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Abstract. Finding communities in networks is a hot topic in several re-
search areas like social network, graph theory or sociology among others.
This work considers the community finding problem as a clustering prob-
lem where an evolutionary approach can provide a new method to find
overlapping and stable communities in a graph. We apply some clustering
concepts to search for new solutions that use new simple fitness functions
which combine network properties with the clustering coefficient of the
graph. Finally, our approach has been applied to the Eurovision contest
dataset, a well-known social-based data network, to show how commu-
nities can be found using our method.

Keywords: clustering coefficient, social networks, community finding,
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1 Introduction

The clustering problem is based on blind search on a dataset. Some classical
solutions such as K-means (for a fixed number of clusters) [7] or Expectation-
Maximization [3] (for a variable number of clusters), amongst others, are based
on distances or metrics that are used to determine how the cluster should be
defined. The clustering problem is harder when is applied to find communities in
networks. Some algorithms such as Edge Betweenness [5] or CPM [4] have been
designed to solve this problem following a deterministic process.

In our study of the previous problem, we adopt an evolutionary approach
based on the K-means algorithm, a popular and well-known algorithm. It is
a straightforward clustering guided method (usually by a heuristic or directly
by a human) which tries to classify data in a fixed number of clusters (each
element is associated to one class). The number of clusters can be predefined or
can be estimated using heuristics or other kinds of algorithms, such as genetic
algorithms [6].

In the process of community finding problems, K-means cannot be directly
applied because it does not allow overlapping. In contrast, it is common for com-
munities to share members. An alternative solution could be fuzzy k-means [8]
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which allows every one element to belong to several clusters giving a probability
of membership, so same kind of overlapping for an element can be considered.

Communities in networks have been studied using CPM (Clique percolation
method) and Edge Betweenness algorithms which have been applied in our pre-
vious work [2] for community classification. CPM (Clique percolation method)
[4] finds communities using k-cliques (where k is fixed at the beginning and the
network is represented as a graph). It defines a community as the highest union
of k-cliques. CPM has two variants: directed graphs and weighted graphs. [9]
Edge Betweenness [5] is based on finding the edges of the network which con-
nect communities and removing them to determine a good definition of these
communities.

Our new approach develops an evolutionary k-means inspired by the concept
of fuzzy k-means and with the same objective as CPM and Edge Betweenness
algorithms: finding communities or overlapping clusters in the network.

In this work we propose a new way to combine both community finding and
clustering algorithms. In our approach, a genetic algorithm is used to find com-
munities in a dataset that represents humans voting on a social network. To
guide the genetic algorithm, the fitness takes the clustering coefficient defined
in graph theory to improve the results that could be obtained through a simple
K-means.

The rest of the paper is structured as follows. Section 2 shows a description
about the web dataset used to test our algorithm. Section 3 presents the genetic
algorithm used to detect communities in the web dataset. Section 4 presents a
discussion about the experimental results obtained. Finally, the conclusions and
some future research lines of work are presented.

2 Genetic-based Community Finding Algorithm (GCF)

The Genetic-based community finding algorithm uses a genetic algorithm to find
the best k communities in a dataset that could be represented as a graph and
where any particular neighbour could belong to different clusters. To describe
GCF, we will explain the following: the codification, the genetic algorithm and
the fitness function definition.

2.1 GCF Codification

An important problem in any Genetic Algorithm (GA) is related to the codifi-
cation of the chromosomes. In our case the genotypes are represented as a set
of binary values. Each allele represents the membership of a node of the graph
and each chromosome is used to represent a community. In this binary repre-
sentation 1 means the node belongs to the community and 0 the opposite, see
Figure 1 which exemplifies nodes as countries because of the data set to be used
for experimentation.
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Fig. 1. A Chromosome representing graph nodes. In this case, each node represents a
country and its belonging or not to the current community.

This simple codification allows us to represent nodes belonging to several
communities (as we have in fuzzy k-means and CPM algorithm), and also pro-
vides a simple method to define reproduction, crossover and mutation using a
standard Genetic Algorithm strategy[10].

2.2 GCF Evolutionary Approach

The GCF strategy works as follows:

1. A random population of communities is generated.
2. The population evolves using a standard GA.
3. The chromosomes that are the k-best solution of the algorithms are selected.

