Skip to main content

Possibilistic Entropy: A New Method for Nonlinear Dynamical Analysis of Biosignals

  • Conference paper
Book cover Knowledge-Based and Intelligent Information and Engineering Systems (KES 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6881))

  • 1330 Accesses

Abstract

The theory of nonlinear dynamical systems has opened doors to discovering potential patterns hidden in complex time-series data. An attrative approach to nonlinear time-series analysis is the measure of predictability which characterizes the data in terms of entropy. A new entropy measure is presented in this paper as a new nonlinear dynamical method, which is based on the theory of possibility and the kriging computation. The proposed model has the potential for studying complex biosignals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kaplan, D., Glass, L.: Understanding Nonlinear Dynamics. Springer, New York (1995)

    Book  MATH  Google Scholar 

  2. Voss, A., et al.: Methods derived from nonlinear dynamics for analysing heart rate variability. Phil. Trans. R. Soc. A 367, 277–296 (2009)

    Article  MATH  Google Scholar 

  3. Pincus, S.M.: Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 88, 2297–2301 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Pincus, S.M., Goldberger, A.L.: Physiological time-series analysis: what does regularity quantify? Am. J. Physiol. 4, H1643–H1656 (1994)

    Google Scholar 

  5. Pincus, S.M.: Approximate entropy (ApEn) as a complexity measure. Chaos 5, 110–117 (1995)

    Article  Google Scholar 

  6. Grassberger, P., Procaccia, I.: Estimation of the Kolmogorov entropy from a chaotic signal. Phys. Rev. A 28, 2591–2593 (1983)

    Article  Google Scholar 

  7. Eckmann, J.P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev. Modern. Phys. 57, 617–654 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kannathal, N., et al.: Entropies for detection of epilepsy in EEG. Comput. Meth. Programs Biomed. 80, 187–194 (2005)

    Article  Google Scholar 

  9. Srinivasan, V., Eswaran, C., Sriraam, N.: Approximate entropy-based epileptic EEG detection using artificial neural networks. IEEE Trans Information Technology in Biomedicine 11, 288–295 (2007)

    Article  Google Scholar 

  10. Richman, J.S., Moorman, J.R.: Physiological time-series analysis using approximate entropy and sample entropy. Amer. J. Physiol. Heart Circ. Physiol. 278, H2039–H2049 (2000)

    Google Scholar 

  11. Costa, M., Goldberger, A.L., Peng, C.K.: Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett 89, 068102-1–068102-4 (2002)

    Article  Google Scholar 

  12. Chen, W., Zhuang, J., Yu, W., Wang, Z.: Measuring complexity using FuzzyEn, ApEn, and SampEn. Medical Engineering & Physics 31, 61–68 (2009)

    Article  Google Scholar 

  13. Lewis, M.J., Short, A.L.: Sample entropy of electrocardiographic RR and QT time-series data during rest and exercise. Physiological Measurement 28, 731–744 (2007)

    Article  Google Scholar 

  14. Lee, M.-Y., Yang, C.-S.: Entropy-based feature extraction and decision tree induction for breast cancer diagnosis with standardized thermograph images. Comput. Meth. Programs Biomed. 100, 269–282 (2010)

    Article  Google Scholar 

  15. Pham, T.D.: GeoEntropy: a measure of complexity and similarity. Pattern Recognition 43, 887–896 (2010)

    Article  MATH  Google Scholar 

  16. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 100, 9–34 (1999)

    Article  Google Scholar 

  17. Isaaks, E.H., Srivastava, R.M.: An Introduction to Applied Geostatistics. Oxford University Press, New York (1989)

    Google Scholar 

  18. Journel, A.G., Rao, S.E.: Deriving conditional distribution from ordinary kriging, Stanford Center for Reservoir Forcasting. Stanford University Report (29), 25 (1996)

    Google Scholar 

  19. Brennan, M.-L., Penn, M.S., Van Lente, F., Nambi, V., Shishehbor, M.H., Aviles, R.J., Goormastic, M., Pepoy, M.L., McErlean, E.S., Topol, E.J., Nissen, S.E., Hazen, S.L.: Prognostic value of myeloperoxidase in patients with chest pain. New Eng. J. Med. 13, 1595–1604 (2003)

    Article  Google Scholar 

  20. Pham, T.D., Wang, H., Zhou, X., Beck, D., Brandl, M., Hoehn, G., Azok, J., Brennan, M.L., Hazen, S.L., Li, K., Wong, S.T.C.: Computational prediction models for early detection of risk of cardiovascular events using mass spectrometry data. IEEE Trans Information Technology in Biomedicine 12, 636–643 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pham, T.D. (2011). Possibilistic Entropy: A New Method for Nonlinear Dynamical Analysis of Biosignals. In: König, A., Dengel, A., Hinkelmann, K., Kise, K., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based and Intelligent Information and Engineering Systems. KES 2011. Lecture Notes in Computer Science(), vol 6881. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23851-2_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23851-2_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23850-5

  • Online ISBN: 978-3-642-23851-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics