Skip to main content
  • 1973 Accesses

Abstract

We present a first principles analysis of the adsorption of the amino acid cysteine on the Au(110) surface. We carry out density functional theory calculations using the repeated-slab supercell method to investigate the molecule-surface interaction. We investigate the adsorption for four different adsorption geometries: one upright configuration, in which the molecule binds to the surface solely via the deprotonized thiolate head group and three flat configurations, which form an additional bond via the amino side group. We analyze bonding energy, charge redistribution, and changes in the density of states. We find that a flat geometry with the Au-thiolate bond at an off-bridge site and the Au-amino bond close to the Au-top site is energetically favored. The electron redistributions exhibit the combined characteristics of the isolated bonds found in earlier studies, supporting the view of strongly localized interaction between the functional groups and the metal surface. The electrostatic nature of the Au-amino bond and the covalent character of the Au-thiolate bond are still visible in the adsorption of the complete molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Nilsson and G. M. Petterson, Surf. Sci. Rep. 55, 49 (2004).

    Article  Google Scholar 

  2. H. Ishii, K. Sugiyama, I. Eisuke, and K. Seki, Adv. Mater. 11, 605 (1999).

    Article  Google Scholar 

  3. G. Heimel, L. Romaner, J.-L. Brédas, and E. Zojer, Phys. Rev. Lett. 96, 196806 (2006).

    Article  Google Scholar 

  4. H. Vásquez, Y. J. Dappe, J. Ortega, and F. Flores, J. Chem. Phys. 126, 144703 (2007).

    Article  Google Scholar 

  5. I. G. Hill, A. Rajagopal, A. Kahn, and Y. Hu, Appl. Phys. Lett. 73, 662 (1998).

    Article  Google Scholar 

  6. W. G. Schmidt, K. Seino, M. Preuss, A. Hermann, F. Ortmann, and F. Bechstedt, Appl. Phys. A 85, 387 (2006).

    Article  Google Scholar 

  7. C. Vericat, M. E. Vela, and R. C. Salvarezza, Phys. Chem. Chem. Phys. 7, 3258 (2005).

    Article  Google Scholar 

  8. V. De Renzi, R. Rousseau, D. Marchetto, R. Biagi, S. Scandolo, and U. del Pennino, Phys. Rev. Lett. 95, 046804 (2005).

    Article  Google Scholar 

  9. E. Rauls, S. Blankenburg, and W. G. Schmidt, Surf. Sci. 602, 2170 (2008).

    Article  Google Scholar 

  10. C. Joachim, J. K. Gimzewski, and A. Aviram, Nature 408, 541 (2000).

    Article  Google Scholar 

  11. H. B. Akkerman, P. W. M. Blom, D. M. de Leeuw, and B. de Boer, Nature 441, 69 (2006).

    Article  Google Scholar 

  12. C. P. Collier, E. W. Wong, M. Belohradsky, F. M. Raymo, J. F. Stoddart, P. J. Kuekes, R. S. Williams, and J. R. Heath, Science 285, 391 (1999).

    Article  Google Scholar 

  13. L. Bogani and W. Wernsdorfer, Nature Materials 7, 179 (2008).

    Article  Google Scholar 

  14. S. Y. Quek, L. Venkataraman, H. J. Choi, S. G. Louie, M. S. Hybertsen, and J. B. Neaton, Nano Lett. 7, 3477 (2007).

    Article  Google Scholar 

  15. R. LeParc, C. I. Smith, M. C. Cuquerella, R. L. Williams, D. G. Fernig, C. Edwards, D. S. Martin, and P. Weightman, Langmuir 22, 3413 (2006).

