Skip to main content
  • 1942 Accesses

Abstract

Quantumchromodynamics is the fundamental theory of the strong interactions. At finite temperatures and baryon densities, it predicts a transition from the known hadronic phase to a plasma phase, where quarks and gluons are no longer confined. For small and large quark masses, these are first order chiral and deconfinement transitions, respectively, whereas for intermediate masses they are only analytic crossovers, separated by critical surfaces. In a long term project, we calculate the critical surface bounding the region featuring chiral phase transitions in the quark mass and chemical potential parameter space of QCD with three flavours of quarks by means of lattice simulations. Our calculations are valid for small to moderate quark chemical potentials, μT. Previous calculations were done on coarse N t =4 lattices, corresponding to a lattice spacing a∼0.3 fm. Here we present results for three degenerate flavours at zero and finite density on N t =6 lattices, corresponding to a lattice spacing of a∼0.2 fm. Furthermore, we compute the phase structure at imaginary chemical potential μ/T=/3, finding tricritical lines which bound the continuation of the chiral as well as the deconfinement transition surfaces to imaginary chemical potentials and explain their curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. Philipsen, Eur. Phys. J. ST 152 (2007) 29 [arXiv:0708.1293 [hep-lat]].

    Article  Google Scholar 

  2. F. Karsch, E. Laermann and C. Schmidt, Phys. Lett. B 520 (2001) 41 [arXiv:hep-lat/0107020].

    Article  MATH  Google Scholar 

  3. P. de Forcrand and O. Philipsen, Nucl. Phys. B 673 (2003) 170 [arXiv:hep-lat/0307020].

    Article  Google Scholar 

  4. P. de Forcrand and O. Philipsen, JHEP 0701 (2007) 077 [arXiv:hep-lat/0607017].

    Article  Google Scholar 

  5. P. de Forcrand, S. Kim and O. Philipsen, PoS LAT2007 (2007) 178 [arXiv:0711.0262 [hep-lat]].

    Google Scholar 

  6. P. de Forcrand and O. Philipsen, JHEP 0811 (2008) 012 [arXiv:0808.1096 [hep-lat]].

    Article  Google Scholar 

  7. J. T. Moscicki, M. Wos, M. Lamanna, P. de Forcrand and O. Philipsen, Comput. Phys. Commun. 181 (2010) 1715 [arXiv:0911.5682 [Unknown]].

    Article  MATH  Google Scholar 

  8. K. Binder, Z. Phys. B 43 (1981) 119.

    Article  Google Scholar 

  9. A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 63 (1989) 1195.

    Article  Google Scholar 

  10. A. Roberge and N. Weiss, Nucl. Phys. B 275 (1986) 734.

    Article  Google Scholar 

  11. P. de Forcrand and O. Philipsen, Nucl. Phys. B 642 (2002) 290 [arXiv:hep-lat/0205016].

    Article  MATH  Google Scholar 

  12. M. D’Elia and M.P. Lombardo, Phys. Rev. D 67 (2003) 014505 [arXiv:hep-lat/0209146].

    Article  Google Scholar 

  13. M. D’Elia and F. Sanfilippo, Phys. Rev. D 80 (2009) 111501 [arXiv:0909.0254 [hep-lat]].

    Article  Google Scholar 

  14. P. de Forcrand and O. Philipsen, Phys. Rev. Lett. 105 (2010) 152001 [arXiv:1004.3144 [hep-lat]].

    Article  Google Scholar 

  15. O. Philipsen and P. de Forcrand, PoS LATTICE2010 (2010) 211 [arXiv:1011.0291 [hep-lat]].

    Google Scholar 

  16. M.A. Clark and A.D. Kennedy, Phys. Rev. Lett. 98 (2007) 051601 [arXiv:hep-lat/0608015].

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Philipsen, O., de Forcrand, P. (2012). QCD Critical Surfaces at Real and Imaginary μ . In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering '11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23869-7_5

Download citation

Publish with us

Policies and ethics