The selection process subsumes the communities which have better fitness
and belong to a bigger community. The process has the following steps:
(a) A list of k communities is created.
(b) The chromosomes are sorted by their fitness value.
(c) If there is an empty position in the list or one of the members is contained

in the chromosome that we are going to check, we add the checked chro-
mosome in the mentioned position (or in an empty position) subsuming
the other.

(d) If the list is full and the chromosome that we are going to check does
not satisfy the last condition, the algorithm stops. It also stops if the
fitness of the new chromosome is bigger than a fixed value (in this case,
the value is fixed as half of the maximum fitness).

Defining and selecting an appropriated fitness function, which we will now dis-
cuss, is the most critical issue in the GCF algorithm as it will be used to optimize
the quality of communities.

2.3 GCF Fitness functions

For this problem we have implemented three kind of fitness functions, each of
which has a different goal. The first one tries to find nodes with a similar rating
behaviour (minimal distance fitness), the second one tries to find clusters using
the clustering coefficient (maximum clustering coefficient fitness) and, finally, the
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last fitness function combines both strategies trying to find communities with
similar rating behaviours whose members are connected between them (hybrid
fitness).

Minimal distance fitness (MDF) The objective of this fitness function is to
find communities of nodes that are similar. The evaluation of this fitness function
are done using the following criteria:

1. Each node belonging to a community is represented as a vector of attributes.
The definition of these attributes depends on the problem being solved.

2. The average euclidean distance between vectors of attributes within a com-
munity is calculated. The fitness calculates distances to be taken into account
from peer to peer, between all vectors.

3. The fitness value for the community is the average distance of the values
calculated in previous step (we are trying to minimize the fitness). It is a
measure of similarity for those rows, hence it checks if they follow the same
ballot pattern. We call this average distance din (see Figure3).

4. Fitness penalizes those cases where the community has a single node, giving
it a value of zero.

Maximum clustering coefficient fitness (MC2F) The goal of this fitness
is to discover communities whose members are connected between them. It is
measured through the clustering coefficient, defined as follows:

Definition 1. Let G = (V,E) be a graph where E is the set of edges and V the
set of vertices. Let vi ∈ V be a vertex and eij ∈ E an edge from vi to vj. Let Σvi

be the neighbourhood of the vertex vi defined as Σvi = {vj | eij , eji ∈ E}. If k is
considered as the number of neighbours of a vertex, we can define the clustering
coefficient of a vertex as follows:

Ci =
|{ejk}|
k(k − 1)

Where |{ejk}| satisfies that vj , vk ∈ Σvi
.

Definition 2. The clustering coefficient of a graph is defined as:

C =
1

|V |

|V |∑
i=0

Ci

Where |V | is the number of vertices.

The fitness takes the sub-graph defined by the community and calculates its
clustering coefficient. It returns the inverse value, because the genetic algorithm
tries to minimize the fitness function.



Genetic-based Communities Finding Algorithm 5

Hybrid fitness (HF) This last fitness function combines both Clustering Co-
efficient and Distance fitness ideas: it tries to find a set of communities satisfying
both conditions already defined. With this method we try to find strong and sim-
ilar communities (members are highly connected between them and they have
similar behaviour). The function defined is a simple weighted function: suppose
that F (x, y) is the fitness function, CC the clustering coefficient and din the
value of HF fitness is:

Fi(CC, din) = w1 ∗
CCi

Max({CCi}Ki=1)
+ w2 ∗

dini

Max({dini}Ki=1)

Where wi are the weights given to each fitness: wi ∈ (0, 1). The values were set
experimentally to w1 = 0.1 and w2 = 0.9 .

3 The Dataset Description

The Eurovision Song Contest has been studied using different clustering methods
since the nineties. The main interest was to study and analyse alliances between
countries, which has already been reflected by clustering and communities. The
data used in this work has been extracted from Eurovision’s official website.

3.1 The Dataset representation: The Eurovision voting system

Since 1975, the scoring system in the Eurovision Contest consists of the following
rules:

– Each country distributes among others participants the following set of
points: 1, 2, 3, 4, 5, 6, 7, 8, 10, 12.

– These countries give the highest punctuation to the best song and the lower
to the less popular on preferred.

– When all countries cast their votes, the final ranking is obtained and the
country with the highest punctuation wins the contest.

This data can be easily represented using a graph for each year of the contest.
In this graph, the vertices will be countries and the points emitted can be used
to weight the edges. The graph could be directed (the edges represent votes),
or undirected (the edges only connect countries which have exchanged points
in any direction). If we consider the latter, it is similar to setting edge weights
uniformly to 1. According to this problem, the dataset will be represented as
the latter case, we named this representation Eurovision graph, or Eurovision
network.

3.2 Study and comparison of the Eurovision network in a random
context

The first approximation that shows patterns can be obtained using a simple com-
parison between the Eurovision graph and a randomly generated graph with the
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same rules applied in the contest. Namely, each participant country assigns its
ten set of points (generating an edge for every point cast) randomly among the
remaining participant countries. We call this representation Random network.

The random network model assumes that a given country does not favours or
penalize other countries and all songs have equal musical quality. So a country
X will give points randomly to another ten countries. If, for example, there are
N countries then the probability that country X votes for country Y is given
by P = 10/(N-1). Usually, in social networks, two vertices with corresponding
edges to a third vertex have a higher probability of being connected to each
other. Hence, it may be possible to observe the same effect in the Eurovision
network. Therefore, to study this effect it is reasonable to analyse the clustering
coefficient defined in section 2.

When we compare two different graphs, Eurovision and Random graphs,
a greater CC in the Eurovision graphs means there is an “intention of vote”
between countries. So the graph distribution of edges is not random and we
could conclude that communities, or alliances between countries, exist.

Figure 2 shows the clustering coefficients calculated for years ranging between
1992 to 2010. It can be seen how Eurovision clustering coefficients are always
greater than random network values. Hence, the results provide an evidence
that the voting system is not random and there are some partnerships between
countries.

Fig. 2. Clustering Coefficient comparison between the Eurovision network and a ran-
dom graphs.

4 Experimental Results

The preliminary data analysis, showed in Figure 2, confirms the existence of
alliances between participant countries. Specifically, 2009 has the greatest dif-
ference in clustering coefficient. This means it contains a large set of different
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communities. Hence, we have selected this year to perform the experimental
analysis of our algorithm.

We have calculated the distance between the community centres to compare
the results obtained; we call this measure dout as shown in Figure 3. A large dis-
tance between countries is preferable as it means a bigger gap between classes
or communities, and thus better results.

The genetic parameters of GCF have been set as:

– crossover probability: 0.1
– mutation probability: 0.2
– generations: 2500
– population size: 3000
– selection criteria: µ + λ where µ is the original population (we choose 200

best chromosomes for reproduction process and they also survive), λ is the
population generated in the reproduction process

– number of communities (K): 6

K is a parameter of the genetic algorithm that sets the number of commu-
nities. Table 1 presents the communities obtained using K equal to 6 for every
fitness. This value was experimentally obtained simulating different executions
of our algorithm for values of K ranging between 2 and 10. The optimal number
of communities with minimal overlapping was found to be 6. In the following
subsections we explain the results obtained attending to each fitness.

Fig. 3. Sample network graph illustrating three communities and the distances that are
calculated in the experimental phase. The distance din represents the average distance
calculated between the countries which belong to a community. And the distance dout
represents the distance between community centres.
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4.1 Distance model

The first fitness, MDF, takes the minimum distances (din) between the points
that represent the countries trying to find communities that vote in a similar
way. This algorithm was described in section 3.2. From this experiment it can
be noticed that the number of countries contained in these communities is dra-
matically small, as can be seen in Table 1. The din distance values obtained are
lower, meaning that the communities found cast their points very similar, but
all of these groups only have two countries.

4.2 Clustering Coefficient model

This model is based in the clustering coefficients of a network, and it tries to
find groups of countries that they are giving votes between them. The resulting
communities are shown in Table 1 identified by the fitness called MC2F.

Analyzing the found communities, we see that many of them present high
overlapping among countries. This effect was also noticed in the distance be-
tween centres (dout), it has decreased dramatically from 14.65 (obtained by the
previous model) to 5.40. Therefore, the communities found are very close to each
other, and present a higher overlapping.