    Article  Google Scholar 

  16. A. Kühnle, T. R. Linderoth, B. Hammer, and F. Besenbacher, Nature 415, 891 (2002).

    Article  Google Scholar 

  17. A. Kühnle, L. M. Molina, T. R. Linderoth, B. Hammer, and F. Besenbacher, Phys. Rev. Lett. 93, 086101 (2004).

    Article  Google Scholar 

  18. A. Kühnle, T. R. Linderoth, and F. Besenbacher, J. Am. Chem. Soc. 128, 1076 (2005).

    Article  Google Scholar 

  19. A. Kühnle, T. R. Linderoth, and F. Besenbacher, J. Am. Chem. Soc. 125, 14680 (2003).

    Article  Google Scholar 

  20. R. R. Nazmutdinov, J. D. Zhang, T. T. Zinkicheva, I. R. Manyurov, and J. Ulstrup, Langmuir 22, 7556 (2006).

    Article  Google Scholar 

  21. R. Di Felice, A. Selloni, and E. Molinari, J. Phys. Chem. B 107, 1151 (2003).

    Article  Google Scholar 

  22. R. Di Felice and A. Selloni, J. Chem. Phys. 120, 4906 (2004).

    Article  Google Scholar 

  23. B. Höffling, F. Ortmann, K. Hannewald, and F. Bechstedt, Phys. Rev. B 81, 045407 (2010).

    Article  Google Scholar 

  24. B. Höffling, F. Ortmann, K. Hannewald, and F. Bechstedt, Phys. Stat. Solidi C 7, 149 (2010).

    Article  Google Scholar 

  25. B. Höffling, F. Ortmann, K. Hannewald, and F. Bechstedt, in: W. E. Nagel, D. B. Kröner, and M. M. Resch, eds., High Performance Computing in Science and Engineering ’10, p. 119, Springer, Heidelberg (2010).

    Google Scholar 

  26. G. Kresse and J. Furthmüller, Comp. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  27. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  Google Scholar 

  28. J. P. Perdew, Electronic Structure of Solids ’91, p. 11, Akademie-Verlag, Berlin (1991).

    Google Scholar 

  29. J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

    Article  Google Scholar 

  30. R. Maul, M. Preuss, F. Ortmann, K. Hannewald, and F. Bechstedt, J. Phys. Chem. A 111, 4370 (2007).

    Article  Google Scholar 

  31. R. Maul, F. Ortmann, M. Preuss, K. Hannewald, and F. Bechstedt, J. Comp. Chem. 28, 1817 (2007).

    Article  Google Scholar 

  32. F. Ortmann, W. G. Schmidt, and F. Bechstedt, Phys. Rev. Lett. 95, 186101 (2005).

    Article  Google Scholar 

  33. F. Ortmann, W. G. Schmidt, and F. Bechstedt, Phys. Rev. B 73, 205101 (2006).

    Article  Google Scholar 

  34. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  Google Scholar 

  35. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  MathSciNet  Google Scholar 

  36. B. Höffling, F. Ortmann, K. Hannewald, and F. Bechstedt, in: W. E. Nagel, D. B. Kröner, and M. M. Resch, eds., High Performance Computing in Science and Engineering ’09, p. 53, Springer, Heidelberg (2009).

    Google Scholar 

  37. R. Leitsmann and F. Bechstedt, in: W. E. Nagel, D. B. Kröner, and M. M. Resch, eds., High Performance Computing in Science and Engineering ’10, p. 135, Springer, Heidelberg (2010).

    Google Scholar 

  38. G. R. Desiraju and T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and Biology, Oxford University Press, Oxford (1999).

    Google Scholar 

  39. N. N. Greenwood and A. Earnshaw, Chemie der Elemente, VCH, Weinheim (1988).

    Google Scholar 

  40. M. Preuss, W. G. Schmidt, and F. Bechstedt, Phys. Rev. Lett. 94, 236102 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Höffling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Höffling, B., Ortmann, F., Hannewald, K., Bechstedt, F. (2012). Cysteine on Gold: An ab-initio Investigation. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering '11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23869-7_9

Download citation

Publish with us

Policies and ethics