queueing networks. JMT includes the discrete-event
simulator JSIMengine. In addition to probabilistic (multi-class)
open and closed workloads, simulations can be driven by

workload traces provided as log files. Like SLAstic.SIM, it
is possible to use JSIMengine within external applications.

In our work, we focus on the performance simulation of
software systems using performance meta-models. Simulation
approaches exist for different kinds of architectural styles and
corresponding models. Examples of approaches based on the
UML SPT [12] profile for Schedulability, Performance, and
Time are ArgoSPE [13], CB-SPE [14]. Cortellessa et al. [15]
proposed an approach for the simulation-based performance
analysis of UML 2 models. Bause et al. [16] proposed an
approach for simulating models of service-oriented architec-
tures (SOAs) using process chain models and the OMNeT++7

network simulation framework.
Comparison to SimuCom: The work most related to

SLAstic.SIM is SimuCom, the simulator for PCM instances
of C-B software architectures without runtime reconfiguration
capabilities. SimuCom is integrated into the PCM modeling
environment SimuBench [4], developed as part of the Palladio
research project8. In terms of simulation correctness and sim-
ulator performance—for simulations without reconfiguration
and restricted to the PCM modeling features supported by
SLAstic.SIM—we consider SimuCom the reference imple-
mentation. Simulations with SimuCom are driven by PCM
usage models of closed or open workloads, as described in
Section II. SLAstic.SIM could be easily extended to allow
these kinds of workload models. In Section V-B, we have used
a generated workload trace equivalent to a PCM open work-
load usage model. Currently, SLAstic.SIM does not support
the following PCM features: Stochastic expressions (except
for constants) and middleware models, as implemented by
SimuCom.

Like SLAstic.SIM, SimuCom is implemented employing
Desmo-J. The simulation code is completely generated from a
PCM instance employing model-to-code (M2C) transforma-
tion prior to simulation start. This approach is well-suited

7OMNeT++ web site: http://www.omnetpp.org/
8Palladio project: http://sdq.ipd.kit.edu/research/palladio research project/

http://www.omnetpp.org/
http://sdq.ipd.kit.edu/research/palladio_research_project/


for software architectures, which are not reconfigured during
simulation. However, it is not trivial to extend SimuCom’s
M2C transformation by simulation support of runtime recon-
figurable PCM instances. This was one of the main reasons for
us to develop a new simulator for PCM models with runtime
reconfiguration support, following an interpretive simulation
approach. Another reason was that the SimuCom simulations
are only executable in an OSGi9 environment like Eclipse.

VII. CONCLUSIONS

This paper presented SLAstic.SIM, a performance simula-
tor for runtime reconfigurable, C-B software architectures.
SLAstic.SIM is able to simulate instances of the Palla-
dio Component Model (PCM) driven by external workload
traces which may have been generated or recorded prior to
the simulation. Additionally, it supports the proposed PCM-
specific implementation of the SLAstic runtime reconfigu-
ration operations aiming for increased resource efficiency:
migration and (de-)replication of software components, as
well as (de-)allocation of execution containers. The evalua-
tion demonstrated SLAstic.SIM’s performance and features
employing a small sample application. In a simulation scenario
under constant workload and without reconfiguration, SLAs-
tic.SIM was slightly faster than SimuCom. Two additional
scenarios showed the capability to drive simulations by varying
workload intensity profiles and the possibility to simulate the
afore-mentioned runtime reconfigurations.

In our future work, we will continue to improve and
extend SLAstic.SIM’s features and performance. The most
important PCM feature to be implemented is support for the
stochastic expressions allowing to model parametric resource
demands, loops etc. Also, SLAstic.SIM currently implements
an idealized view on the execution of reconfiguration op-
erations: when executed, they consume no simulation time.
For example, execution containers and replicated component
instances are available without simulating delays. We plan to
add the interpretation of corresponding model completions.
Likewise, other QoS properties, such as the reliability of
execution containers, may be modeled and simulated. We plan
to implement alternative strategies for dispatching requests
among replicated components, as well as additional runtime
reconfiguration operations, e.g., replacing the implementation
of component types. Moreover, we will use SLAstic.SIM to
simulate more complex PCM instances with workloads derived
from monitoring data of production systems. Also, the use of
SLAstic.SIM for online simulation will be further investigated.
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