Considering the intra-community distance, din, increases of up to twice the
previous values are observed. We can conclude that we have achieved the goal
of finding larger groups, but now these groups present too much overlapping to
be considered as stable communities. So the final goal of the algorithm has not
been really achieved.

4.3 Hybrid Model

Finally, these fitness functions have been combined in a new hybrid fitness (see
previous section). The first fitness finds communities which are too small, formed
by only 2 countries. The second has a good clustering coefficient and the com-
munities are larger, but the distance between communities is not as good as in
the first case, therefore overlapping is too high.

In this last model, combining the two GCF cost functions enables discovering
groups of countries which cast votes in a similar way, and also exchange points
between them. The communities found are shown in Table 1.

It is interesting to compare these results to the equivalent values for the
previous models. The distance between centres, dout, has been greatly improved
and now is closer to the value obtained by the first fitness function (11.26 ).
The intra-cluster distance, din, and the clustering coefficient take values lying
between the first and second models’ values. In addition, we found that the given
communities have an appropriate size with a reduced overlapping.

This model allows us to answer two different questions about what standing
closer or belonging to the same community means for a group of countries.
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On the one hand, we can use the similarities in the voting process to establish
relationships and, on the other hand, we can consider the points that any country
assigns to the other members in its community. Therefore, we can consider that
the partnerships found with this model will be stronger and more useful to
measure the quality of the community found. They have similar votes and also
many of these votes are exchanged between them, globally, these communities
have a high number of points.

Table 1. Communities found with K = 6 using Clustering Coefficient. The distances
between centres (dout) obtained by fitness are: (a) MDF = 14.65 (b) MC2F = 5.40 (c)
HF = 11.26.

Fitness Communities din CC

MDF Lithuania Latvia 10,91 0

MDF Sweden Denmark 11,04 0

MDF Sweden Hungary 11,31 0

MDF Cyprus Moldova 11,40 0

MDF Israel Netherlands 11,66 0

MDF Albania Germany 11,83 0

MC2F Sweden Bosnia and Herzegovina Moldova Russia Finland 20,57 1
Ukraine Iceland Turkey Germany

MC2F France Sweden Moldova Russia Finland Iceland 21,20 1
Germany Azerbaijan UnitedKingdom

MC2F France Sweden Moldova Finland Romania Iceland 21,78 1
Germany Azerbaijan UnitedKingdom

MC2F France Estonia Sweden Finland Iceland Germany 20,93 1
UnitedKingdom

MC2F Sweden Moldova Russia Finland Ukraine Iceland Azerbaijan 20,55 1

MC2F Estonia Sweden Bosnia and Herzegovina Finland 21,89 1
Iceland Turkey Germany

HF Estonia Sweden Finland Iceland 18,03 1.0

HF Sweden Moldova Russia Finland Ukraine Iceland 19,52 1.0

HF Norway Sweden Denmark Iceland 18,77 0.92

HF Moldova Russia Ukraine Poland 16,40 0.75

HF Armenia Russia Lithuania Ukraine 16,56 0.75

HF France Germany United-Kingdom 19,93 1.0

5 Conclusions and Future Work

To find communities in a web dataset that can be represented by a social net-
work, we have designed and implemented a genetic algorithm based on the graph
clustering coefficient. We have centred our research around how to guide the fit-
ness to improve the results that could be obtained through a classical K-means.
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We have implemented three different fitness functions: the first one based on
a euclidean distance, the second one based on the clustering coefficient, and the
last one as a combination of the previous two (hybrid model).

Our experimental findings show that, using the clustering coefficient defined
in graph theory to guide the hybrid fitness,is able to reach the best result. This
model find communities that have an appropriate size, reduced overlapping and
closer distances between centres.

Finally some improvements could be made in the fitness function. In our
hybrid model, the fitness could be adapted to accept a weighted clustering co-
efficient[1] to obtain a better distance. This new fitness could be used in the
future to measure the strength of a community. Also, for the Eurovision dataset,
other features such as geographical distances or historical behaviours could be
included in future fitness functions to study the analysis of the GCF algorithm.
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